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noise from the text image. The lines of text are located from 
the text image and simple features are extracted from each 
line image. The preprocessing and feature extraction stages 
are identical for training and recognition procedures. In 
training procedure, the system takes as input, the sequence 
of symbols coupled with the corresponding ground truth and 
estimates the parameters of character models. In the 
recognition procedure, the system takes the sequence of 
symbols as input to find the character sequence that has the 
highest likelihoods. 

 

 
Figure1: OCR System Design 
 

1.  Data Corpus: 
To train and test the OCR System, we built a data corpus 
consisting 4250 lines of Urdu text. Building data corpus is 
an important step to assess the performance of the 
recognition system.  
 
2. Data Labeling: 
This is also known as Transcription. Once the softcopy of 
data corpus is built, each Urdu character is then represented 
by two hexadecimal numbers. Urdu characters are context 
sensitive. A character can have up to four different shapes 
depending upon their position within a word. The total 
number of labels in the system equals to 196 and it includes 
Urdu characters, numbers, space character and punctuation 
marks. Labeling procedure is done manually. 
 
3. Pre-processing: 
Once the data corpus is built, the next step is to convert this 
data corpus into text images using a scanner or an image 
processing tool. The main function of this stage is to 
enhance the text images by reducing noise before any 
further processing. 

 
4. Noise Reduction: 
Noise is an important challenge to any OCR system. It may 
come from bad scanners or from poor documents. To 
minimize noise a scanner of high quality should be used. 
When the noise is detected in text image filter can be used to 
minimize the noise, but if there is still a noise in the image 
the image is rescanned again or discarded from data corpus. 
 
5. Feature Vector Extraction Method: 
In feature extraction phase, each segmented line of the text 
image is divided into a number of frames. In our approach, 
we take the frame width and height to be 3-7 and 64-80 
respectively. The frame width and height are chosen 
according to our statistical analysis. 
In order to use the stochastic procedure such as HMM, the 
feature vector should be extracted as a function of an 
independent variable. In speech recognition, the feature 
vectors are extracted from speech signals using time as an 
independent variable [4]. However, in offline text 
recognition system, the whole page needs to be recognized at 
a time; hence time cannot be treated as an independent 
variable in this case. Now assuming the horizontal axis along 
the text line is the independent variable, sliding window is 
scanned over the line from right to left as shown in Figure 2. 

 
          Figure2: Sliding window and overlapping cells [4]  

 
 

As already mentioned, there are several methods of feature 
extraction such as statistical (DCT, DWT, Sliding window), 
structural andglobal methods [5]. In these methods, 
statistical features are extracted from each segmented image. 
These types of features are easy to compute and take a short 
processing time as compared to structural features. 
However, using this technique we are extracting only 16 
simple features (of one type) per vertical strip (window) as 
shown in fig. 3. As the line image is already converted into 
the binary image (0&1). A virtual window of variable width 
and constant height (height of the image) slides over the 
entire length of the image from left to right. Each window 
consists of eight vertical cells dividing it into eight parts. 
Features (F1-F8) are then converted into sixteen features 
(F1-F16) as shown in fig. 3. 
F9=F1+F2,  
F10=F3+F4,  
F11=F5+F6,  
F12=F7+F8,  
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Baum-Welch re-estimation algorithm takes a soft decision; 
the probabilities of being in each state at each time as 
discussed. The previous two steps are applied to Hidden 
Markov Model(HMM). This HMM, will be used in the last 
step as a seed for all character HMMs. In the last step, each 
line image is trained with the associated label file which 
gives the transcriptions in this line. The associated 
transcription constructs a composite HMM, which covers all 
the models in the line. The Forward-Backward algorithm is 
then applied and new parameter estimates are computed and 
a new updated HMMis outputted. 
 
7.  Recognition Procedure: 
Once the OCR system is built and tuned with training 
examples, it can be used to decode unknown feature vectors 
to the corresponding Urdu characters. The recognition 
network includes a set of nodes which are connected by 
arcs. Each node is represented by an HMM which is itself a 
network of states connected by arcs. The output of the 
recognition system is a sequence of Urdu characters. The 
system is lexicon-free where the set of characters between 
two consecutive spaces is represented by Urdu word without 
searching in any lexicon. This level is chosen because of 
following reasons:  
1) The system can recognize any Urdu word while if present 
in the dictionary, some Urdu words not belonging to the 
dictionary may occur. This problem is named in recognition: 
Out of Vocabulary problem (OOV) [10]. At the HMM 
models level, this problem will not appear because any Urdu 
word consists of a limited set of Urdu characters. These 
characters are represented by a set of HMMs. 
2) The processing unit in our OCR system is the line image. 
Each line image consists of a limited set of Urdu characters 
which is represented by a set of HMMs. 

To recognize an input line image, the line image is 
transferred into a sequence of observations. If the number of 
observations in the line image is T, then every path from the 
start node to the end node in the recognition network, which 
passes through exactly T HMM states, may represent the 
target line. These paths have a probability which is 
computed by summing the probabilities of each state 
generating the corresponding observation and the 
probability of the transition from one HMM model to 
another. The probability of states is determined from the 
HMM parameters and the probabilities between HMMs are 
determined by the language model likelihoods. 

The recognizer has to find those paths through the 
network which have the highest probability. These paths are 
found using a Token Pass Algorithm. This algorithm works 
as follows: 

1. At horizontal position 0 in the line image, a token is 
placed at the start of every HMM model in the network. 

2. At each horizontal position step, propagate the token 
along connecting transitions and stop at an emitting HMM 
state. If there is more than one exit from the node, copy a 
new token for every path 

3. Increment the probability of each token by aij + bj 
(Ox), where aij is the transition probability from the state ‘i’ 
to state j, and bj (Ox) is the discrete probability of 
observation Ox in state j.  

4. At the end of each transition step, all tokens are 
discarded except the token with the highest probability  

 5.  Each token that passes through the recognition 
network must save a history recording its route.  

 
When the token comes to the last transition, the route of 

the token with the highest probability is the output of the 
recognizer. 
This comparison is performed using dynamic programming 
to align the two transcriptions and then count the number of: 
 
1. Substitution Errors (S): The number of wrong labels that 
substitutes correct labels in the recognizer output sequence 
2. Deletion Errors (D): The number of correct labels deleted 
from the recognizer output sequence. 
3. Insertion Errors (I): The number of wrong labels inserted 
between two consecutive correct labels in the recognizer 
output sequence. 
4. Total labels (N): The total number of labels in recognizer 
output sequence. 
Once the optimal alignment has been found the Correction 
rate (% Correction) is then: 
 
                  % Corr = N−D−S ×100 
        N 
If H is the number of correct labels, then H = N – S – D. 
Then the correction rate becomes:  
 
                  %Corr = /  × 100 
 
The accuracy (Acc.) is then defined as: 
 
Acc = (H−I)/N = (N – S –(D –I))/N 

 
3. EXPERIMENTAL RESULTS 
 

 In this section, the performance of the Urdu character 
recognition system presented is evaluated. The effect of 
various parameters like the number of states of HMM, 
number of horizontal and vertical overlaps during feature 
extraction phase on the recognition rate of Urdu text has been 
discussed. Moreover, the performance of the system on 
Naskh (Naskh-Andalus, Naskh-Arial, Tahoma fonts) font in 
the same data corpus, codebook size and on different training 
and testing sets are also assessed. 

 
1) The Number of States/HMMs:Once the best 

combination of frame width and number of cells per frame 
is selected using sliding window, the next important 
parameter to determine if the number of states/HMM. There 
is no mathematical way to find the best number of 
states/HMM. In this experiment, the different number of 
states/HMM are tested, namely: 4, 5, 6, 7, 8 and 10 
states/HMM. For simplicity, all HMMs have these same 
number of states. From Table 1, 6–states/HMM is the best 
number of states/HMM. It gives the best correction rate = 
93.39%.Arial font is used in this experiment for determining 
the best combination of States/HMM. It is being observed 
that system performance falls drastically when 8 states or 
more are used. 
 

2) Cells of different Size and type:To study this 
approach, the first thing we need to find is the best Window 
size that will give a good performance and consumes an 
acceptable processing time. 



Prabjot Singh et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,827-833 

© 2015-19, IJARCS All Rights Reserved       831 

 
Table 1: Different number of states/HMM 

Number 
of states 

H D S I %Acc %Cor 

5 66175 403 6561 7525 80.19 90.48 

6 68304 634 4201 3401 88.74 93.39 

7 67390 1631 4118 704 91.18 92.14 

8 41089 8468 23582 469 55.54 56.18 

 
Here, there are twotypes of cells: with and without overlap. 
The overlap between cells is in the vertical direction while 
the overlap between frames is in the horizontal direction. The 
overlap operation increases the number of frames (i.e., data) 
generated from the line image. The disadvantage is that 
ittakes more time to generate the feature vectors. The 

different combination of cell size and type that are used in 
this approach are as follows: 

a)  Window without any type of overlap (H0V0). 
b) Window with one horizontal pixel overlap and one 

vertical pixel overlap (H1V1). 
c) Window with one horizontal pixel overlap and 

three vertical pixels overlaps (H1V3). 
d) Window with two horizontal pixels overlaps and 

one vertical pixel overlap (H2V1). 
e) Window with two horizontal and verticalpixels 

overlaps (H2V2.). 
From the experiment, we note that when the frame width 

increases the system performance decreases. This is because 
the use of large frame width leads to a low number of 
frames and hence low data to HMM model. Further, we also 
concluded that the system gives optimum performance when 
frame width is 3with 1 horizontal and 3 vertical 
overlaps.The Table 2. Below show the performance of each 
type of overlap when the number of states of HMM is 6. 

 

Table 2: Performance with different overlapping

Frame width Overlap (horizontal 
vertical) 

H D S I N %Acc. %Correction 

3 H1V0 9755 103 996 749 10854 82.97 89.87 

3 H1V2 9760 96 96 726 10854 83.5 90.20 

3 H1V3 13419 126 1092 958 14637 85.13 91.68 

4 H2V2 9825 94 935 708 10854 84.00 90.52 

3 H2V3 10769 152 3716 3770 14637 47.82 73.57 

 

 
3) Performance on different Training: In this section, 

we studied the effect of the number of training set on the 
performance of the recognition system. Here we try different 
training sets consisting of 1500, 2500, 3200 and 4000 text 
line images. The ‘Andalus’ font with the window size of 3 
pixels, 1 horizontal and 3 vertical overlaps (w3_H1V3) are 
used.Table 3 showed that performance of system increases 
when the training sets are increased. The highest 
performance occurs when the system was trained with 3200 
line images. It gives a correction rate equal to 92.11% and 
Accuracy of 85.93%. 

 
Table3: System Performance when different numbers of training 

samples were used. 
Trainin

g 
set 

H D S I %Acc %Cor 

1500 3917 1645 5292 820 28.53 36.09 
2500 13419 126 1092 958 85.13 91.68 
3200 13483 128 1126 905 85.93 92.11 
4000 13250 126 1261 898 84.00 90.52 
4250 9760 96 96 726 83.5 90.20  

 
 

4) Results on different Fonts: Five different Urdu fonts 
were used for recognition and testing  (viz. Arial, Tahoma, 
Akhbar,  Naskh, and Andalus).Table4 summarizes the 
results of Akhbar, Andalus, Naskh and Arial fonts. 

 
Table 4: Summary of results on different fonts (N= 73139) 

Font H D S I %Acc %Cr 

Akhbar 68300 368 4471 1798 90.93 93.38 

Andalus 65238 533 7368 5278 81.98 89.20 

Naskh 66704 485 7121 4233 85.41 90.79 

Arial 68305 638 4196 3404 88.74 93.39 

 
4. ERROR ANALYSIS 
 
Although experimental show up to 93.39% accuracy in the 
best case there are some situations when our system does 
not perform as expected. Figure.4 shows one such case, as 
we can see some of the characters are misinterpreted by our 
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system.Wehave seen there are differences in case of the 
word and more common characters. The placement of single 
dot canchange the entire meaning. Even dots are increased 
by the  
Figure 4: Sample output. 
presence of noisy input, thereby affecting the accuracy of 
the system. Table 5 below presents few examples of such 
words or characters. 
Table 5: Error analysis 

 
 
Original word Recognized 

Word 
Error details 

 Extra dot in output ث ت

 Loop formed in output جطد جلد

 Extra character added to original گخ گ
word 

 Dots removed and shape changed دسنں شش

 
5. FUTURE WORK AND CONCLUSION  
 
1. Future Work: 

There are many extensions that can be done either to 
enhance the performance of the system or to make the 
approach applicable to a wider range of tasks related to 
Urdu text Recognition. These extensions are as under:  
 

a) Switch to handwritten Urdu script:The 
implemented system recognizes typewritten Urdu script. If a 
data corpus of handwritten Urdu script is built, the training 
and recognition procedures implemented here will be 
applied to recognize handwritten script. The only difference 
will be at the preprocessing stage.  

b) Using different types of HMMs:Since the 
implemented recognition system uses discrete HMMs 
because it is a fast system, continuous HMMs or tied-
mixture HMMs can be used instead. The use of HTK makes 
this job very easy because HTK supports all those types.  

c) Using new novel features: The statistical features 
that were used here gave good results, but new novel 
statistical features can be used instead to reduce the 
confusion between different characters.  

d) Using degraded and noisy data:Instead of using 
printed pages, we plan to test the system using noisy data 
such as fax and nth-generation photocopies.  

e) Multi-language system: Since the implemented 
system is segmentation-free, this system can be extended to 
recognize other language words inside the Urdu text.  

 
2. Conclusion: 

In our work, we addressed the problem of automatic reading 
of Urdu typewritten script. Urdu script presents important 
challenges such as cursiveness and the Urdu characters are 

context sensitive to their location within the word. The 
segmentation of Urdu words into characters is a hard job 
and always is a point of failure in the segmentation-based 
systems. We proposed a segmentation-free system to 
improve the recognition performance especially when the 
Urdu words are not easily separable.  
The central model of the proposed system is the hidden 
Markov models. Each character, with its different shapes 
and from, was represented by a distinct HMM. The system 
was built on Hidden Markov Models Toolkit (HTK) which 
had been designed primarily for speech recognition 
research.  
The system presented in this paper is the Urdu OCR system 
built on the HTK. The preprocessing and feature extraction 
were performed outside the HTK while the training and 
recognition procedures were performed inside HTK. The 
implemented system is a lexicon-free system. It can handle 
unlimited Urdu vocabularies since the system works on the 
character level. The output of the recognizer is a sequence of 
characters (Unicode).  
In order to use HMMs, the horizontal position at the line 
image was assumed to be the independent variable to extract 
the statistical features. Each line image was scanned from 
right-to-left with a narrow vertical window which was 
divided horizontally into eight cells and at each horizontal 
position; simple statistical features were computed from 
pixels falling within that window. These features are then 
injected into the HTK for training.  
The System is trained with 4250 lines from the data corpus 
and tested with 150 images randomly chosen from data 
corpus. The system showed the correctness of 92.11% and 
Accuracy of 85.93% when experimented with Andalus Font. 
Experimental results showed the dependence of system 
performance on the number of states per HMM. We also 
observed that the performance increases when it is trained 
with more data. But increasing the test cases does not affect 
the system performance. 
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