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Abstract: 3-Satisfiability (3-SAT) reduction has always been remarkable asset in proving the NP-Completeness of other problems. 

3-SAT problem is an NP-Complete problem used as a starting point to prove the hardness of other problems. Therefore, every  

NP-Complete problem can be reduced into 3-SAT that can be solved by a SAT solver. In this perspective, determining 3-SAT 
reduction from Sudoku Puzzle of size (n x n) is very helpful to obtain the solution of Sudoku Puzzle using SAT solver. Thus, we 

have obtained polynomial 3-SAT reduction of Sudoku Puzzle (n x n) as well as total number of 3-SAT clauses and new variables 

generated in 3-SAT reduction are 4 [n4– 2n2 + m] and 2 [n2{n2 + n – 6} + m] respectively. 
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I.INTRODUCTION 

 
Satisfiability (SAT) is a growing area of research in 

computational complexity and theorem proving. It has been 

extensively used to prove the NP-Completeness of other 

problems. In this view, 3-SAT problem is first viable 
restriction of SAT, to prove the hardness of other problems. 

Expedition for development of efficient SAT solvers 

generates significant growth in this field. As a result, it 

turned to the fact that every NP-Complete problem can be 

reduced into 3-SAT, to obtain the solution of that problem 

using SAT solver [1][2]. Additionally, Sudoku Puzzle of 

size (n x n) is an NP-Complete problem that has been 

received noteworthy contribution in research area of 

computer science. Various applications of solving Sudoku 

Puzzle are witnessed in the fields of steganography, secret 

image sharing, encrypting SMS, digital watermarking, 
image authentication, image encryption and                  

many others [3]. There exist various techniques for solving 

Sudoku Puzzles such as backtracking algorithms, stochastic 

search techniques, integer linear programming, genetic 

algorithms etc. Most of these existing techniques are 

primarily guess-based heuristic that require exponential 

time for large Sudoku Puzzle [4][5][6].                       

Sudoku Puzzle (n x n) can be reduced into 3-SAT in order 

to find solution using a SAT solver. There exist two SAT 

encodings for Sudoku Puzzle namely; extended encoding 

and minimal encoding. It has been noticed that extended 
encoding is better than minimal encoding as it has some 

redundant clauses that perform well in terms of resolution 

techniques [7]. On the other hand, many research efforts 

have been made on polynomial 3-SAT reduction for variety 

of NP-Complete problems such as graph k-colorability, 

determining vertex cover and independent   set    for    a    

given    graph,    channel    assignment problem in cellular 

network etc. [8][9][10]. However, there is a scope of 3-SAT 

reduction of Sudoku Puzzle (n x n) in polynomial time. 
Polynomial time reduction from Sudoku Puzzle to      

3-SAT formula is helpful to detect the satisfiability of the 

generated formula as well as to obtain the feasible solution. 

We discuss the basic details of 3-SAT and Sudoku Puzzle in 
Section 2. Interest in Sudoku Puzzle is expanding for its  

NP-Completeness as a result it is represented as 3-SAT to 

solve the puzzle. In Section 3, formulation of polynomial 3-

SAT reduction of Sudoku Puzzle (n x n) is depicted. In 

Section 4, we proposed an algorithm for 3-SAT reduction of 

Sudoku Puzzle that generates 3-SAT clause in DIMACS 

form. Afterwards, we summarize the experimental results 

for Sudoku Puzzles of different size in Section 5. We have 

obtained satisfiable solution with the help of online Minisat 

solver. Finally, we conclude our work with suggesting 

future work in Section 6. 
 

II. BACKGROUND 

 
In this section, we have explored the background 

details of Sudoku Puzzle and 3-SAT problem. 

 

A. 3-Satisfiability Problem 

A 3-Satisfiability (3-SAT) problem i.e. the boolean 

satisfiability problem aims to check the given propositional 

formula is satisfiable or not. It is restricted form of a SAT, 

where each clause contains exactly 3 distinct literals. It 
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consists of conjunction of clauses, where each clause 

consists of disjunction of exactly 3 distinct literals [11]. It is 

a special case of SAT problem that has been one of the 

Karp's 21 NP- complete problems as well as it is used as a 

starting point to prove the NP-Completeness of other 

problems [12]. 
Mathematically, let F be a 3-SAT formula consists of n 

clauses C1 C2, C3, …, Cn and m literals l1, l2, l3, …, lm. An 

example of 3-SAT formula F, consists of 3 clauses and 4 

literals is given by- F = C1 ∧ C2 ∧ C3, where                       

C1 = (a1 ∨¬a2 ∨ a4), C2 = (¬a1 ∨ a3 ∨ a4), C3 = (a2 ∨¬ a4 ∨ a1) 

and, l = { a1, a2, a3, a4} is the set of literals. This formula is 

to be satisfiable if it is true by assigning a suitable logical 

value to its literals. 

B. Sudoku Puzzle (n x n) 

Sudoku Puzzle of size (n x n) is a number placement 

puzzle that consists of n2 cells and partially completed with 

digits 1 to n, where n is a perfect square. The aim of the 

solver is to complete the remaining cells with digits 1 to n in 

such a manner that each row, column, and (√n x √n) subcell 

contains the digits from 1 to n exactly once [13][14]. For 

example,   Fig. 1 depicts a Sudoku Puzzle (9 x 9) consists of 

81 cells and partially completed with digits 1 to 9. On the 

other hand, Fig. 2 shows the solution of this puzzle that 

consists of 81 cells which are completed in such a way that 
each row, column, and subcells (3 x 3) contains the digits 

from 1 to 9 exactly once. 
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Fig. 1: Sudoku Puzzle (9 x 9) 
 

5 3 4 6 7 8 9 1 2 
6 7 2 1 9 5 3 4 8 
1 9 8 3 4 2 5 6 7 
8 5 9 7 6 1 4 2 3 
4 2 6 8 5 3 7 9 1 
7 1 3 9 2 4 8 5 6 
9 6 1 5 3 7 2 8 4 
2 8 7 4 1 9 6 3 5 
3 4 5 2 8 6 1 7 9 

 

Fig. 2: Solution of Sudoku Puzzle (9 x 9) 

 

III. POLYNOMIAL 3-SAT REDUCTION OF SUDOKU 

PUZZLE 

Sudoku Puzzle (n x n) is an NP-Complete problem; 

accordingly, it is represented as a SAT problem. We have 

used extended SAT encoding of Sudoku Puzzle (9 x 9). We 

generalize it for any value of n and generated the clauses in 

DIMACS format that stored in a file (say, sudo_SAT.txt). 

All the generated clauses for Sudoku Puzzle (n x n) are of 

length k (k = 1, 2, and n). As a result, SAT encoding of 

Sudoku Puzzle (n x n) consists of 4n2 clauses of length n, 

(4n2 * nC2) clauses of length 2 and m clauses of length 1, 

where m is the number of preassigned numbers in given 

Sudoku Puzzle. Therefore, total number of clauses 

generated for Sudoku Puzzle (n x n) is given by: 
 

  |N| = 4n2 + 4n2 (nC2) + m                             … (1) 
 

 These generated clauses are converted to 3-SAT 

clauses using well-defined non-recursive method. To 

highlight this method, we consider C1, C2 and Cn as the 

clauses of length 1, 2 and n respectively. These clauses 

consist of literals a1, a2, a3,…, an-1, an. By using some new 
variables x1, x2, x3,…, xn-3, these clauses are converted into 

3-SAT clauses as Cx, Cy and Cz corresponding to C1, C2   

and Cn.  
 

 C1 = (a1), where k = 1 
 

      Cx = (a1 ˅ x1 ˅ x2) ˄ (a1 ˅ ¬x1 ˅ x2) ˄ (a1 ˅ x1 ˅ ¬x2) ˄ 
              (a1 ˅  ¬x1 ˅  ¬x2)                                           … (2) 
 

 C2 = (a1 ˅ a2), where k = 2 
 

 Cy = (a1 ˅ a2 ˅ x1) ˄ (a1 ˅  a2 ˅ ¬x1)                           … (3) 
 

 Cn = (a1 ˅ a2 ˅ a3 ˅…˅ an), where k = n 

Cz = (a1 ˅ a2 ˅ x1) ˄ (¬x1 ˅ a3 ˅ x2) ˄ (¬x2 ˅ a4 ˅ x3) ˄ … 

˄ (¬xn-3 ˅ an-1 ˅ an)                                           ... (4) 

Equation (2), (3) and (4), generated all clauses of length 3. 

Thus, number of clauses and new variables required to 

transform a clause of length k (k = 1, 2 and n) into the 

clauses of length 3, are given by Table 1.  
 

 Table 1: Number of Clauses and Variables for a SAT Clause to 3-SAT 

                Clauses 
 

No. of Literals 

in a Clause (k) 
Total 3-SAT 

  Clauses 
Required New 

Variables 

1 4 2 

2 2 1 

n n – 2 n – 3 

Now, apply equation (2), (3) and (4) on generated 

DIMACS form (sudo_SAT.txt) of Sudoku Puzzle of size 

(n x n). By using equation (1) and table 1, we get the total 

number of  3-SAT clauses (say |C|) and new variables   

(say |V|) used in 3-SAT reduction of Sudoku Puzzle: 
 

              |C| = (n – 2) (4n2) + 2 (4n2 ) ( nC2 ) + 4 m 

        i.e. |C| = 4 [n4 – 2n2 + m]                                            … (5) 

and, 
              |V| = (n – 3) (4n2) + (1)(4n2 )( nC2 ) + 2m 

    i.e. |V| = 2 [n2 {n2 + n – 6} + m]                                … (6) 
Hence, it is clear from above formulation, we have 

obtained the polynomial 3-SAT reduction for Sudoku 

Puzzle of size (n x n). In next section, we have presented 

an algorithmic approach for 3-SAT reduction of Sudoku 

Puzzle. 
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IV. ALGORITHMIC APPROACH FOR 3-SAT 

REDUCTION 

 
In this section, algorithm SUDO3SAT for 3-SAT 

reduction of Sudoku Puzzle (n x n) is presented. 
 

Algorithm: SUDO3SAT 

 
main ( ) 
{ 
STEP 1:  /*Input sudo_SAT.txt*/  

                 READ (sudo_SAT.txt);                                        
 
STEP   2:   /* Initialize the file for storing 3-SAT clauses */ 

Sudo_3SAT.txt = NULL; 
 
STEP 3:  /* Count number of literals (say, k) of a clause, 

use some new variables {x1, x2, x3, … , xn-3} and 

develop the new 3-SAT clauses (say, New_clause) 

*/  
 
                  if (k = 1) 
                        New_clause = (a1 ˅ x1 ˅ x2) ˄ (a1 ˅ ¬x1 ˅ x2) 
                                     ˄ (a1 ˅ x1 ˅  ¬x2) ˄ (a1 ˅ ¬x1 ˅ ¬x2); 

                          Sudo_3SAT.txt  = New_clause; 
                  else 
                      if (k = 2) 

                           New_clause = (a1 ˅ a2 ˅ x1) ˄ (a1 ˅ a2 ˅ ¬x1);  
                           Sudo_3SAT.txt  = New_clause; 
                      else 
                           if (k = 3) 
                                 Sudo_3SAT.txt = Sudo_SAT; 

                       else 
                                 if (k = n) 

                                 New_clause =  (a1 ˅ a2 ˅  x1) ˄        

                                   (¬x1 ˅  a3 ˅ x2) ˄ (¬x2 ˅ a4 ˅  x3) ˄      
                                    … ˄ (¬xn-3 ˅ an-1 ˅ an ); 

                                              Sudo_3SAT.txt = New_clause; 
 
STEP 4: /* Generate total clauses in Sudo_3SAT.txt */  
              Repeat Step 3 until EOF; 

}  /* end of main ( ) */ 
 

 

V. RESULTS AND DISCUSSION 
 

   We have implemented the formulation of 3-SAT on 

various Sudoku Puzzle and obtained 3-SAT clauses in 

DIMACS format. 3-SAT clauses are passed to the online 

Minisat solver that produces the satisfiable values for this 

clauses. These satisfiable values provides the appropriate 

value for each cell of Sudoku Puzzle. Table 2 depicts the 

results of our implementation on different Sudoku Puzzles. 

The following are important results associated with 3-SAT 

reduction of Sudoku Puzzles (n x n): 
 Total   number   of 3-SAT clauses for   any   Sudoku   

puzzle (n   x   n): |C| = 4 [n4  – 2n2  + m], where m is the 
number of preassigned numbers in given Sudoku 

Puzzle. 

 Total number of new variables  used  for  3-SAT  

reduction  of  Sudoku  puzzle (n   x   n): 

      |V| = 2 [n2 {n2 + n – 6} + m]. 
 Polynomial 3-SAT reduction of Sudoku puzzle (n x n) 

is obtained. 

 On solving 3-SAT formula using SAT solver,              

n2  variables (corresponding to each cell) are satisfiable 

for Sudoku puzzle of size (n x n). 

 

Table 2: Execution of 3-SAT Formula for Various Sudoku Puzzle 

Size of 

Puzzle 

No.of 

Preassigned

Values (m) 

Total SAT 

Clauses 

Total 

3SAT 

Clauses 

Total New 

Variables 

in 3SAT 

Total 

Satisfiable 

Values 

 

 

4 X 4 

6 454 920 460  

 

16 
8 456 928 464 

9 457 932 466 

 

 

9 X 9 

22 12010 25684 13652  

 

81 
32 12020 25724 13672 

35    12023 25736 13678 

 

 

16 X 16 

90   123994 260456 136372  

 

256 
101   124005 260500 136394 

110   124014 260536 136412 

 

VI. CONCLUSION 

 

Proposed approach transforms the Sudoku Puzzle        

(n x n) into 3-SAT formula for any value of n. Online 

Minisat solver provides the satisfiable values for this 3-SAT 

formula. This is helpful to obtain the feasible solution of 

Sudoku Puzzle using SAT solver. We conclude that our 

formulation for 3-SAT reduction of Sudoku Puzzle (n x n) is 

polynomial.  We have obtained the total number of 3-SAT 

clauses and new variables required for this transformation. 

A direction for future work is to optimize the obtained 

number of 3-SAT clauses and new variables used in 3-SAT 

clauses. 
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