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Abstract:This paper analyzes most of restoration method frequently used and gives comparison of seven recent algorithms in terms of working 
and applicability It compares algorithms like KSVD, BM3D, CSR, KLLD, SVD based, LPGPCA, NCSR and many other spatial domain, 
transform domain and dictionary based methods, iterative methods for image restoration of noisy and blurred images. It gives comparative 
survey of all restoration techniques which will be useful to researchers for further development in the field. 
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I. INTRODUCTION 
 

Image Restoration is process of regaining the original image 
from its degraded version [1].  It includes image denoising 
[28], deblurring, superresolution [1]. It is an ill posed 
problem and many researchers tried to solve it in various 
ways. These can be broadly classified and discussed in rest 
of the paper. 
 

II. CLASSIFICATION OF IMAGE RESTORATION 
TECHNIQUES 

The vast work done in the area can be classified in following 
heads.  

A. Local and Non local filters 
Many local filters such as Gaussian filter, median filter 
[3], inverse filter Wiener filter[2], Least Mean Squares 
filter, bilateral filter [6][7], joint bilateral filter, Lee 
filter, etc. are used for noise reduction  but as compared 
to them non local filter always gives better results. The 
nonlocal filters make use of the self-similarity of natural 
images in a nonlocal manner.  The basic NLMwas 
developed in[4], later many improvements to algorithm 
are proposed [5]. 

B. Transform Domain Techniques: 
These include wavelets, BM3D, LPGPCA, and 
LPGSVD. Noise is spread out uniformly in wavelet 
domain while signal gets concentrated in few 
significant components. This is called as sparsity 
property. Using this concept different wavelet 
transforms can be used for image restoration. Discrete 
Wavelet Transform and thresholding is used to get 
denoised image in [8] and DWT is applied on restored 
image to get better quality image in [9]. Wavelet based 
EM algorithm for multispectral images is proposed in 
[10] [11].Noise is first reduced by adaptively shrinking 
wavelet coefficients using alpha map [13] and entropy,  
 

 
and then a new directional transform using combined 
wavelet functions and an adaptive Gaussian low-pass 
filter is composed in [12]. In [15] researchers have 
compared 17 methods for Image Denoising using 
wavelet transforms where various types of noise, 
transforms and thresholding are compared. It indicates 
vast work done by researchers in the area. With  
 
wavelets usually five thresholding methods are used to 
reduce the noises that are hard thresholding, soft 
thresholding, VisuShrink, SureShrink, BayesShrink. 
[8][12][14]. Block Matching and 3-D Filtering (BM3D) 
based on variation of K nearest neighbor clustering and 
2 stage simplification of EM based estimation of signal 
variance was developed [16]. Improvements [17] [18] 
to it are also proposed and used for image restoration. 
LPGPCA includes 3 steps local pixel grouping, PCA 
transform and inverse PCA transform [19]. LPGSVD 
[20] is similar technique to LPGPCA. It also has 3 steps 
local pixel grouping, SVD computation followed by 
aggregation. 

C. Vector Quantization 
 Blind image restoration algorithm based on Vector 
Quantization was proposed by Aggelos K. Katsaggelos 
et.al. [21] [22] [23]. 

D. Regularization 
Regularization can be iterative or direct.  Regularization 
has a general form as  

                         Min||y − Hx||2
2+λ||x||0 

                 Where λ is regularization parameter. 
Many variations to this basic equation are developed and 
known as L1 norm, Lp norm, Tikhonov, L1/L12, Total 
Variation [24], Mumford Shah [27] [29] , Sparsity [25] [30] 
[33] etc. Using Sparsity property of image many recent 
methods of Image Restoration [28] are developed such as 
KSVD [31] [32], Learned Simultaneous Sparse Coding 
(LSSC) [34], and Clustering-based Sparse Representation 
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(CSR) [35], Non locally Centralized Sparse 
Representation(NCSR) [1] [36], Clustering-based Denoising 
with locally learned dictionaries (KLLD) [38] [37]. These 
are explained below in short. 

E. KLLD [38] 
 This algorithm applies K-means clustering to images. On 
these clusters PCA transform is applied and then dictionary 
is formed. It uses steering Kernel Regression for weight 
calculation [38]. 

F. CSR [35] 
 The steps in algorithm are K-means clustering, followed by 
PCA then shrinkage algorithm. In last step it uses L1 
optimization as regularization process. It does not need any 
initial dictionary. 

G. Nonlocally Centralized Sparse Representation (NCSR) 
[1] [36] 

This algorithm is combination of all recent image restoration 
techniques. It begins with L1 regularization with sparse 
representation. It improves sparse representation by 
proposing non locally centralized sparse representation in 
which image is divided into overlapping patches. It also uses 
iterative shrinkage algorithm for solving L1 regularized least 
square problem. It used uses K-means clustering and PCA to 
form dictionary. To calculate estimation of sparse codes it 
uses weighted average formula similar to non local means 
algorithm. It also used maximum a posterior estimation 
(MAP) for evaluating regularization parameter λ. This 
algorithm works for denoising, deblurring and super 
resolution. 

H. Direct Regularization 
Truncated SVD [26]: SVD [53] [54] solution is given by A= 
U∑V.   If we approximate the SVD solution by considering 
some rank k matrix is known as truncated SVD solution.  

I. Iterative 
In iterative algorithms, during the iterations the blurred 
version of the current restoration result is compared to the 
recorded image. The difference between the two is scaled 
and added to the current restoration result to give the next 

restoration result. Various iterative algorithms are Van 
Cittert Algorithm [39] [40], Landweber Algorithm [39] [41] 
[42] [43], Poisson Map Algorithm [39], Richardson-Lucy 
Algorithm [39], Iterative Shrinkage Thresholding algorithm 
(ISTA) [44], Fast Iterative Shrinkage Thresholding 
algorithm (FISTA) [45] [46], Two step Iterative Shrinkage  
Thresholding algorithm (TwIST)[47]. ISTA [44] 
implements Landweber algorithm followed by soft 
thresholding [8] for restoration. FISTA [45] [46] is same as 
ISTA except that iterative shrinkage step considers two 
previous points for calculation instead of one point. TwIST 
[47] combines advantages of two methods ISTA and 
Iterative Re-weighted Shrinkage (IRS) [55] [56] algorithm. 
It gives good denoising performance as IST algorithm and 
speed as IRS algorithm. 

J. Expectation Minimization (EM) [48] algorithm 
The Expectation Minimization (EM) [48] algorithm is a 
general procedure for finding maximum likelihood 
parameter estimates. It consists of two steps Expectation 
step and Maximization step. By alternating the E-step and 
the M-step, convergence to an optimum of the likelihood 
function is achieved. 

K. Bayesian Estimator: 
Bayesian estimators [49] [50] includes estimators such as 
Maximum a posterior estimation (MAP), Maximum 
Likelihood Estimation (ML), minimum mean square error 
(MMSE), minimum mean absolute value of error (MAVE), 
etc.  

L. Fusion: 
Fusion of two or more restored images can be done to 
improve quality of restored image. Wavelet based fusion of 
two restored images by two different algorithms like Lucy 
Richardson, Wiener are used in [51] [52].  

Table I compares state of art algorithms and illustrates that 
all of them use as basic steps pixel grouping or clustering 
followed by PCA or SVD as decomposition method.  

 

 

Table I.  Summary of basic steps in all state of art algorithms 
Technique Steps of Algorithm 

KSVD [31] Orthogonal Matching pursuit   SVD 
KLLD [38] Clustering PCA  Form Dictionary 
NCSR [1] L1 Optimization  K means Clustering PCA  Form DictionaryShrinkage Algorithm 

LPGPCA [19] Local Pixel Grouping PCA  Inverse PCA 
SVD based [20] Local Pixel Grouping SVD  Aggregation 

BM3D [16] 3D transformThresholding (Advanced version uses PCA) 
CSR [35] K means Clustering PCA  Shrinkage AlgorithmL1 Optimization 
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Figure1: Complete mind map of Image Restoration techniques. 
Figure1 gives complete mind map of Image Restoration techniques discussed in the paper.

III. CONCLUSION 

This paper compared many restoration techniques and 
analyzed based on working and applicability. Out ofall the 
algorithms discussedmaximum basic filters and above 
compared algorithms in table 1 work for image denoising. For 
image deblurring inverse filter and all iterative techniques are 
used dominantly in literature but it can also be done by direct 
methods. NCSR gives results for denoising, deblurring and 
super resolution. 
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