
DOI: http://dx.doi.org/10.26483/ijarcs.v9i3.6096

Volume 9, No. 3, May-June 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 194

ISSN No. 0976-5697

POLYNOMIAL 3-SAT REDUCTION OF SUDOKU PUZZLE

Deepika Rai

Assistant Professor
School of Computer Science and IT, DAVV

Indore (M.P), India

N.S. Chaudhari
Director and Professor

VNIT Nagpur and IIT Indore
Indore (M.P), India

 Maya Ingle

Professor and Sr. System Analyst
 SCSIT, DAVV

Indore (M.P), India

Abstract: 3-Satisfiability (3-SAT) reduction has always been remarkable asset in proving the NP-Completeness of other problems.

3-SAT problem is an NP-Complete problem used as a starting point to prove the hardness of other problems. Therefore, every

NP-Complete problem can be reduced into 3-SAT that can be solved by a SAT solver. In this perspective, determining 3-SAT
reduction from Sudoku Puzzle of size (n x n) is very helpful to obtain the solution of Sudoku Puzzle using SAT solver. Thus, we

have obtained polynomial 3-SAT reduction of Sudoku Puzzle (n x n) as well as total number of 3-SAT clauses and new variables

generated in 3-SAT reduction are 4 [n4– 2n2 + m] and 2 [n2{n2 + n – 6} + m] respectively.

Keywords: 3-SAT, Sudoku Puzzle, NP-Complete Problem, SAT solver, Polynomial Time

I.INTRODUCTION

Satisfiability (SAT) is a growing area of research in

computational complexity and theorem proving. It has been

extensively used to prove the NP-Completeness of other

problems. In this view, 3-SAT problem is first viable
restriction of SAT, to prove the hardness of other problems.

Expedition for development of efficient SAT solvers

generates significant growth in this field. As a result, it

turned to the fact that every NP-Complete problem can be

reduced into 3-SAT, to obtain the solution of that problem

using SAT solver [1][2]. Additionally, Sudoku Puzzle of

size (n x n) is an NP-Complete problem that has been

received noteworthy contribution in research area of

computer science. Various applications of solving Sudoku

Puzzle are witnessed in the fields of steganography, secret

image sharing, encrypting SMS, digital watermarking,
image authentication, image encryption and

many others [3]. There exist various techniques for solving

Sudoku Puzzles such as backtracking algorithms, stochastic

search techniques, integer linear programming, genetic

algorithms etc. Most of these existing techniques are

primarily guess-based heuristic that require exponential

time for large Sudoku Puzzle [4][5][6].

Sudoku Puzzle (n x n) can be reduced into 3-SAT in order

to find solution using a SAT solver. There exist two SAT

encodings for Sudoku Puzzle namely; extended encoding

and minimal encoding. It has been noticed that extended
encoding is better than minimal encoding as it has some

redundant clauses that perform well in terms of resolution

techniques [7]. On the other hand, many research efforts

have been made on polynomial 3-SAT reduction for variety

of NP-Complete problems such as graph k-colorability,

determining vertex cover and independent set for a

given graph, channel assignment problem in cellular

network etc. [8][9][10]. However, there is a scope of 3-SAT

reduction of Sudoku Puzzle (n x n) in polynomial time.
Polynomial time reduction from Sudoku Puzzle to

3-SAT formula is helpful to detect the satisfiability of the

generated formula as well as to obtain the feasible solution.

We discuss the basic details of 3-SAT and Sudoku Puzzle in
Section 2. Interest in Sudoku Puzzle is expanding for its

NP-Completeness as a result it is represented as 3-SAT to

solve the puzzle. In Section 3, formulation of polynomial 3-

SAT reduction of Sudoku Puzzle (n x n) is depicted. In

Section 4, we proposed an algorithm for 3-SAT reduction of

Sudoku Puzzle that generates 3-SAT clause in DIMACS

form. Afterwards, we summarize the experimental results

for Sudoku Puzzles of different size in Section 5. We have

obtained satisfiable solution with the help of online Minisat

solver. Finally, we conclude our work with suggesting

future work in Section 6.

II. BACKGROUND

In this section, we have explored the background

details of Sudoku Puzzle and 3-SAT problem.

A. 3-Satisfiability Problem

A 3-Satisfiability (3-SAT) problem i.e. the boolean

satisfiability problem aims to check the given propositional

formula is satisfiable or not. It is restricted form of a SAT,

where each clause contains exactly 3 distinct literals. It

Deepika Rai et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,194-197

© 2015-19, IJARCS All Rights Reserved 195

consists of conjunction of clauses, where each clause

consists of disjunction of exactly 3 distinct literals [11]. It is

a special case of SAT problem that has been one of the

Karp's 21 NP- complete problems as well as it is used as a

starting point to prove the NP-Completeness of other

problems [12].
Mathematically, let F be a 3-SAT formula consists of n

clauses C1 C2, C3, …, Cn and m literals l1, l2, l3, …, lm. An

example of 3-SAT formula F, consists of 3 clauses and 4

literals is given by- F = C1 ∧ C2 ∧ C3, where

C1 = (a1 ∨¬a2 ∨ a4), C2 = (¬a1 ∨ a3 ∨ a4), C3 = (a2 ∨¬ a4 ∨ a1)

and, l = { a1, a2, a3, a4} is the set of literals. This formula is

to be satisfiable if it is true by assigning a suitable logical

value to its literals.

B. Sudoku Puzzle (n x n)

Sudoku Puzzle of size (n x n) is a number placement

puzzle that consists of n2 cells and partially completed with

digits 1 to n, where n is a perfect square. The aim of the

solver is to complete the remaining cells with digits 1 to n in

such a manner that each row, column, and (√n x √n) subcell

contains the digits from 1 to n exactly once [13][14]. For

example, Fig. 1 depicts a Sudoku Puzzle (9 x 9) consists of

81 cells and partially completed with digits 1 to 9. On the

other hand, Fig. 2 shows the solution of this puzzle that

consists of 81 cells which are completed in such a way that
each row, column, and subcells (3 x 3) contains the digits

from 1 to 9 exactly once.

5 3

7

6

1 9 5

9 8

6

8

6

3
4

8

3

1
7

2

6

6

2 8

4 1 9

5

8

7 9

Fig. 1: Sudoku Puzzle (9 x 9)

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

Fig. 2: Solution of Sudoku Puzzle (9 x 9)

III. POLYNOMIAL 3-SAT REDUCTION OF SUDOKU

PUZZLE

Sudoku Puzzle (n x n) is an NP-Complete problem;

accordingly, it is represented as a SAT problem. We have

used extended SAT encoding of Sudoku Puzzle (9 x 9). We

generalize it for any value of n and generated the clauses in

DIMACS format that stored in a file (say, sudo_SAT.txt).

All the generated clauses for Sudoku Puzzle (n x n) are of

length k (k = 1, 2, and n). As a result, SAT encoding of

Sudoku Puzzle (n x n) consists of 4n2 clauses of length n,

(4n2 * nC2) clauses of length 2 and m clauses of length 1,

where m is the number of preassigned numbers in given

Sudoku Puzzle. Therefore, total number of clauses

generated for Sudoku Puzzle (n x n) is given by:

 |N| = 4n2 + 4n2 (nC2) + m … (1)

 These generated clauses are converted to 3-SAT

clauses using well-defined non-recursive method. To

highlight this method, we consider C1, C2 and Cn as the

clauses of length 1, 2 and n respectively. These clauses

consist of literals a1, a2, a3,…, an-1, an. By using some new
variables x1, x2, x3,…, xn-3, these clauses are converted into

3-SAT clauses as Cx, Cy and Cz corresponding to C1, C2

and Cn.

 C1 = (a1), where k = 1

 Cx = (a1 ˅ x1 ˅ x2) ˄ (a1 ˅ ¬x1 ˅ x2) ˄ (a1 ˅ x1 ˅ ¬x2) ˄
 (a1 ˅ ¬x1 ˅ ¬x2) … (2)

 C2 = (a1 ˅ a2), where k = 2

 Cy = (a1 ˅ a2 ˅ x1) ˄ (a1 ˅ a2 ˅ ¬x1) … (3)

 Cn = (a1 ˅ a2 ˅ a3 ˅…˅ an), where k = n

Cz = (a1 ˅ a2 ˅ x1) ˄ (¬x1 ˅ a3 ˅ x2) ˄ (¬x2 ˅ a4 ˅ x3) ˄ …

˄ (¬xn-3 ˅ an-1 ˅ an) ... (4)

Equation (2), (3) and (4), generated all clauses of length 3.

Thus, number of clauses and new variables required to

transform a clause of length k (k = 1, 2 and n) into the

clauses of length 3, are given by Table 1.

 Table 1: Number of Clauses and Variables for a SAT Clause to 3-SAT

 Clauses

No. of Literals

in a Clause (k)
Total 3-SAT

 Clauses
Required New

Variables

1 4 2

2 2 1

n n – 2 n – 3

Now, apply equation (2), (3) and (4) on generated

DIMACS form (sudo_SAT.txt) of Sudoku Puzzle of size

(n x n). By using equation (1) and table 1, we get the total

number of 3-SAT clauses (say |C|) and new variables

(say |V|) used in 3-SAT reduction of Sudoku Puzzle:

 |C| = (n – 2) (4n2) + 2 (4n2) (nC2) + 4 m

 i.e. |C| = 4 [n4 – 2n2 + m] … (5)

and,
 |V| = (n – 3) (4n2) + (1)(4n2)(nC2) + 2m

 i.e. |V| = 2 [n2 {n2 + n – 6} + m] … (6)
Hence, it is clear from above formulation, we have

obtained the polynomial 3-SAT reduction for Sudoku

Puzzle of size (n x n). In next section, we have presented

an algorithmic approach for 3-SAT reduction of Sudoku

Puzzle.

Deepika Rai et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,194-197

© 2015-19, IJARCS All Rights Reserved 196

IV. ALGORITHMIC APPROACH FOR 3-SAT

REDUCTION

In this section, algorithm SUDO3SAT for 3-SAT

reduction of Sudoku Puzzle (n x n) is presented.

Algorithm: SUDO3SAT

main ()
{
STEP 1: /*Input sudo_SAT.txt*/

 READ (sudo_SAT.txt);

STEP 2: /* Initialize the file for storing 3-SAT clauses */

Sudo_3SAT.txt = NULL;

STEP 3: /* Count number of literals (say, k) of a clause,

use some new variables {x1, x2, x3, … , xn-3} and

develop the new 3-SAT clauses (say, New_clause)

*/

 if (k = 1)
 New_clause = (a1 ˅ x1 ˅ x2) ˄ (a1 ˅ ¬x1 ˅ x2)
 ˄ (a1 ˅ x1 ˅ ¬x2) ˄ (a1 ˅ ¬x1 ˅ ¬x2);

 Sudo_3SAT.txt = New_clause;
 else
 if (k = 2)

 New_clause = (a1 ˅ a2 ˅ x1) ˄ (a1 ˅ a2 ˅ ¬x1);
 Sudo_3SAT.txt = New_clause;
 else
 if (k = 3)
 Sudo_3SAT.txt = Sudo_SAT;

 else
 if (k = n)

 New_clause = (a1 ˅ a2 ˅ x1) ˄

 (¬x1 ˅ a3 ˅ x2) ˄ (¬x2 ˅ a4 ˅ x3) ˄
 … ˄ (¬xn-3 ˅ an-1 ˅ an);

 Sudo_3SAT.txt = New_clause;

STEP 4: /* Generate total clauses in Sudo_3SAT.txt */
 Repeat Step 3 until EOF;

} /* end of main () */

V. RESULTS AND DISCUSSION

 We have implemented the formulation of 3-SAT on

various Sudoku Puzzle and obtained 3-SAT clauses in

DIMACS format. 3-SAT clauses are passed to the online

Minisat solver that produces the satisfiable values for this

clauses. These satisfiable values provides the appropriate

value for each cell of Sudoku Puzzle. Table 2 depicts the

results of our implementation on different Sudoku Puzzles.

The following are important results associated with 3-SAT

reduction of Sudoku Puzzles (n x n):
 Total number of 3-SAT clauses for any Sudoku

puzzle (n x n): |C| = 4 [n4 – 2n2 + m], where m is the
number of preassigned numbers in given Sudoku

Puzzle.

 Total number of new variables used for 3-SAT

reduction of Sudoku puzzle (n x n):

 |V| = 2 [n2 {n2 + n – 6} + m].
 Polynomial 3-SAT reduction of Sudoku puzzle (n x n)

is obtained.

 On solving 3-SAT formula using SAT solver,

n2 variables (corresponding to each cell) are satisfiable

for Sudoku puzzle of size (n x n).

Table 2: Execution of 3-SAT Formula for Various Sudoku Puzzle

Size of

Puzzle

No.of

Preassigned

Values (m)

Total SAT

Clauses

Total

3SAT

Clauses

Total New

Variables

in 3SAT

Total

Satisfiable

Values

4 X 4

6 454 920 460

16
8 456 928 464

9 457 932 466

9 X 9

22 12010 25684 13652

81
32 12020 25724 13672

35 12023 25736 13678

16 X 16

90 123994 260456 136372

256
101 124005 260500 136394

110 124014 260536 136412

VI. CONCLUSION

Proposed approach transforms the Sudoku Puzzle

(n x n) into 3-SAT formula for any value of n. Online

Minisat solver provides the satisfiable values for this 3-SAT

formula. This is helpful to obtain the feasible solution of

Sudoku Puzzle using SAT solver. We conclude that our

formulation for 3-SAT reduction of Sudoku Puzzle (n x n) is

polynomial. We have obtained the total number of 3-SAT

clauses and new variables required for this transformation.

A direction for future work is to optimize the obtained

number of 3-SAT clauses and new variables used in 3-SAT

clauses.

VII. REFERENCES

[1] Marques Silva J., Malik S., “Propositional SAT Solving”,

In: Clarke E., Henzinger T., Veith H., Bloem R. (eds)
Handbook of Model Checking, Springer, Cham, pp. 247-
275, 2018.

[2] Claessen, Koen, N. Een, M. Sheeran, N. Sorensson, “SAT-
Solving in Practice”, 9th IEEE International Conference on
Discrete Event Systems, pp. 61-67, 2008.

[3] A.K. Maji, R.K. Pal, “Sudoku Solver using Minigrid Based
Backtracking”, IEEE International Conference on Advance
Computing (IACC), pp. 36-44, 2014.

[4] Perez, Meir, TshilidziMarwala, “Stochastic Optimization
Approaches for Solving Sudoku”, Archives of Neural and
Evolutionary Computing, Cornell University Library, 2008.

[5] Deng, Xiu Qin, Yong Da Li., “A Novel Hybrid Genetic
Algorithm for Solving Sudoku Puzzles”, Springer Journal of
Optimization Letters, Vol. 7, No. 2, pp. 241-257, 2013.

[6] Bartlett, Andrew C., Amy N. Langville, “An Integer
Programming Model for the Sudoku Problem”, Journal of

Deepika Rai et al, International Journal of Advanced Research in Computer Science, 9 (3), May-June 2018,194-197

© 2015-19, IJARCS All Rights Reserved 197

Online Mathematics and its Applications, Vol. 8, Article ID
1798, 2008.

[7] Ines Lynce, Joel Ouaknine, “Sudoku as a SAT Problem”,
Proceedings of 9th International Symposium on Artificial
Intelligence and Mathematics, 2006.

[8] Prakash C.Sharma and Narendra S. Chaudhari, “A Graph
Coloring Approach for Channel Assignment in Cellular
Network via Propositional Satisfiability”, International
Conference on Emerging Trends in Networks and Computer
Communications (ETNCC) at Udaipur, pp. 23-26, 2011.

[9] N.Dahale, N.S.Chaudhari, M. Ingle, “Determining Vertex
Cover Using Polynomial Encoding of 3sat”, VNSGU Journal
of Science and Technology, Vol. 4, No. 1, pp. 197-204,
2015.

[10] Prakash C. Sharma and Narendra S. Chaudhari, “Polynomial
3-SAT Encoding for K-Colorability of Graph”, Evolution in

Networks and Computer Communications-A Special Issue
from IJCA, Article 4, No. 1, pp. 19-24, 2011.

[11] Tovey, Craig A., “A simplified NP-complete satisfiability
problem”,Discrete Applied Mathematics, Elsevier, Vol. 8,
No. 1,pp. 85-89, 1984.

[12] N. Chandrasekaran, K.L.P Mishra, “Theory of Computer

Science”, PHI Learning publishing, 3rd edition, 2011.
[13] Felgenhauer, Bertram, Frazer Jarvis, “Mathematics of

Sudoku-I”, Mathematical Spectrum, Vol. 39, No. 1, pp. 15-
22, 2006.

[14] G. Kendall, A.J. Parkes, K. Spoerer, “A Survey of NP-
Complete Puzzles”, International Computer Games
Association (ICGA) Journal, Vol.31, No. 1, pp. 13-34, 2008.

http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1798
http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1798
http://www.sciencedirect.com/science/journal/0166218X/8/1
http://www.sciencedirect.com/science/journal/0166218X/8/1

	Fig. 1: Sudoku Puzzle (9 x 9)

