
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5668

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 374

ISSN No. 0976-5697

CONSUMER CENTRIC ENDPOINT COMPUTATION FOR MULTIVERSIONED
SOA BASED SYSTEMS

Paul Arokiadass Jerald. M

Assistant Professor,
Department of Computer Science

Periyar Arts College, Cuddalore, India

Vivekanandan. K
Professor, Dept. of Computer Science & Engg

Pondicherry Engineering College
Puducherry, India

Abstract: The tremendous expansion of internet based applications and programs have created a new dimension in the Service Oriented
Architecture based systems. Change Management and the need for enhancing the existing systems have resulted in creation of multiple versions
in Web Services. With the availability of concurrent multiple versions, it is necessary to provide a suitable method for computing the endpoint
which suits the needs of service consumers based on consumers’ infrastructure and usage. Since there is no standardized method for finding the
endpoint and recommending appropriate version to the consumer, a method for determining the endpoint is proposed.

Keywords: Service Oriented Architecture, Web Service, Version, Endpoint, SOAP, WSDL.

I. INTRODUCTION

Service Oriented Architecture (SOA) is an extension of
distributed computing where applications are developed
with the components that are loosely coupled. These
software components are called “services”.

Applications can be created based on these services, and
the services can be shared among multiple applications and
accessed by consumers. Services are developed, deployed
and implemented in web that is accessed by service
consumers. Simple Object Access Protocol (SOAP)[1] uses
XML language for definition of message architecture and
message format. An XML based language called, Web
Services Description Language (WSDL)[2] is used to
describe operations and interfaces of the web service. HTTP
protocol is used for communication due to its wide usage
and popularity. Due to the changes that occur because of
upgradation of technology, it becomes necessary to create a
new version during the life cycle of a service. To indicate a
change in service or the methodology in which a service is
described, versions are normally used. It becomes necessary
to make simultaneous availability of the new version along
with the existing versions, since the service consumer
cannot be forced to use the new service immediately as and
when a new version is introduced.

This paper proposes a methodology to compute the
appropriate version that can be provided to the service
consumer based on their previous usage statistics. The
methodology considers single service with simultaneous
availability of multiple versions and multiple services with
multiple versions. The main advantage of having multiple
versions is that changes and enhancements can be made to
individual services and released as new versions without
causing an impact on the existing consumer’s applications.

The remainder section of this paper is formulated as
follows. Section II briefly reviews the various versioning
representation and endpoint computation mechanisms.
Section III discusses how versions of Web Services are
made available and how the details of the versions are

incorporated in WSDL descriptions. Section IV proposes
with a flow graph and pseudo code on how endpoint can be
computed based on service consumer’s constraints. Section
V discusses the results obtained from the computed values
and the versions available to the service consumers. Section
VI concludes with the finding and future enhancements to
the recommendations.

II. LITERATURE SURVEY

The concept of service versioning has been widely
implemented in the IT industry, but not much versioning
methods related to SOA have been published. We have
discussed here a few versioning mechanisms that were
published.

Martjaz B.Juric et al[3] [11]suggested versioning
methods that can be defined at the URI level. The suggested
method supports both version aware and version unaware
system. The advantage of this method is that it can be
embedded using WSDL and a version handler which
provides control over scope versions, gradual deprecation,
retirement of versions can be made available. The limitation
of this method is that it is more suitable only to BPEL
supported systems. As per this method, the URI is of the
form http://www.uni-mb.si/book/1/0 where 1 stands for
major version and 0 stands for minor version.

Rainer Weinreich[4] et al recommended a three digit
versioning mechanism which is of the form
major.minor.micro where major represents incompatible
version, minor represents compatible changes and micro
represents change of service implementation which does not
affect the published interface. This recommendation has a
URI of the form http://.../subsytem_U_V1_1/Service_X.
The main feature of this recommendation is that it can be
implemented at subsystem level so that each subsystem can
work at different versions. This version recommendation
was implemented on basis of EJB and can be accessed via
RMI. The advantage of this model is that it defines a
versioning model along with units of versioning, a

Paul Arokiadass Jerald. M et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 374-378

© 2015-19, IJARCS All Rights Reserved 375

versioning schema and a schema for services. It supports
asynchronous client updates. The disadvantage of this
method is that no long term study was available to check the
success of its implementation.

Ghosh[5] et al in his paper on Multi services versioning
based on checkpoint has defined Checkpoint to mention a
group of versions. Live read transactions are maintained by
CMS through checkpoint. Based on older versions object
versioning could be implemented. The advantage is that
there is no need of universal check point for versioning and
it has mechanism for garbage collection. The main
drawback of this system was that Checkpoint has to be
maintained for every consumer and every service.

Kenneth Laskey[6] defined a service versioning
representation at the URI level which was of the form
http://a.b.c/services1/20090601/.... The main feature of this
versioning representation was that URI is used to identify
the resources and it uses date at the end for describing the
service number. Here version is done as part of the service
description. The advantage of this versioning model is that it
is easy to identify when the service was created and since
URI is used, the browser will return the latest version. The
main drawback is that from Business Perspective, it may not
be suitable to associate a date from two years ago with the
service and it cannot be used in version unaware systems.

III. SERVICE DESCRIPTION

A. AVAILABILITY OF MULTIPLE VERSIONS
Web Services are the best way to implement SOA

services[7]. For concurrent availability of multiple versions
of the same service, the concept of service versioning is
followed by the service developers. The scenario of having
multiple versions for a single service is shown in figure.1.
On the other hand, it would not be complex to understand
the concept of multiple active versions. Figure 2 shows
multiple versions with a view of the services and the
dependency with its service consumers. The UDDI registry
contains details about the different versions of the same
service which can simultaneously exist. The service
consumer, based on his software and hardware limitations
will be redirected to the optimal version of service as
described in the UDDI.

For computing the availability of individual version
MTBF (Mean time between failures) and MTTR (Mean
time to repair) values are estimated for each version. Once
MTBF and MTTR are known, the availability of the
individual versions can be calculated as:

The combined versions are operational if any one version
is available. From this, it follows that the combined
availability is 1 - (both versions are unavailable). The
combined availability is shown by the equation below:

B. DESCRIPTION OF VERSION IN WSDL
Whenever a new version is deployed the new service

should be described through appropriate schema, WSDL and
service changes. This step might include registration to a

UDDI registry or the Web services platform from where the
services are searched. WSDL is the W3C standard for
describing Web Service and in WSDL, it is necessary to
define new messages, port types, and bindings, since the
same set of messages/port types/bindings cannot be used to
carry messages from two different schemas. In order to add
descriptions for new versions in WSDL, it is necessary to
define new or extended types in a new namespace, define
new port types and bindings and finally add a new service or
new ports to an existing service.

Service1 V1.2

Service1 V1.1

Service1 V1.0

Service1 V1.n

.

.

Service
Consumer1

Service
Consumer2

Service
Consumer3

Service
Consumer4

Figure 1. Scenario of Single Service with multiple
versions

Service1
v1.0

.

.

.

Service2
v1.2

Service2
v1.1

Service2
v1.0

Service2
v1.n

.

.

.

Service
Consumer1

Service
Consumer2

Service
Consumer3

Service
Consumer4

Figure 2. Scenario of Multiple services
with multiple versions

Service1
v1.1

Service1
v1.2

Service1
v1.n

Paul Arokiadass Jerald. M et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 374-378

© 2015-19, IJARCS All Rights Reserved 376

Figure 3 shows WSDL description existence of two
versions designated by v1 and v2 for the same service are
described. The bindings for every version should be

separately described, and the SOAP will access the
appropriate version of the web service based on the bindings
described in WSDL.

IV. ENDPOINT COMPUTATION

At any given point of time, when a service is accessed by
the service consumer, more than one version of the same
service will be available. These versions would have been
created due to the enhancement of current version in case of
minor revision or change in features. In such cases, the
liability of provisioning of suitable service to the service
consumers could either be done by the service provider or
automated suggestion based on the service consumer’s
previous use of service. [8]emphasizes the need for having a
version recommendation with lesser computations.

Apart for having a version recommendation based on
smaller computations it is also necessary to consider the
service consumer’s preference before recommending a
version. We suggest a method for computing the endpoint,
the version of the service to be provided to the service
consumer based on the consumer’s preference.

The endpoint consists of the binding information which
contains the port information about what version of the
service is to be loaded in which port. This information
consists of the physical network address and specific URL.
We propose a model by which endpoints are computed based
on consumer preferred QoS parameters.

A. Flow Graph for Endpoint Computation
 The flow graph for the proposed endpoint of the
version that is to be recommended to the service consumer
is shown in figure 4.

No

Create a Container
where non current

version can be written

Compute
Dependencies for

each version

Query the container
for suitable version

based on dependency

Check for service
consumer
preference

Load preferred
version Create an end

point for the
version

yes

Load optimal version

Figure 4. Proposed Endpoint Determination method

Bind the port with
version

<wsdl:definitions targetNamespace="service:v2"
xmlns:v1="service:v1"
xmlns:v2="service:v2"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2010/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<import namespace="service:v1" location="v1_bindings.wsdl"/>
<import namespace="service:v2" location="v2_bindings.wsdl"/>
<wsdl:service name="ServiceManagerService">
<wsdl:port name="ServiceManagerPort" binding="v1:ServiceManagerBinding">
<soap:address location="http://localhost:4002/serviceManager/v1"/>
</wsdl:port>
<wsdl:port name="ServiceManagerPort_v2" binding="v2:ServiceManagerBinding">
<soap:address location="http://localhost:4002/ServiceManager/v2"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Figure 3. WSDL Description for multiple versions

Paul Arokiadass Jerald. M et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 374-378

© 2015-19, IJARCS All Rights Reserved 377

B. Algorithm for Endpoint Computation
The algorithm for computing the endpoint for availability

of multiple versions is presented. Each service is considered
to have multiple versions that are available concurrently.
The description about the versions is described in WSDL in
the xml file.

Input: xmlns file with version placeholders
 xmlns file with v1,v2,v3....for S1, S2,,S3….
 Vi represents versions
 Si represents Services

Output : Recommendation for Suitable Version

Algorithm :
Step 1: Repeat till no more version is available
Step 2: Read xml version header tags
Step 3: Sort each version based on Consumer ratings
Step 4: Check for compatibility in user settings
Step 5: If Consumer rating does not match with user

settings
 Compute endpoint
Step 6: If Deprecated version

Suggest for New version/Unload current version
Step 7: If revision in minor version
 Load current version
Step 8: If revision in major version
 Remove previous version
 Load new version

Once the versions are described in WSDL, the core issue
would be to transform the messages according to the required
version, bind the port and provide routing information. Each
version of the service would have a separate schema and the
computed endpoint has to be sent to the targeted ports. For
example, if a Service has four versions, and the algorithm
computes the optimal version for the service to be version2,
then version2 has to be bound to the port that passes
messages to the service consumer. This message
transformation and routing is done whenever a service
consumer seeks a service.

V. EXPERIMENTAL SETUP AND RESULTS

The proposed method was tested with similar services
which had multiple versions. The version descriptions were
made available in the WSDL descriptions. Four such similar
services which had multiple versions including deprecated
versions were considered for the test. The test focused on
multiple services with multiple versions and also single
service with multiple version scenarios. It is necessary to
choose a tool for testing the service performance.[9] [12]has
discussed the various web service testing tools and their
performances. Based on the performance tools discussed
in[9], Jmeter [10] an open source tool was used to predict the
preferred version and the following results were inferred.

Figure 5 shows that the services which had minor

revisions were preferred by the service consumers invariably
for all the four services, whereas versions having major
revisions were having least preference of access by the
service consumers.

Figure 6 shows the throughput for the different services.

The throughput for the services which had minor revisions
was high. This is due to the availability of the services with
minor revisions and the compatibility of hardware and
software available to the service consumers fits to the current
version of the web service.

Table I. shows that when more than one version of the
web services are available in parallel, the availability rate
increases.

Table I. Availability of simultaneous versions

Number of Versions Availability %

Version 1 97%

Version 1 and Version 2
available in parallel 98.3%

Version 1, Version 2
and deprecated version

available in parallel
99.7%

Figure 5 : Types of Version accessed by consumers

Figure 6: Throughput for different types of versions

Paul Arokiadass Jerald. M et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 374-378

© 2015-19, IJARCS All Rights Reserved 378

Figure 7 shows the availability of the different versions to

the service consumers. It is necessary in a versioned service
all the versions of a service minor version, major version and
the deprecated version has to be made available to the service
consumer. The results imply that the deprecated version will
be of lesser preference to the service consumer than minor
and major revisions.

VI. CONCLUSION

Change management is inevitable to all software. Web
Service being the implementation of Service Oriented
Architecture, when revisions to the existing services are
done, Versioning of services has to be carried out to all
services and it has to be backward compatible so that the
service clients can have the flexibility of accessing older
versions.

 In this paper we have discussed a method to find the
endpoint of multiple versions available for web services.
We have considered Web Services which offers
simultaneous availability of multiple versions. It is
necessary that out of all the versions available, the service
consumer should be provided with the optimal version based
on his previous usage and availability of the versions. We
have provided a method to find the appropriate endpoint
based on consumer’s preference. We have tested the
proposed method for similar web services. The results
obtained from the tool and the web service accessed by the
service consumers’ browser were analysed. The proposed
method is found to be appropriate and justifies that the

presence of multiple versions of a service improves the
availability of the service to the service consumers and
could be implemented in real-time.

REFERENCES

[1] “W3C - SOAP Version 1.2”,
http://www.w3.org/TR/soap12-part1/

[2] W3C - Web Services Description Language (WSDL)
1.1”,http://www.w3.org/TR/wsdl

[3] M. B. Juric and A.Sasa, "Version Management of BPEL
Processes in SOA," 2010 6th World Congress on Services,
Miami, FL, 2010, pp. 146-147.

[4] R. Weinreich, T. Ziebermayr and D. Draheim, "A
Versioning Model for Enterprise Services," Advanced
Information Networking and Applications Workshops,
2007, AINAW '07. 21st International Conference on,
Niagara Falls, Ont., 2007, pp. 570-575.

[5] A. Ghosh, R. Chaki, and N. Chaki, "CMS: Checkpoint-
based Multi-versioning System for Software Transactional
Memory," in Progress in Intelligent Computing
Techniques: Theory, Practice, and Applications, ed:
Springer, 2018, pp. 471-482.

[6] Kenneth Laskey, 2008, “Considerations for versioning
SOA Resources”, In IEEE,

[7] Torry Harris Business Solutions, SOA – Service
Versioning Best Practice, White paper from
http://www.thbs.com/thbs-insights/soa-service-versioning-
best-practices

[8] Almalki and H. Shen, "A Lightweight Solution to Version
Incompatibility in Service-Oriented Revision Control
Systems," in Proceedings of the ASWEC 2015 24th
Australasian Software Engineering Conference, 2015, pp.
59-63.

[9] Ravi Kumar et al, “A Comparative Study and Analysis of
Web Service Testing Tools” International Journal of
Computer Science and Mobile Computing, Vol.4 Issue.1,
January- 2015, pg. 433-442.

[10] Jmeter tool - https://github.com/apache/jmeter
[11] Matjaz B. Juric; Ana Sasa; Ivan Rozman; (2009): WS-

BPEL Extensions for Versioning”, Information and
Software Technology, 51 pp 1261–1274.

[12] Jyoti Choudrie, Gheorgita Ghinea and Vishanth
Weerakkody, “Evaluating Global e-Government Sites: A
View using Web Diagnostic Tools”, Electronic Journal of
e-Government Volume 2 Issue 2 2004 pp 105-114.

Figure 7: Availability of versions to the consumers

	INTRODUCTION
	LITERATURE SURVEY
	SERVICE DESCRIPTION
	AVAILABILITY OF MULTIPLE VERSIONS
	DESCRIPTION OF VERSION IN WSDL

	ENDPOINT COMPUTATION
	Flow Graph for Endpoint Computation
	Algorithm for Endpoint Computation

	EXPERIMENTAL SETUP AND RESULTS
	CONCLUSION
	REFERENCES

