
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 78

ISSN No. 0976-5697

Divide method of sorting records or numbers
Br. Sukumar (‘Sukumar Shil”)

Bramhachari, Ramakrishna Mission,Narendrapur
Ramakrishna Mission Residential College (Autonomous),

Narendrapur Kolkata, India
sukumarshil@gmail.com

Abstract: To sort a list of numbers there are few methods whereas the Divide and sort method at first divides the list of numbers into three
groups rather two arrays and a variable. The numbers are compared with respect to the first element. The numbers lesser to the first element are
kept in an array. The greater numbers are kept in a separate array and the numbers which are equal to the first element are counted and the value
is set in a variable. Now the two arrays are sorted separately by any other method. Now the lists are merged accordingly, list of lesser numbers
are kept first, then the numbers which are equal to first element are kept and then the numbers which are greater than the first element are kept
after it. Then the list is printed or kept in an array of variables. As the numbers are divided before sorting the method is named as “Divide and
Sort” method. The complexity of this process is 1/3rd of other methods of quadratic running time. Best case is when all the numbers are same.
That case can be checked by this method.

Keywords: divide and sort method, time complexity, sorting method, sorting cost, three variables

I. INTRODUCTION

The sorting operation if performed on an array, will sort
it in a specified order (ascending/descending) [8]. The
divide and sort method is simply different from the Divide-
and-Conquer Sorting as described in [5]. The idea was
developed considering the case when all the numbers are
same. To make zero the first number was subtracted from all
numbers. Then the case when all the numbers are not same
considered. The author then kept the negative numbers in a
separate first array and which were positive in a second
array. The zeroes were counted in a variable. But
momentarily, it was found that there no necessity of
subtracting the numbers rather what we can do is compare
the first element with the others and kept the lesser numbers
in an array and the larger numbers in another. Automatically
the running time reduced. But momentarily the author found
that there no need of subtracting first elements but only
compare and keep the lesser ones in the b list and the upper
greater ones in the c list and equal elements are only counted
to m. If three variables get equal numbers of elements, in the
average case the running time becomes less than 1/3rd of
other cases where time complexity O(n^2). The proof is
shown the method portion that dividing the list gives less
time complexity. The program in this article is written in C
with the help of Turbo C++ compiler and Windows 2000
OS was used.

II. ALGORITHM

Algorithm: The algorithm is better method for
understanding a program. An algorithm is a finite set of
instructions which, if followed, accomplish a particular task
[7]. As following the steps of it program can be written in
any computer language. We use array as data structure. An
array is a collection of similar elements [4]. The steps of
performing the method are given below:
Steps:
a. Input the array numbers{a[0],……a[n-1]}

Divide method of sorting

b. Compare the numbers with the first element
c. initialize m=1, j=0, k=0;
d. for(i=1,i<n;i++)
e. {
f. if(a[0]>a[i])
g. b[j]=a[i]; increment j by 1;
h. else if(a[0]<a[i])
i. c[k]=a[i]; increment k by 1;
j. else
k. increment m by 1;
l. }
m. sort (b,j)
n. sort (c,k)
o. for(i=0;i<j;i++)
p. {
q. e[i]=b[i];
r. }
s. middle=j+m-1;
t. for(i=j;i<middle;i++)
u. {
v. e[i]=a[0];
w. }
x. o=middle;
y. for(i=0;i<k;i++)
z. {
aa. e[o]=c[i]; increment by 1;
bb. }
cc. Now print the e list that is the final sorted list
Subprogram: Sort()
Sort(int n, int f[])
{
int t,i,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
t=f[i];
f[i]=f[i+1];
f[i+1]=t;
}

Br. Sukumar , International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,78-81

© 2010, IJARCS All Rights Reserved 79

}

III. METHOD

Say a list of numbers{23,4,5,7,6,1,7,8,9,0}. We have to
sort this list of numbers. First 23 is compared with other
elements. There will be one list only b={4,5,7,6,1,7,8,9,0}
and 23 is saved in a variable. So m will be 1.Now b is sorted
and put in an array e then 23 is added with that array.

Now take another array {4,67,8,5,3,2,1,0,4}.On
separating the list on the basis of larger and smaller than
first element two lists become b={3,2,1,0} and c={67,8,5}
and m will be 2 as 4 lies two times in the list. Now sort the
lists separately and make an another array putting the lists in
the order b,4,4,c. On sorting b becomes {0,1,2,3} and c
becomes {5,8,67} and m is 2. So the sorted final list is
e={0,1,2,3,4,4,5,8,67}.

When all the numbers are same b and c lists will have
no numbers. Only variable m will count how many times the
first element occurs. So there will be no sorting cost rather
putting the numbers as many times as they occur. There only
takes the time for comparing. Here m will be n. So in this
case the time complexity becomes O (n), linear.

When the numbers are already sorted in that case the
first element will be taken out from the list and c array will
contain the rest of elements. It is then sorted and the first
element is placed at the first position.

IV. COMPLEXITY ANALYSIS

The running time of this algorithm is one third of n^2
on the average. If the list can be divided into equal three
groups then complexity becomes 1/3rd or even less than that
of other methods of O(n^2). When we have only an
asymptotic upper bound, we use O-notation. For a given
function g(n), we denote by O(g(n)) the set of functions
O(g(n))={f(n): there exist positive constants c and n0 such
that

o≤f(n)≤c(g(n)) for all n≥n0.}[9].
For best case when all the numbers are same then it

gives minimum running time of the order of n-time for just
comparing the elements. The complexity then becomes
O(n), linear. When all the numbers are already sorted then
other than the first element we have to sort whole list. Only
c array will contain (n-1) numbers. So the running time
complexity will be n*(n-1).

It is a stable sort.
Stable sort: A list of unsorted data may contain two or

more equal data. If a sorting method maintains the same
relative position of their occurrences in the sorted list, then it
is called Stable Sort.[10]

V. PROGRAM IN C LANGUAGE
(Program written in C is efficient and fast [3])

A. //"divide and sort" method
#include<stdio.h>
#include<conio.h>
void main()
{
 void sort(int,int[]);
int a[100],b[100], c[100];
int n,i,j;

int d,k,m;
int o;
int e[100];
int middle;
clrscr();
printf("------------------------------------");
printf("\n\nTo sort an array using divide and sort method");
printf("\n\n------------------------------------");
printf("\n array input");
printf("\n no. of element would you like to sort=");
scanf("%d",&n);
/*input*/
printf("\n enter the numbers:");
for(i=0;i<n;i++)
{
printf("\ndata%d:",i);
scanf("%d",&a[i]);
}
printf("\n print the numbers:\n");
for(i=0;i<n;i++)
{
printf("%d\t",a[i]);
}
//divide the numbers in three bags comparing with the
first element
 d=a[0];
 k=0;
 j=0;
 m=1; //the first element
for(i=1;i<n;i++)
{
 if(d>a[i])
 {b[j]=a[i];
 j=j+1;}
 else if(d<a[i])
{ c[k]=a[i];
 k=k+1;}
 else
 m=m+1; //number of first equal elements
 }
 printf("\ni=%d,j=%d,k=%d,m=%d\n",i,j,k,m);
 printf("\nThe lists are\n");
 for(i=0;i<j;i++)
 printf("%d\t",b[i]);
 printf("\n");
 for(i=0;i<k;i++)
 printf("%d\t",c[i]);
 printf("\nsort differently two separate lists \n");
 sort(j,b);
 printf("Print sorted b list\n");
 for(i=0;i<j;i++)
 printf("%d\t",b[i]);
 sort(k,c);
 printf("\nPrint the sorted c list:\n");
 for(i=0;i<k;i++)
 printf("%d\t",c[i]);
 //Now merge the sorted lists in order b,a,c
 {for(i=0;i<j;i++) //j number of elements are lesser
than a[0]
 e[i]=b[i]; //elements below the first
element are placed at first
 }
 middle=j+m;

Br. Sukumar , International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,78-81

© 2010, IJARCS All Rights Reserved 80

 for(o=i;o<middle;o++)
 e[o]=d; //first element is placed at the
middle

 for(i=0;i<k;i++) //k number of last elements
 e[o+i]=c[i]; //elements greater than last
/*show after sorting*/
printf("\n\n now the elements in ascending order::");
for(i=0;i<n;i++)
 {
 printf("\t%d",e[i]);
 }
getch();
}
//Subprogram
 void sort(int l,int v[])
 {
 int i,p,t;
 for(i=0;i<l;i++)
 {
 for(p=0;p<l-1;p++)
 {
 if(v[p]>v[p+1])
 {
 t=v[p];
 v[p]=v[p+1];
 v[p+1]=t;
 }
 }
 }

 }

B. /*Output*/
/*------------------------------------
To sort an array using divide and sort method

 array input
 no. of element would you like to sort=6
 enter the numbers:
data0:3
data1:23
data2:32
data3:34
data4:2
data5:1
 print the numbers:
3 23 32 34 2 1
i=6,j=2,k=3,m=1
The lists are
2 1
23 32 34
sort differently two separate lists

Print sorted b list
1 2
Print the sorted c list:
23 32 34

 Now the elements in ascending order:: 1 2 3 23
32 34*/

 /*Output*/
With zero inputs
/* ------------------------------------
To sort an array using divide and sort method

 array input
 no. of element would you like to sort=0
 enter the numbers:
 print the numbers:
i=1,j=0,k=0,m=1
The lists are
sort differently two separate lists
Print sorted b list
Print the sorted c list:
 now the elements in ascending order::

*/

C. /*Output When All Numbers are Same

To sort an array using divide and sort method

 array input
 no. of element would you like to sort=5
 enter the numbers:
data0:12
data1:12
data2:12
data3:12
data4:12
 print the numbers:
12 12 12 12 12
I=5,j=0,k=0,m=5
The lists are
sort differently two separate lists
Print sorted b list
Print the sorted c list:
now the elements in ascending order::
 12 12 12 12 12
*/

Table 1 : Comparison of running time among the algorithms

Method Running time Best Case Worst Case Characteristic
Selection Sort O(n^2)[2] O(n^2)[2] O(n^2)[2] Stable[1]
Insertion Sort O(n^2)[2] O(n)-when all the

numbers are sorted[1]
O(n^2)[2] Stable[1]

Bubble Sort O(n^2)[2] O(n^2)[1] O(n^2)[2] Stable[1]
Divide and Sort <O(n^2)/3 on the

average case
O(n) when all the
numbers are same

O(n^2) Stable

Alternate Sort[11] O(n^2/2) O(n) when applied with
Divide and Sort method

O(n^2/2) Stable

Br. Sukumar , International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,78-81

© 2010, IJARCS All Rights Reserved 81

VI. CONCLUSION

This method can be applied on the limitation of array
spaces. The machine is also responsible for the amount of
numbers that it can sort. For normal computers it can sort
near about 1000 elements. If large number of array spaces
can be obtained then large number of arrays can be sorted.
The best case of time complexity lies in the case when all
the numbers are same. So the first comparison can be
applied before starting for all kinds of sorts. This is the best
method. Worst case of this method is when all the numbers
are sorted in that case running time reaches maximum. Heap
sort, that takes lesser time for sorting, is suitable only for
contiguous lists [5]. It is not good for short lists [6].
Whereas the Divide and sort method applies to all cases
giving better result. It can be found that some methods are
good for less numbers of elements and some are good for
greater number of elements. Insertion sort is good for less
than 23 elements than quick sort [2]. It is also good than
heap sorts for less than ten elements because of the constant
terms in its time complexity. It can be applied in
combination with all types of sorting. Alternate Sort method
is a better method and when applied with Divide and Sort
method will give a good result.

VII. ACKNOWLEDGMENT

I pay thanks to all the Staff members and Monastic
members of Ramakrishna Mission, Narendrapur. I am
thankful to all who knowingly or unknowingly have
supported my work of research. I pay homage to Thakur
(Ramakrishna Parahamsadev), Maa (Sarada),
Swamiji(Swami Vivekananda), the holy trio of our worship
and meditation. I specially thank Souvik Maharaj who was
our teacher and Physics Dept. and Chemistry Dept. and
above all Swami Suparnanandaji Maharaj. Lastly, I feel
pleased to acknowledge my gratitude to two Colleges
Ramakrishna Mission Residential College, Narendrapur and
St. Xavier’s college where from I learnt Computer Science
and Indian Association of Cultivation of Science where I
started learn Computer. I also thank Rakesh, Sujay, Pinaki,

Shubhendu, Manasda, Amitda, Satyada, Suman for co-
operating me in making the paper. Mr. Subrata Shil, my
brother, also deserves thanks for helping me in many ways.
Dr. Arun Kumar Tewari and Dr. Malay Purkait and Dr.
Prashanta Ghosh of R K Misssion Residential College are
very helpful and Dr. K P Ghatak of Electronics Dept., CU,
who is a person with lot of research interest and it
encouraged me. I also thank to Publication Company and
the readers who will read it. At last I thank Swami
Puratananandaji Maharaj and Jagatjyoti Banerjee and
Mohitosh Giri. I also thank Arnab Datta, an MSc student for
his collaboration. I also thank for it my mother, father and
sister and Swami Divyanandaji Maharaj.

VIII. REFERENCES

[1] http://www.scribd.com(doc/48642850/The-Heroic-
Tales-of-Sorting-Algorithms

[2] Horowitz-Sahni, Data Structure in Pascal (Chapter-Inter
Sorting, P-(360-371). Ed. June 1983.

[3] Programming in ANSI C (2nd Ed.)-E. Balagurusamy .
P-1

[4] Let Us C -Yashwant Kanetkar, 5th Ed., P-274
[5] Data Structures and Program Design in C-Robert Kruse,

C.L. Tondo, Bruce Leung(2nd Ed.)-P.324.
[6] Data Structures and Program Design in C-Robert Kruse,

C.L. Tondo, Bruce Leung(2nd Ed.)-P-327.
[7] Horowitz-Sahni, Data Structure in Pascal (Chapter-

Inter Sorting, P-2. Ed. June 1983.
[8] Classic Data Structures (2nd Ed.)- Debasis Samanta.

P-529
[9] Introduction to Algorithms (2nd Ed.)- T.H. CORMEN,
 C. E. LEISERSON, R. L. RIVEST, C.STEIN. P-44
[10] Classic Data Structures (2nd Ed.)- Debasis Samanta.

 P-530
[11] http://en.wikipedia.org/wiki/User:BrSukumar

http://en.wikipedia.org/wiki/User:BrSukumar�

	INTRODUCTION
	ALGORITHM
	METHOD
	COMPLEXITY Analysis
	PROGRAM IN C LANGUAGE
	//"divide and sort" method
	/*Output*/
	/*Output When All Numbers are Same
	Table 1 : Comparison of running time among the algorithms

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

