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Abstract: The K-nearest neighbors (kNN) is a lazy-learning method for classification and regression that has been successfully applied to several 
application domains. It is simple and directly applicable to multi-class problems however it suffers a high complexity in terms of both memory 
and computations. Several research studies try to scale the kNN method to very large datasets using crisp partitioning. In this paper, we propose 
to integrate the principles of rough sets and fuzzy sets while conducting a clustering algorithm to separate the whole dataset into several parts, 
each of which is then conducted kNN classification.  The concept of crisp lower bound and fuzzy boundary of a cluster which is applied to the 
proposed algorithm allows accurate selection of the set of data points to be involved in classifying an unseen data point. The data points to be 
used are a mix of core and border data points of the clusters created in the training phase. The experimental results on standard datasets show 
that the proposed kNN classification is more effective than related recent work with a slight increase in classification time. 
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I. INTRODUCTION 

The K-Nearest Neighbors (kNN) is a renowned data 
mining technique. It is applied to both classification and 
regression tasks in several application domains [1], [2]. 
Traditional kNN classification algorithm works as follows: 
A data point is classified by identifying the k neighbors of 
this data point and counting the number of neighbors from 
each class. The data point is assigned to the class to which 
the majority of the k neighbors belong. k is a positive 
integer, typically small and depends on the size and 
distribution of the input data. When k = 1, then the unseen 
data point is assigned to the class of its nearest neighbor. In 
binary (two classes) classification problems, it is meaningful 
to choose k to be an odd number to avoid tied votes. One of 
the key advantages of nearest neighbor approach is that the 
density function for each target data point is estimated 
locally and differently instead of being estimated once for 
the entire instance space [3]. From its definition, it is clear 
that it is simple (easy to implement), multi-class (can deal 
with datasets having more than two classes), memory-based 
(training set stored in memory without explicit 
generalization), and non-parametric method (no assumptions 
about the input data). 

In [4], the performance of different similarity measures 
that can be used in the KNN algorithm, are evaluated.  In 
[5], a new affinity function for distance measure between a 
test point and a training point based on local learning is 
introduced. A Bayesian method is investigated in [6] for 
estimating a proper value for k in kNN algorithm. 

In [7], An adaptive parameter-free neighborhood 
construction algorithm based on density and connectivity is 
proposed to tackle the problem of estimating the set of 
neighbors for each data point without a priori information 
about the dataset. A recent approach in [8] proposed an 
algorithm termed  CM-kNN that learns a correlation matrix 
to reconstruct test data points by training data to assign 
different k values to different test data points and applied the 
proposed algorithm to regression and missing data 
imputation.  

When traditional KNN decision rule is applied to 
unbalanced data, there is a tendency to assign an unseen 
object to the majority class label.  Several strategies for 
selecting the objects to be dimmed from the majority class 
are proposed in [9]. Another approach is resizing the input 
dataset by either under sampling majority class,  
oversampling the minority class or by doing both at the 
same time (hybrid) [10],  until the data is balanced.  

Also, kNN is used in future selection as in [11] where a   
neighborhood rough set technique is used to rank and 
prioritize lists of potential tumor-related genes from the 
genetic profile.  Other research studies that use  an ensemble 
of KNN classifiers as a gene selector are found in [12] and  
[13]. 

Although the kNN algorithm has shown outstanding 
performance in a wide variety of problems, it lacks the 
scalability to manage (very) large datasets. The kNN suffers 
high computational complexity. The complexity to find the 
nearest neighbor training example of a single test instance is 
O(n·d), where n is the number of training objects and d is 
the number of attributes (features).  Also, an extra 
complexity O(k log k + n)  to select the k closets neighbors. 
Furthermore, the kNN model requires the training data to be 
stored in memory for a rapid computation of the distances.  
An example for early work for accelerating kNN is found in 
[1] where the fat k closest vectors are identified in the design 
set of a kNN classifier for each input vector by performing a 
partial distance search in the wavelet domain. 

However, early work does not suit very large datasets.  
This motivates researchers in the big data area to distribute 
the processing of a kNN classifier over a cluster of nodes to 
be suitable for the application of big data [14].   

This paper focuses on scaling the kNN classification to 
suit the application of big data.  Existing approaches for 
scaling KNN can be categorized into two main approaches: 
fast finding the nearest samples [15] and selecting 
representatives samples (or removing some samples) to 
reduce the calculation of kNN [16].  The most related 
technique for the proposed technique is a recent approach   
for scaling KNN based on partitioning [17]. Landmark-
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based Spectral Clustering (LSC) is used in [17] for 
partitioning the input data. Landmarks for LSC are selected 
either randomly or using k-means and the corresponding 
techniques are termed as RC-kNN and LC-kNN 
respectively.  

In this paper, we propose to integrate the principles of 
rough sets [18] and fuzzy sets [19] into the approach in [17]. 
This allows distinguishing between core and border objects 
in each produced cluster. In the classification of an unseen 
object, a proper set of data points are efficiently and 
effectively selected as a union of one core partition and 
several border partitions that are necessary for classifying 
the unseen data point depending on its membership in the 
clusters which are produced in the training phase. Two 
techniques are proposed termed as RC-RFkNN and LC-
RFkNN for randomly or using k-means landmarks for LSC 
clustering respectively. Experimental results show that RC-
RFkNN and LC-RFkNN achieve an enhancement in terms 
of classification accuracy over RC-kNN and LC-kNN 
respectively.  

The remainder of this paper is organized as follows. 
Section II details the proposed method along with the 
necessary background.   Then, Section III presents the 
experimental setup and results with analysis of results. 
Finally, Section IV outlines the conclusions drawn in this 
work. 

II. MATERIALS AND METHODS 

A. Rough Set and Fuzzy Set 

Let a target set  X to be represented  using attribute 
subset P and P(X); P (X)  are two crisp sets representing 
the lower boundary of X, and the upper boundary of the 
target set X respectively. The tuple <P(X), P (X)> composed 
of the lower and upper approximation of a set X   U is 
called a rough set [18]. In the remaining of this paper, we 
refer to the lower and upper approximation of a cluster Ci as 
L(Ci) and U(Ci) respectively. The lower approximation of a 
cluster L(Ci) is an unadventurous approximation consisting 
of only those objects which can definitely be identified as 
members of this cluster. The upper approximation includes 
all data points that might be members of the target set. 
(Some data points in the upper approximation may not be 
members of the target set).  

 
Figure 1 core and border regions of  3 overlapping clusters C1, C2 and C3, 
the borders of the 3 clusters should be included in predicting a label for y.  

The lower approximation contains objects that are members 
of the target set with probability equals 1, while the upper 
approximation contains objects that are members of the 
target set with non-zero probability. As shown in Fig. 1, 
the boundary region, given by set difference U(Ci)-L(Ci) 
consists of those objects that can neither be ruled in nor 

ruled out as members of the target cluster. A fuzzy set F [19] 
of U is a mapping from U into the unit interval [0, 1]:   
 µF : U [0,1], 
The crisp set that contains all the elements of U that have a 
nonzero membership value in F is called as the support of 
the fuzzy set F. 
A function mapping of all the elements in a crisp set into 
real numbers in [0, 1] is called a membership function. The 
larger value of the membership function represents the 
higher degree of the membership. It means how closely an 
element resembles an ideal element. Membership functions 
can represent the uncertainty using some particular 
functions.  In the following sections Border(Ci) refers to 
U(Ci)-L(Ci) while Core(Ci) refers to L(Ci). 

B. Soft Clustering  

The algorithm k-means [20] which is used in [17] as the 
final step for partitioning the input big dataset always results 
in memberships � {0,1}. In the proposed algorithm we need 
fuzzy memberships i.e. positive grades of membership uij for 
each object xj in cluster i. If we use fuzzy clustering 
algorithm such as fuzzy k-means [21], an object may belong 
to all clusters with varying degree of belongingness. The 
pitfall is that all memberships are used in computing new 
centers   which in turn used in computing new memberships 
at each iteration of the algorithm and hence small 
memberships still have an effect on the whole process. 
Furthermore, in the proposed algorithm we are interested in 
objects that have enough high membership to be considered 
core or border objects.  

In  [22] three mathematical models for soft clustering 
(semi-fuzzy) along with three algorithms for implementing 
them are introduced. The First model limits the fuzziness to 
a smaller subset of the available clusters. The second and 
third models allow a pattern to be associated with the proper 
number of clusters based on a proper choice of threshold 
value on distance or membership respectively. The concept 
of semi-fuzzy clustering are applied to several problems in 
bioinformatics [23], [24], [25]. In this paper the third model 
of soft (semi-fuzzy) clustering introduced in  [22] will  be 
applied instead of the k-means in [17].   

C. RC-kNN and LC-kNN algorithms [17] 

The most related technique for the proposed technique is 
a recent approach for scaling KNN in [17] which is based on 
Landmark-based Spectral Clustering (LSC).  LSC starts by 
computing p landmarks by using the resulting centers of 
running the k-means algorithm several times (or by using 
random sampling).  Then, constructs an affinity matrix W 
between data points and landmark samples. The v 
representative samples are computed using the eigenvectors 
of a matrix derived from W. The overall time complexity for 
LSC is O (p3+p2n). For each test sample, its nearest cluster 
center is identified and its corresponding cluster is used as 
the new training dataset for this sample. 

D. Proposed Algorithm 

Table 1 describes the pre-classification steps of the 
proposed algorithm. Steps 1-4 in Table 1 represent the steps 
of LSC algorithm which are the same as in [17]. After 
computing p landmarks in step 1, r nearest landmarks for 
each object xi are identified, denoted Z<i>. A matrix W of 
size n×r is computed as follows: 
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Let W'= D-0.5 W where D is the row sum of W. Note that 
each column of W sums up to 1 and thus the degree matrix 
of  W'W'T is I. 
The matrix V in step 4 is called as right singular vectors of 
the k eigenvectors of W'W'T. V can be computed as follows: 
 
  


1

'WUV TT  (2) 

Where U= [u1, u2, ..., um] is called as the left singular vectors 
of the first k eigenvectors of  W'W'T 
In step 5, soft k-means is applied instead of k-means  

Table 1 Proposed Pre-Classification Steps (Partitioning Process) 

Input:  
 X: dataset of n data points x1; x2; ; xn 
 p: no. landmarks 
 m:  number of clusters  
Output: m clusters; 
begin 
  1. Produce p landmarks using k-means or random sampling on X. 
  2. Compute matrix W as in  Eq. (1). 
  3. Compute the first k eigenvectors of W'W'T, denoted by 
      U= [u1, u2, ..., um]. 
  4. Compute V=[v1, v2, ..., vm] according to Eq. (2). 
      // each row in V is a data point 
  5. Apply soft  k-means [22] on V to get m clusters 
  6. foreach cluster Ci identify Core(Ci)  and Border(Ci)  endfor 
end 

 
The third model of [22] is used in step 5 in Table 1 instead 
of k-means. Soft k-means is similar to fuzzy k-means, 
except, in each iteration the computed memberships are 
compared to a threshold and any membership less than the 
specified threshold is set to zero and the memberships are 
re-normalized. We did a small modification to this model 
such that any membership is compared to the maximum 
membership if it less than the maximum by more than a 
threshold δ then it is set to zero and the memberships are re-
normalized. The membership of an object y in a cluster j 
denoted µj(y) is calculated as follows: 
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Where s(y,Cj)  is the similarity between object y and the 
center of  cluster Cj, m is a fuzzifier greater than 1. If 
dissimilarity measure such as Euclidian distance were used 
then s(y,Cj)  may be replaced by 1/ d(y,Cj). 
In the proposed algorithm RFkNN, each cluster is 
represented by a crisp lower approximation (Core(Ci), and a 
fuzzy boundary (Border(Ci) )  see Fig. 1. As shown in Table 
2, which describes the classification algorithm, after 
computing the memberships for the unseen data point in 
each cluster,  then the membership values are sorted, and the 
difference of the two highest memberships is compared with 
a threshold value δ.  
Let µij and µkj be the highest and second highest 
memberships of subsequence xj.   
If  µij - µkj > δ, then xj  � Core(Ci)  as well as xj  � 
Border(Ci), xj   Border(Ck) for any cluster k≠i; and  NewX 
is set to cluster Ci (both the core and border of Ci) 
otherwise,  
NewX is set to cluster Ci  (both the core and border of Ci) 
union the border of any cluster Ck  such that µij - µkj < δ. 

Finally, in step 4, only the set of data points NewX is used 
in classifying the unseen data point y. That is, the proposed 
algorithm separates the core and overlapping portions of 
each cluster based on the threshold value δ. 

Table 2: Proposed Classification Process  

Input:      
   X: the dataset X partitioned into  m clusters denoted C1..Cm  
   y  : a test (unseen) sample 
   δ  : a threshold used for distinguishing border and core objects  
Input: y is an unseen object, k is the no. of nearest neighbors 
Output:  The predicted class label for y   
Begin  
     1. compute the fuzzy membership of y  in each cluster Cj 

          denoted  µj(y),   j=1,2,…,m using Eq. (3) 

     2. set  NewX =  Core(Cj ) where  )(maxarg
1

yj j

m

j



   

     3. for i=1 to m    //Border(Cj) is always included 

                if  (µj(y)- µi(y)) < �  then      // default value for  δ=0.15 

                         NewX = NewX  Border(Ci)   endif   endfor 

     4. apply kNN using NewX to predict  a class label for  y  

End 

III. EXPERIMENTAL RESULTS 

A.  Input Data 

 As mentioned in the previous sections, our proposed 
algorithm is an extension of RC-kNN and LC-kNN.  Thus, 
in order to show the effectiveness of LC-RFkNN and RC-
RFkNN algorithms, we took the kNN as the baseline and 
made a comparison between kNN, LC-kNN, RC-kNN, LC-
RFkNN and RC-RFkNN using three large multi-class 
datasets listed in table 3 from UCI [26] and LIBSVM  [27].   

Table 3 Description of datasets used in our experiments 
Dataset Name Ref. no. objects no. futures 
LETTER [26] 20000 16 
PENDIGITS [26] 10992 16 
USPS [27] 7,291 256 

B. Performance Measure 

In the following experiments, the empirical accuracy is 
used for estimating the quality of the proposed classifier. 
Let g be a classifier, and xi and yi be respectively a test 
sample and its class label. Let g(xi) be the predicted class for 
xi using the classifier g. The accuracy can be calculated as 
follows: 
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The accuracy in Eq. (1) is calculated as total number of 
corrected prediction divided by the total number of data 
points to be classified.  Computing the accuracy on 
imbalanced data using Eq. (1) is a misleading performance 
measure.  
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where wy be the weight of the class y as follows: 
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By computing TPi, FPi  and  FNi for each class i other 



Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279 

© 2015-19, IJARCS All Rights Reserved                     277 

performance measures can be easily computed as macro and 
micro average over all classes. TPi refers to the number of 
instances of class i that are correctly classified as class i. FPi 
is the number of instances of class j (i ≠ j) that are 
incorrectly classified as class i. FNi is the number of 
instances of class i that are incorrectly classified as class j (i 
≠ j). In order to be able to compare with RC-kNN and LC-
kNN, the accuracy is used in evaluating RFkNN as it was 
the only measure used in [17] .  
 

C. Experimental results for different value of m   

As mentioned before the proposed algorithms RC-
RFkNN and LC-RFkNN are based on partitioning the 
datasets into several clusters. Each cluster in the proposed 
algorithm is seen as two crisp partitions core and border. 
The no. of clusters  m  is very important to the proposed 
algorithm as it was very important to RC-kNN and LC-kNN 
algorithms  [17].  
The value of m directly affects the classification time and 
accuracy. Thus, in order to select a proper value of m, a 
group of experiments were conducted on the three standard 
datasets listed in table 3. By choosing different values of  m 
for LC-RFkNN and RC-RFkNN. Specifically, the LC-
RFkNN and RC-RFkNN in this group of experiments were 
carried out on the three datasets with m=10, 15, 20, 25 and 
30, respectively as shown in Fig. 2-4. The values plotted for  
RC-kNN and LC-kNN are those reported in [17]. 
From Fig. 2–4, we found that the two proposed algorithms 
LC-RFkNN and RC-RFkNN outperform the corresponding 
algorithms LC-KNN and RC-kNN respectively in terms of 
accuracy. The accuracy of the algorithm kNN is the upper 
bound for the other four algorithms as expected. The gain in 
performance for RC-RFkNN over RC-kNN was much 
higher than the gain in performance with LC-RFkNN over 
LC-kNN.  
RC-RFkNN is higher by 3.6%, 1% and 2.4% than RC-kNN 
for m=15 on LETTER, PENDIGITS and UPS respectively.  
 

  
Figure 2 Performance comparison for different values of m on LETTER 

Also LC-RFkNN is higher by 0.25%, 0.24% and 0.17%  
than LC-kNN for m=15 on LETTER, PENDIGITS and UPS 
respectively.  

 
Figure 3 Performance comparison for different values of m on PENDIGITS 

The higher the no. of partitions m the higher the gain in 
performance in terms of accuracy is, up to m =20.  For 
values of m higher than 20, RC-RFkNN still higher than 
RC-kNN.   

 
Figure 4 Performance comparison for different values of m on UPS 

It is clear from the figures 2-4 that identifying core and 
border objects helps increasing the performance in terms of 
accuracy. The runtime of the proposed algorithm cannot be 
directly compared to those reported by [17]. 

However, the runtime of the proposed classification 
algorithm is not expected to be much higher than LC-kNN 
or RC-kNN as both algorithms needs to compute the 
distance to the centers of the m partitions. The proposed 
algorithm has an advantage of having stable performance for 
large values of m as shown in above figures. Large value of 
m means less classification time since the average partition 
size is smaller.   

D. Tuning the parameter k   

This section reports the results of a group of experiments 
which were conducted on LETTER dataset in order to select 
a proper value for the number of nearest neighbors k.  k is 
varied between 1 to 9 by step equals 2.  Each point in the 
figures 5-6 represents the mean of 15 results with the same 
parameters. From Fig. 5 and 6, the classification accuracy 
slightly increases from k=1 to k=3 after that with the 
increase of the value of k, the overall of classification 
accuracy decreases. Furthermore, the higher the no. 
partitions m, the higher the decrease in the classification 
accuracy with higher value of k.   Hence, the difference 
between the samples is significant and the classification 
accuracy will reduces. We can make a conclusion that k= 1 
or 3 is suitable choices for k in his case. In general, the value 
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of k may be set as small as possible since high value of k 
means increase in runtime also. The value of k is extremely 
training-data dependent, changing the position of a few 
training data may lead to a significant loss of performance. 
Including the border objects of other partitions in addition to 
the the nearest partition increases the classification accuracy 
of the proposed method.  Besides, it reduces the sensitivity 
of RC-RFkNN and LC-RFkNN for larger value of m and k.  

 

 
Figure 5 Accuracy of RC-RFkNN  for different values of nearest  

neighbors k  and no. of partitions m on LETTER 

The performance of  the proposed methods for both k = 1  
and  k = 3 were high while for RC-kNN and LC-kNN the 
performance degrades for value of k higher than 1.   
 

 
Figure 6 Accuracy of LC-RFkNN  for different values of nearest  

neighbors k  and no. of partitions m on LETTER 

E. Performance Summary    

In this experiment, in order to use the reported results in 
[17], the values of   m and k are set to 10 and 1 respectively. 
As shown in Table 4, we can observe that the proposed RC-
RFkNN and LC-RFkNN outperform RC-kNN and LC-kNN 
respectively. The amount of improvement increase as m 
increases, as shown in Fig. 2-4 above. Also the proposed 
algorithm is less sensitive to the choice of k for small 
number of k less than or equal 5 as shown in Fig. 5-6 . The 
main advantage of the proposed algorithm is its stable 

performance for high value of m compared to RC-kNN and 
LC-kNN.  As the number of partitions increases, the average  
size of NewX decreases resulting in a decrease in 
classification time with acceptable performance as shown in 
Fig. 2-6.   Therefore, according to the experimental results, 
we may conclude that both RC-RFkNN and LC-RFkNN 
work well in terms of classification accuracy and time. 

Table 4 Classification Accuracy of RFkNN compared to three algorithms 
on three datasets for m=10 and k=1 

Dataset RC-
kNN 

LC-
kNN 

kNN LC-
RFkNN 

RC-
RFkNN 

LETTER 78.92 94.95 95.18 81.53 95.08 
PENDIGIT 94.52 97.21 97.80 94.61 97.38 
UPS 90.27 93.55 94.82 92.31 93.55 

 

IV. CONCLUSION AND FEATURE WORK  

Several existing efficient kNN classification algorithms 
are based on partitioning such as in [17].  This paper 
proposes an enhancement over these techniques by using the 
rough fuzzy set while conducting the clustering algorithm to 
separate the whole dataset into several parts.  After 
clustering, each produced cluster is divided into two 
partitions: border and core. Only one core partition along 
with one or more border partitions are used in classifying 
unseen objects. The number of border partitions to be used 
depends on the unseen object's memberships in the clusters 
that are produced in the training phase. The proposed 
algorithm is a generalization of existing RC-kNN and LC-kNN 
algorithms [17].  Experimental studies are carried to select a 
suitable value for the input parameters for each dataset such 
as the number of clusters to be produced in the training 
phase m and the number of neighbors to be used in the 
classification phase k. the traditional kNN is used as the base 
line and several experiments are conducted on three 
standard datasets to compare the proposed RC-RFkNN and 
LC-RFkNN to the most related algorithms kNN, LC-kNN 
and RC-kNN. The experimental results showed that the 
proposed LC-RFkNN and RC-RFkNN outperform the 
corresponding techniques LC-kNN and RC-kNN 
respectively. The gain in performance in terms of accuracy 
with RC-RFkNN   over RC-KNN was higher than LC-
RFkNN over LC-kNN. The proposed approach inherits its 
efficiency from RC-KNN and LC-kNN since the added 
steps to both the training and testing phase are very simple. 
As a feature work,  a new solution to perform an 
approximate k-nearest neighbors classification based on 
Spark may be developed  to deal with big data [28]. We will 
also investigate the influence of using rough fuzzy set on the 
balance of accuracy and computation efficiency. 
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