
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5667

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 274

ISSN No. 0976-5697

RFKNN: ROUGH-FUZZY KNN FOR BIG DATA CLASSIFICATION

Mohamed Mahfouz
Ph.D., Department of Computer and Systems Engineering,

Faculty of Engineering, University of Alexandria,
Alexandria, Egypt 21544, Egypt

Abstract: The K-nearest neighbors (kNN) is a lazy-learning method for classification and regression that has been successfully applied to several
application domains. It is simple and directly applicable to multi-class problems however it suffers a high complexity in terms of both memory
and computations. Several research studies try to scale the kNN method to very large datasets using crisp partitioning. In this paper, we propose
to integrate the principles of rough sets and fuzzy sets while conducting a clustering algorithm to separate the whole dataset into several parts,
each of which is then conducted kNN classification. The concept of crisp lower bound and fuzzy boundary of a cluster which is applied to the
proposed algorithm allows accurate selection of the set of data points to be involved in classifying an unseen data point. The data points to be
used are a mix of core and border data points of the clusters created in the training phase. The experimental results on standard datasets show
that the proposed kNN classification is more effective than related recent work with a slight increase in classification time.

Keywords: classification, kNN, big data, clustering, fuzzy sets, rough sets.

I. INTRODUCTION

The K-Nearest Neighbors (kNN) is a renowned data
mining technique. It is applied to both classification and
regression tasks in several application domains [1], [2].
Traditional kNN classification algorithm works as follows:
A data point is classified by identifying the k neighbors of
this data point and counting the number of neighbors from
each class. The data point is assigned to the class to which
the majority of the k neighbors belong. k is a positive
integer, typically small and depends on the size and
distribution of the input data. When k = 1, then the unseen
data point is assigned to the class of its nearest neighbor. In
binary (two classes) classification problems, it is meaningful
to choose k to be an odd number to avoid tied votes. One of
the key advantages of nearest neighbor approach is that the
density function for each target data point is estimated
locally and differently instead of being estimated once for
the entire instance space [3]. From its definition, it is clear
that it is simple (easy to implement), multi-class (can deal
with datasets having more than two classes), memory-based
(training set stored in memory without explicit
generalization), and non-parametric method (no assumptions
about the input data).

In [4], the performance of different similarity measures
that can be used in the KNN algorithm, are evaluated. In
[5], a new affinity function for distance measure between a
test point and a training point based on local learning is
introduced. A Bayesian method is investigated in [6] for
estimating a proper value for k in kNN algorithm.

In [7], An adaptive parameter-free neighborhood
construction algorithm based on density and connectivity is
proposed to tackle the problem of estimating the set of
neighbors for each data point without a priori information
about the dataset. A recent approach in [8] proposed an
algorithm termed CM-kNN that learns a correlation matrix
to reconstruct test data points by training data to assign
different k values to different test data points and applied the
proposed algorithm to regression and missing data
imputation.

When traditional KNN decision rule is applied to
unbalanced data, there is a tendency to assign an unseen
object to the majority class label. Several strategies for
selecting the objects to be dimmed from the majority class
are proposed in [9]. Another approach is resizing the input
dataset by either under sampling majority class,
oversampling the minority class or by doing both at the
same time (hybrid) [10], until the data is balanced.

Also, kNN is used in future selection as in [11] where a
neighborhood rough set technique is used to rank and
prioritize lists of potential tumor-related genes from the
genetic profile. Other research studies that use an ensemble
of KNN classifiers as a gene selector are found in [12] and
[13].

Although the kNN algorithm has shown outstanding
performance in a wide variety of problems, it lacks the
scalability to manage (very) large datasets. The kNN suffers
high computational complexity. The complexity to find the
nearest neighbor training example of a single test instance is
O(n·d), where n is the number of training objects and d is
the number of attributes (features). Also, an extra
complexity O(k log k + n) to select the k closets neighbors.
Furthermore, the kNN model requires the training data to be
stored in memory for a rapid computation of the distances.
An example for early work for accelerating kNN is found in
[1] where the fat k closest vectors are identified in the design
set of a kNN classifier for each input vector by performing a
partial distance search in the wavelet domain.

However, early work does not suit very large datasets.
This motivates researchers in the big data area to distribute
the processing of a kNN classifier over a cluster of nodes to
be suitable for the application of big data [14].

This paper focuses on scaling the kNN classification to
suit the application of big data. Existing approaches for
scaling KNN can be categorized into two main approaches:
fast finding the nearest samples [15] and selecting
representatives samples (or removing some samples) to
reduce the calculation of kNN [16]. The most related
technique for the proposed technique is a recent approach
for scaling KNN based on partitioning [17]. Landmark-

Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279

© 2015-19, IJARCS All Rights Reserved 275

based Spectral Clustering (LSC) is used in [17] for
partitioning the input data. Landmarks for LSC are selected
either randomly or using k-means and the corresponding
techniques are termed as RC-kNN and LC-kNN
respectively.

In this paper, we propose to integrate the principles of
rough sets [18] and fuzzy sets [19] into the approach in [17].
This allows distinguishing between core and border objects
in each produced cluster. In the classification of an unseen
object, a proper set of data points are efficiently and
effectively selected as a union of one core partition and
several border partitions that are necessary for classifying
the unseen data point depending on its membership in the
clusters which are produced in the training phase. Two
techniques are proposed termed as RC-RFkNN and LC-
RFkNN for randomly or using k-means landmarks for LSC
clustering respectively. Experimental results show that RC-
RFkNN and LC-RFkNN achieve an enhancement in terms
of classification accuracy over RC-kNN and LC-kNN
respectively.

The remainder of this paper is organized as follows.
Section II details the proposed method along with the
necessary background. Then, Section III presents the
experimental setup and results with analysis of results.
Finally, Section IV outlines the conclusions drawn in this
work.

II. MATERIALS AND METHODS

A. Rough Set and Fuzzy Set

Let a target set X to be represented using attribute
subset P and P(X); P (X) are two crisp sets representing
the lower boundary of X, and the upper boundary of the
target set X respectively. The tuple <P(X), P (X)> composed
of the lower and upper approximation of a set X U is
called a rough set [18]. In the remaining of this paper, we
refer to the lower and upper approximation of a cluster Ci as
L(Ci) and U(Ci) respectively. The lower approximation of a
cluster L(Ci) is an unadventurous approximation consisting
of only those objects which can definitely be identified as
members of this cluster. The upper approximation includes
all data points that might be members of the target set.
(Some data points in the upper approximation may not be
members of the target set).

Figure 1 core and border regions of 3 overlapping clusters C1, C2 and C3,
the borders of the 3 clusters should be included in predicting a label for y.

The lower approximation contains objects that are members
of the target set with probability equals 1, while the upper
approximation contains objects that are members of the
target set with non-zero probability. As shown in Fig. 1,
the boundary region, given by set difference U(Ci)-L(Ci)
consists of those objects that can neither be ruled in nor

ruled out as members of the target cluster. A fuzzy set F [19]
of U is a mapping from U into the unit interval [0, 1]:
 µF : U [0,1],
The crisp set that contains all the elements of U that have a
nonzero membership value in F is called as the support of
the fuzzy set F.
A function mapping of all the elements in a crisp set into
real numbers in [0, 1] is called a membership function. The
larger value of the membership function represents the
higher degree of the membership. It means how closely an
element resembles an ideal element. Membership functions
can represent the uncertainty using some particular
functions. In the following sections Border(Ci) refers to
U(Ci)-L(Ci) while Core(Ci) refers to L(Ci).

B. Soft Clustering

The algorithm k-means [20] which is used in [17] as the
final step for partitioning the input big dataset always results
in memberships � {0,1}. In the proposed algorithm we need
fuzzy memberships i.e. positive grades of membership uij for
each object xj in cluster i. If we use fuzzy clustering
algorithm such as fuzzy k-means [21], an object may belong
to all clusters with varying degree of belongingness. The
pitfall is that all memberships are used in computing new
centers which in turn used in computing new memberships
at each iteration of the algorithm and hence small
memberships still have an effect on the whole process.
Furthermore, in the proposed algorithm we are interested in
objects that have enough high membership to be considered
core or border objects.

In [22] three mathematical models for soft clustering
(semi-fuzzy) along with three algorithms for implementing
them are introduced. The First model limits the fuzziness to
a smaller subset of the available clusters. The second and
third models allow a pattern to be associated with the proper
number of clusters based on a proper choice of threshold
value on distance or membership respectively. The concept
of semi-fuzzy clustering are applied to several problems in
bioinformatics [23], [24], [25]. In this paper the third model
of soft (semi-fuzzy) clustering introduced in [22] will be
applied instead of the k-means in [17].

C. RC-kNN and LC-kNN algorithms [17]

The most related technique for the proposed technique is
a recent approach for scaling KNN in [17] which is based on
Landmark-based Spectral Clustering (LSC). LSC starts by
computing p landmarks by using the resulting centers of
running the k-means algorithm several times (or by using
random sampling). Then, constructs an affinity matrix W
between data points and landmark samples. The v
representative samples are computed using the eigenvectors
of a matrix derived from W. The overall time complexity for
LSC is O (p3+p2n). For each test sample, its nearest cluster
center is identified and its corresponding cluster is used as
the new training dataset for this sample.

D. Proposed Algorithm

Table 1 describes the pre-classification steps of the
proposed algorithm. Steps 1-4 in Table 1 represent the steps
of LSC algorithm which are the same as in [17]. After
computing p landmarks in step 1, r nearest landmarks for
each object xi are identified, denoted Z<i>. A matrix W of
size n×r is computed as follows:

Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279

© 2015-19, IJARCS All Rights Reserved 276

r

Zz
li

ji
ji

il

hzx

hzx
w

22

22

2/||||

2/||||

(1)

Let W'= D-0.5 W where D is the row sum of W. Note that
each column of W sums up to 1 and thus the degree matrix
of W'W'T is I.
The matrix V in step 4 is called as right singular vectors of
the k eigenvectors of W'W'T. V can be computed as follows:

1

'WUV TT (2)

Where U= [u1, u2, ..., um] is called as the left singular vectors
of the first k eigenvectors of W'W'T
In step 5, soft k-means is applied instead of k-means

Table 1 Proposed Pre-Classification Steps (Partitioning Process)

Input:
 X: dataset of n data points x1; x2; ; xn
 p: no. landmarks
 m: number of clusters
Output: m clusters;
begin
 1. Produce p landmarks using k-means or random sampling on X.
 2. Compute matrix W as in Eq. (1).
 3. Compute the first k eigenvectors of W'W'T, denoted by
 U= [u1, u2, ..., um].
 4. Compute V=[v1, v2, ..., vm] according to Eq. (2).
 // each row in V is a data point
 5. Apply soft k-means [22] on V to get m clusters
 6. foreach cluster Ci identify Core(Ci) and Border(Ci) endfor
end

The third model of [22] is used in step 5 in Table 1 instead
of k-means. Soft k-means is similar to fuzzy k-means,
except, in each iteration the computed memberships are
compared to a threshold and any membership less than the
specified threshold is set to zero and the memberships are
re-normalized. We did a small modification to this model
such that any membership is compared to the maximum
membership if it less than the maximum by more than a
threshold δ then it is set to zero and the memberships are re-
normalized. The membership of an object y in a cluster j
denoted µj(y) is calculated as follows:

)1/(1

1),(

),(
)(

m
m

i i

j
j Cys

Cys
y (3)

Where s(y,Cj) is the similarity between object y and the
center of cluster Cj, m is a fuzzifier greater than 1. If
dissimilarity measure such as Euclidian distance were used
then s(y,Cj) may be replaced by 1/ d(y,Cj).
In the proposed algorithm RFkNN, each cluster is
represented by a crisp lower approximation (Core(Ci), and a
fuzzy boundary (Border(Ci)) see Fig. 1. As shown in Table
2, which describes the classification algorithm, after
computing the memberships for the unseen data point in
each cluster, then the membership values are sorted, and the
difference of the two highest memberships is compared with
a threshold value δ.
Let µij and µkj be the highest and second highest
memberships of subsequence xj.
If µij - µkj > δ, then xj � Core(Ci) as well as xj �
Border(Ci), xj Border(Ck) for any cluster k≠i; and NewX
is set to cluster Ci (both the core and border of Ci)
otherwise,
NewX is set to cluster Ci (both the core and border of Ci)
union the border of any cluster Ck such that µij - µkj < δ.

Finally, in step 4, only the set of data points NewX is used
in classifying the unseen data point y. That is, the proposed
algorithm separates the core and overlapping portions of
each cluster based on the threshold value δ.

Table 2: Proposed Classification Process

Input:
 X: the dataset X partitioned into m clusters denoted C1..Cm
 y : a test (unseen) sample
 δ : a threshold used for distinguishing border and core objects
Input: y is an unseen object, k is the no. of nearest neighbors
Output: The predicted class label for y
Begin
 1. compute the fuzzy membership of y in each cluster Cj

 denoted µj(y), j=1,2,…,m using Eq. (3)

 2. set NewX = Core(Cj) where)(maxarg
1

yj j

m

j

 3. for i=1 to m //Border(Cj) is always included

 if (µj(y)- µi(y)) < � then // default value for δ=0.15

 NewX = NewX Border(Ci) endif endfor

 4. apply kNN using NewX to predict a class label for y

End

III. EXPERIMENTAL RESULTS

A. Input Data

 As mentioned in the previous sections, our proposed
algorithm is an extension of RC-kNN and LC-kNN. Thus,
in order to show the effectiveness of LC-RFkNN and RC-
RFkNN algorithms, we took the kNN as the baseline and
made a comparison between kNN, LC-kNN, RC-kNN, LC-
RFkNN and RC-RFkNN using three large multi-class
datasets listed in table 3 from UCI [26] and LIBSVM [27].

Table 3 Description of datasets used in our experiments
Dataset Name Ref. no. objects no. futures
LETTER [26] 20000 16
PENDIGITS [26] 10992 16
USPS [27] 7,291 256

B. Performance Measure

In the following experiments, the empirical accuracy is
used for estimating the quality of the proposed classifier.
Let g be a classifier, and xi and yi be respectively a test
sample and its class label. Let g(xi) be the predicted class for
xi using the classifier g. The accuracy can be calculated as
follows:

n

i
yxg iin

Accuracy
1

)(1
1

(4)

The accuracy in Eq. (1) is calculated as total number of
corrected prediction divided by the total number of data
points to be classified. Computing the accuracy on
imbalanced data using Eq. (1) is a misleading performance
measure.

n

i
yxgy iii

w
n

Accuracy
1

)(1
1 (5)

where wy be the weight of the class y as follows:

wy =

n

i
yy i

n
1

1/1 (6)

By computing TPi, FPi and FNi for each class i other

Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279

© 2015-19, IJARCS All Rights Reserved 277

performance measures can be easily computed as macro and
micro average over all classes. TPi refers to the number of
instances of class i that are correctly classified as class i. FPi
is the number of instances of class j (i ≠ j) that are
incorrectly classified as class i. FNi is the number of
instances of class i that are incorrectly classified as class j (i
≠ j). In order to be able to compare with RC-kNN and LC-
kNN, the accuracy is used in evaluating RFkNN as it was
the only measure used in [17] .

C. Experimental results for different value of m

As mentioned before the proposed algorithms RC-
RFkNN and LC-RFkNN are based on partitioning the
datasets into several clusters. Each cluster in the proposed
algorithm is seen as two crisp partitions core and border.
The no. of clusters m is very important to the proposed
algorithm as it was very important to RC-kNN and LC-kNN
algorithms [17].
The value of m directly affects the classification time and
accuracy. Thus, in order to select a proper value of m, a
group of experiments were conducted on the three standard
datasets listed in table 3. By choosing different values of m
for LC-RFkNN and RC-RFkNN. Specifically, the LC-
RFkNN and RC-RFkNN in this group of experiments were
carried out on the three datasets with m=10, 15, 20, 25 and
30, respectively as shown in Fig. 2-4. The values plotted for
RC-kNN and LC-kNN are those reported in [17].
From Fig. 2–4, we found that the two proposed algorithms
LC-RFkNN and RC-RFkNN outperform the corresponding
algorithms LC-KNN and RC-kNN respectively in terms of
accuracy. The accuracy of the algorithm kNN is the upper
bound for the other four algorithms as expected. The gain in
performance for RC-RFkNN over RC-kNN was much
higher than the gain in performance with LC-RFkNN over
LC-kNN.
RC-RFkNN is higher by 3.6%, 1% and 2.4% than RC-kNN
for m=15 on LETTER, PENDIGITS and UPS respectively.

Figure 2 Performance comparison for different values of m on LETTER

Also LC-RFkNN is higher by 0.25%, 0.24% and 0.17%
than LC-kNN for m=15 on LETTER, PENDIGITS and UPS
respectively.

Figure 3 Performance comparison for different values of m on PENDIGITS

The higher the no. of partitions m the higher the gain in
performance in terms of accuracy is, up to m =20. For
values of m higher than 20, RC-RFkNN still higher than
RC-kNN.

Figure 4 Performance comparison for different values of m on UPS

It is clear from the figures 2-4 that identifying core and
border objects helps increasing the performance in terms of
accuracy. The runtime of the proposed algorithm cannot be
directly compared to those reported by [17].

However, the runtime of the proposed classification
algorithm is not expected to be much higher than LC-kNN
or RC-kNN as both algorithms needs to compute the
distance to the centers of the m partitions. The proposed
algorithm has an advantage of having stable performance for
large values of m as shown in above figures. Large value of
m means less classification time since the average partition
size is smaller.

D. Tuning the parameter k

This section reports the results of a group of experiments
which were conducted on LETTER dataset in order to select
a proper value for the number of nearest neighbors k. k is
varied between 1 to 9 by step equals 2. Each point in the
figures 5-6 represents the mean of 15 results with the same
parameters. From Fig. 5 and 6, the classification accuracy
slightly increases from k=1 to k=3 after that with the
increase of the value of k, the overall of classification
accuracy decreases. Furthermore, the higher the no.
partitions m, the higher the decrease in the classification
accuracy with higher value of k. Hence, the difference
between the samples is significant and the classification
accuracy will reduces. We can make a conclusion that k= 1
or 3 is suitable choices for k in his case. In general, the value

Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279

© 2015-19, IJARCS All Rights Reserved 278

of k may be set as small as possible since high value of k
means increase in runtime also. The value of k is extremely
training-data dependent, changing the position of a few
training data may lead to a significant loss of performance.
Including the border objects of other partitions in addition to
the the nearest partition increases the classification accuracy
of the proposed method. Besides, it reduces the sensitivity
of RC-RFkNN and LC-RFkNN for larger value of m and k.

Figure 5 Accuracy of RC-RFkNN for different values of nearest

neighbors k and no. of partitions m on LETTER

The performance of the proposed methods for both k = 1
and k = 3 were high while for RC-kNN and LC-kNN the
performance degrades for value of k higher than 1.

Figure 6 Accuracy of LC-RFkNN for different values of nearest

neighbors k and no. of partitions m on LETTER

E. Performance Summary

In this experiment, in order to use the reported results in
[17], the values of m and k are set to 10 and 1 respectively.
As shown in Table 4, we can observe that the proposed RC-
RFkNN and LC-RFkNN outperform RC-kNN and LC-kNN
respectively. The amount of improvement increase as m
increases, as shown in Fig. 2-4 above. Also the proposed
algorithm is less sensitive to the choice of k for small
number of k less than or equal 5 as shown in Fig. 5-6 . The
main advantage of the proposed algorithm is its stable

performance for high value of m compared to RC-kNN and
LC-kNN. As the number of partitions increases, the average
size of NewX decreases resulting in a decrease in
classification time with acceptable performance as shown in
Fig. 2-6. Therefore, according to the experimental results,
we may conclude that both RC-RFkNN and LC-RFkNN
work well in terms of classification accuracy and time.

Table 4 Classification Accuracy of RFkNN compared to three algorithms
on three datasets for m=10 and k=1

Dataset RC-
kNN

LC-
kNN

kNN LC-
RFkNN

RC-
RFkNN

LETTER 78.92 94.95 95.18 81.53 95.08
PENDIGIT 94.52 97.21 97.80 94.61 97.38
UPS 90.27 93.55 94.82 92.31 93.55

IV. CONCLUSION AND FEATURE WORK

Several existing efficient kNN classification algorithms
are based on partitioning such as in [17]. This paper
proposes an enhancement over these techniques by using the
rough fuzzy set while conducting the clustering algorithm to
separate the whole dataset into several parts. After
clustering, each produced cluster is divided into two
partitions: border and core. Only one core partition along
with one or more border partitions are used in classifying
unseen objects. The number of border partitions to be used
depends on the unseen object's memberships in the clusters
that are produced in the training phase. The proposed
algorithm is a generalization of existing RC-kNN and LC-kNN
algorithms [17]. Experimental studies are carried to select a
suitable value for the input parameters for each dataset such
as the number of clusters to be produced in the training
phase m and the number of neighbors to be used in the
classification phase k. the traditional kNN is used as the base
line and several experiments are conducted on three
standard datasets to compare the proposed RC-RFkNN and
LC-RFkNN to the most related algorithms kNN, LC-kNN
and RC-kNN. The experimental results showed that the
proposed LC-RFkNN and RC-RFkNN outperform the
corresponding techniques LC-kNN and RC-kNN
respectively. The gain in performance in terms of accuracy
with RC-RFkNN over RC-KNN was higher than LC-
RFkNN over LC-kNN. The proposed approach inherits its
efficiency from RC-KNN and LC-kNN since the added
steps to both the training and testing phase are very simple.
As a feature work, a new solution to perform an
approximate k-nearest neighbors classification based on
Spark may be developed to deal with big data [28]. We will
also investigate the influence of using rough fuzzy set on the
balance of accuracy and computation efficiency.

V. REFERENCES

[1] W.-J. Hwang and K.-W. Wen, "Fast kNN classification

algorithm based on partial distance search," Electronics
letters, vol. 34, pp. 2062-2063, 1998.

[2] Y. Song, J. Liang, J. Lu, and X. Zhao, "An efficient instance
selection algorithm for k nearest neighbor regression,"
Neurocomputing, vol. 251, pp. 26-34, 2017.

[3] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
Machine learning: An artificial intelligence approach:
Springer Science & Business Media, 2013.

[4] S. A. Medjahed, T. A. Saadi, and A. Benyettou, "Breast
Cancer Diagnosis by using k-Nearest Neighbor with

Mohamed Mahfouz , International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 274-279

© 2015-19, IJARCS All Rights Reserved 279

Different Distances and Classification Rules," International
Journal of Computer Applications, vol. 62, 2013.

[5] G. Bhattacharya, K. Ghosh, and A. S. Chowdhury, "An
affinity-based new local distance function and similarity
measure for kNN algorithm," Pattern Recognition Letters,
vol. 33, pp. 356-363, 2012.

[6] M. J. Islam, Q. J. Wu, M. Ahmadi, and M. A. Sid-Ahmed,
"Investigating the performance of naive-bayes classifiers and
k-nearest neighbor classifiers," in Convergence Information
Technology, 2007. International Conference on, 2007, pp.
1541-1546.

[7] T. İnkaya, S. Kayalıgil, and N. E. Özdemirel, "An adaptive
neighbourhood construction algorithm based on density and
connectivity," Pattern Recognition Letters, vol. 52, pp. 17-
24, 2015.

[8] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, "Learning
k for knn classification," ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, p. 43, 2017.

[9] I. Mani and I. Zhang, "kNN approach to unbalanced data
distributions: a case study involving information extraction,"
in Proceedings of workshop on learning from imbalanced
datasets, 2003.

[10] V. Ganganwar, "An overview of classification algorithms for
imbalanced datasets," International Journal of Emerging
Technology and Advanced Engineering, vol. 2, pp. 42-47,
2012.

[11] M.-L. Hou, S.-L. Wang, X.-L. Li, and Y.-K. Lei,
"Neighborhood rough set reduction-based gene selection and
prioritization for gene expression profile analysis and
molecular cancer classification," BioMed Research
International, vol. 2010, 2010.

[12] O. Okun and H. Priisalu, "Dataset complexity in gene
expression based cancer classification using ensembles of k-
nearest neighbors," Artificial intelligence in medicine, vol.
45, pp. 151-162, 2009.

[13] S. D. Bay, "Nearest neighbor classification from multiple
feature subsets," Intelligent data analysis, vol. 3, pp. 191-
209, 1999.

[14] X. Wu, C. Zhang, and S. Zhang, "Efficient mining of both
positive and negative association rules," ACM Transactions
on Information Systems (TOIS), vol. 22, pp. 381-405, 2004.

[15] X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and
least variance encoding approach to hashing," IEEE
transactions on image processing, vol. 23, pp. 3737-3750,
2014.

[16] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, "Missing
value estimation for mixed-attribute data sets," IEEE
Transactions on Knowledge and Data Engineering, vol. 23,
pp. 110-121, 2011.

[17] Z. Deng, X. Zhu, D. Cheng, M. Zong, and S. Zhang,
"Efficient kNN classification algorithm for big data,"
Neurocomputing, vol. 195, pp. 143-148, 2016.

[18] Z. Pawlak and R. Sets, "Theoretical aspects of reasoning
about data," Kluwer, Netherlands, 1991.

[19] L. A. Zadeh, "Fuzzy sets," in Fuzzy Sets, Fuzzy Logic, And
Fuzzy Systems: Selected Papers by Lotfi A Zadeh, ed:
World Scientific, 1996, pp. 394-432.

[20] A. K. Jain and R. C. Dubes, "Algorithms for clustering data,"
1988.

[21] R. J. Hathaway and J. C. Bezdek, "Extending fuzzy and
probabilistic clustering to very large data sets,"
Computational Statistics & Data Analysis, vol. 51, pp. 215-
234, 2006.

[22] S. Z. Selim and M. A. Ismail, "Soft clustering of
multidimensional data: a semi-fuzzy approach," Pattern
Recognition, vol. 17, pp. 559-568, 1984.

[23] M. A. Mahfouz and M. A. Ismail, "Efficient soft relational
clustering based on randomized search applied to selection
of bio-basis for amino acid sequence analysis," in Computer
Engineering & Systems (ICCES), 2012 Seventh
International Conference on, 2012, pp. 287-292.

[24] M. A. Mahfouz and M. A. Ismail, "Semi-possibilistic
Biclustering Applied to Discrete and Continuous Data," in
International Conference on Advanced Machine Learning
Technologies and Applications, 2012, pp. 327-338.

[25] M. A. Mahfouz and M. A. Ismail, "Soft flexible overlapping
biclustering utilizing hybrid search strategies," in
International Conference on Advanced Machine Learning
Technologies and Applications, 2012, pp. 315-326.

[26] "K. Bache,M.Lichman, UCIMach.Learn.Repos.(2013).", ed.
[27] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support

vector machines," ACM transactions on intelligent systems
and technology (TIST), vol. 2, p. 27, 2011.

[28] G. Song, J. Rochas, F. Huet, and F. Magoules, "Solutions for
processing k nearest neighbor joins for massive data on
mapreduce," in Parallel, Distributed and Network-Based
Processing (PDP), 2015 23rd Euromicro International
Conference on, 2015, pp. 279-287.

