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The organization of the rest of the paper is as follows: 
Literature review appears in Section II. Section IIdiscusses 
the existing methods. Section IV is about the proposed 
methods. Section Vdescribesthe experimental setup 
followed by the discussion of Result and analysis which 
appears in Section VI and conclusion is given in Section 
VII. References come thereafter. 
 
2.  LITERATURE REVIEW 
 
Dongkuan Xu and Yingjie Tianhavesurveyed on different 
clustering algorithms upto 2015 [9]. 
Among the available clustering algorithms, two standard 
algorithms have been used in each of the proposed 
clustering model. They are SOM and K-means. 
The topological structure of SOM networkis constructed by 
T. Kohonenin 2001 [10].The researchers are influenced by 
the dimensionality reduction power of SOM very much. 
JuhaVesanto and EsaAlhoniemi have observed clustering of 
SOM model from different angles [11]. 
K-means algorithm has two versions — one is with known 
cluster size [12] and the other is with unknown cluster size 
[11]. Both of these versions have been used in the proposed 
clustering models. 
Number of research works can be found in the field of SOM 
based clustering. One of them is the fusion of SOM and 
PCA.When these two dimensionality reduction tools are 
combined, the performance of the resulting model is far 
improved than their individual applications.Some of the 
research works on PCA based SOM model can be found in 
[13], [14]. 
General references on PCA are given by Jolliffe I. T., 2002 
[8] and Narayan C. Giri, 2003 [15]. 
To determine the number of components to be selected in 
PCA is also an innovative area in recent research works [16] 
[17]. 
 
3. EXISTING METHODS 
 
A short description of all the prerequisites for the proposed 
models appears in this section. 
Two standard clustering algorithms, namely, SOM and K-
means have been used in the proposed clustering models. In 
both of the proposed models, the input data are pre-
processed by normalization followed by PCA prior to 
application of SOM. All these techniques are described 
below. 
 
A.Self-Organizing Map 
The inherent structure used by SOM network is a two (or 
more) dimensional rectangular (or hexagonal) lattice.This 
lattice is used as a placeholder that contains number of 
output nodes; this number and the number of classes in data 
are same. All these output nodes have their respective 
weight vectors with the same dimension as that of input 
nodes.These weights are only used for making connections 
between output nodes and input nodes. There may or may 
not be connections present in between the output nodes. If 
present, those connections are weightless. 
The algorithm of SOM is basically a two pass algorithm. 
The first pass is the actual SOM algorithm and the second 
pass is the merging of SOM outputs. 

The first pass is again consisting of two phases – training 
phase and testing phase. In the training phase, input nodes 
are presented to the SOM network one after 
anotherrepeatedly.Anyinput node is assigned to the output 
node which is nearest to it and weights are updated 
accordingly.The initial learning rate and neighborhood size 
are very important in this phase. These two parameters are 
decreased over time. The training is done in such a way that 
all parts of the network respond similarly to a certain input 
node. While testing, the trained data are used and the whole 
process of the training phase is repeated. The outcomes of 
this pass are numbers of SOM prototypes. 
In the second pass, the SOM prototypes are further goes 
under clustering by using K-means. 
 
B. The K-means Algorithm 
Generally, in K-means clustering algorithm the number of 
clusters is well known in advance. In the proposed models, 
this algorithm is used to merge SOM prototypes.In this 
algorithm, an error function is minimized iterativelyand 
updating of the cluster centersis done accordingly. The error 
function is defined by equation 1. 

2

1 1
j ||X|| i

C

i

N

j

KE 
 

,             …… (1) 

WhereXj is the j-th input vector, K is the number of clusters, 

and iK  is the center of i-thcluster. 

 When the number of groups in a dataset is not 
known, the algorithmic steps for K-means clustering are 
repeated from an initial cluster size 2 to√ where N is the 
sample size. In each step, the error function defined in 
equation 1 is minimized. This version of K-means algorithm 
is used in each of the proposed component selection method. 
 
C.  Normalization 
When the attributes in a dataset appear with different scales, 
they need to be made of the same scale. For this, 
normalization is used. Due to normalization, all the attribute 
values existbetween 0 and 1. 
In the present paper, all the attributes are normalized before 
application of PCA. 
 
D.  Principal Component Analysis 
PCA is a technique that helps to decrease the dimension of 
data by selecting those attributes, called principal 
components, whichare comparatively more informativethan 
others. In the proposed clustering models, PCA is used as a 
pre-processing technique in addition to normalization. The 
selected principal components are used in subsequent cluster 
analysis. 
Among the existing principal component extraction 
methods, Kaiser Criterion and Cumulative Percentage of 
Total Variation are used to evaluate the proposed principal 
component selection methods. 
According to Kaiser Criterion, the component with an 
eigenvalue less than one is considered to be of lesser amount 
of varianceto the total variance in the dataset and it is 
rejected; rests are kept as principal components. 
In Cumulative Percentage of Total Variation, the principal 
components are selected from a dataset on the basis of a pre-
assumed cut-off percentage. 
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To calculate PCA either the covariance matrix or the 
correlation matrix of the dataset is used. In the proposed 
model, the covariance matrix is considered. 
 
4. PROPOSED METHODOLOGY 
 
This section describes the reason behind the construction of 
the proposed clustering model. Detailed discussions about 
the proposed principal component selection methods also 
appear in this section. 
It has already been discussed in previous section that PCA 
and SOM both are capable of retaining the essential 
information of a dataset in lesser number of selected 
components individually in a sophisticated way.Number of 
principal components to be extracted by PCA has a great 
impact on the performance of any model. If these 
components are chosen properly followed by the application 
of SOM algorithm, it is possible to have more robust output. 
Eigenvalues and eigenvectors of data capture essential 
information and pattern of data.The eigenvector 
corresponding to the highest eigenvalue is the principal 
component of the dataset, in general. The whole set of 
eigenvalues or eigenvectors can be decomposed into number 
of groups based on similarity in patterns in a dataset. As the 
covariance matrix of a dataset also resembles the significant 
information, it is proposed to cluster the eigenvalues or the 
eigenvectors of a covariance matrixto consider the cluster 
with highest number of members in it.As this cluster holds 
the most similar patterns, that highest number can be used to 
select number of principal components while discarding the 
components in other. 
It is also proposed that if the principal components are 
selected by using those above mentioned proposed principal 
component selection methods and those components are fed 
to theSOM network for clustering,itcan improve the 
performance of the standard SOM model. 
To implement the proposed algorithms,at first covariance 
matrix is generated from normalized data. The eigenvalues 
and eigenvectors of this covariance matrix are also 
computed which are thenindividually clustered by using the 
K-means algorithm.Next, the cluster with highest number of 
members is identified in each case and that number is used 
to select principal components. Then, SOM algorithm is 
applied on these selected components.The proposed 
clustering methods are commonly named as 
EIGENPCASOM algorithm. Steps of the EIGENPCASOM 
algorithm are given as follows. 
 
EIGENPCASOM Algorithm: 
Input: N number of eigenvalues or eigenvectors EV of the 

covariance matrix of normalized data, number of 
clusters K 

Output: K number of clusters 
1) Apply K-means algorithmon N eigenvalues or 

eigenvectors. Suppose we get C number of clusters. 
2) Findthe cluster C1 out ofthese C clusters that has highest 

number of members. Suppose the highest number is n. 
3) Select nnumbers of principal components by using PCA. 
4) Clusterntransformed components by using standard SOM 

algorithm. 
5) Apply K-means algorithm on SOM prototypes to produce 

K number of clusters. 
 

5. EXPERIMENTAL SETUP 
 
The dataset that is to be used for testing any PCA based 
model must have larger set of attributes. The benchmark 
wine dataset of UCI machine learning repository[18]has this 
feature. So this dataset is chosenfor testing purposeand 
hence it helps in analyzing the performances of the proposed 
PCA based SOM models. 
The winedata are the results of a chemical analysis of wines 
grown in the same region in Italy but extracted from 3 
different species. This dataare composed of 13 attributes 
representing the quantities of 13 componentsthat form each 
of the 3 types of wines.The whole dataset is divided into 3 
classes with 59, 71 and 48 instances respectively and 178 
instances in total. The dataset contains no missing attributes. 
First attribute in this dataset is the class label 1-3. The 
attributes arenamely Alcohol, Malic acid, Ash, Alcalinity of 
ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid 
phenols, Proanthocyanins, Color intensity, Hue, 
OD280/OD315 of diluted wines, Proline. 
 
6. RESULTS AND ANALYSIS 
 
The performance of the two variants of the proposed PCA 
based SOM model have been tested and analyzed for 
different lattice sizes from 3×3 to 10×10.The following two 
subsections discuss and analyze the results obtained by the 
application of proposed principal components selection 
methods in clustering of the wine data through PCA based 
SOM model. 
 
A. When eigenvalues clustering method is chosen as 

component selection method 
In this case, 11 principal components have been extracted by 
the proposed component selection method and these 
components are clustered by using SOM algorithm. 
Here, Table I shows the results which are considered to be 
the best output. 
It is clear from Table I thatthe percentage of accuracy varies 
from 89% to 100% for class I in all the cases upto lattice 
sizes 3×3 to 10×10 and this 100% accuracy has been 
achieved with very small lattice size 3×3. The percentage of 
accuracy varies from 88% to 95% for class II. For class III, 
it varies from 95% to 100% and this 100% of accuracy has 
been achieved with small lattice size 4×4. 
 
Comparison with standard SOM: 
Table II shows the comparative study between the proposed 
principal component selection method using eigenvalues 
clustering and the standard SOM model in clustering of wine 
dataset. 
It is clear from Table II that the proposed method is able to 
classify the test dataset with almost same accuracy as that of 
standard SOM modelupto lattice sizes 3×3 to 6×6.For class 
II and class III, these accuracies have been much betterthan 
the standard SOM model for some lattice sizes. So, it has 
been possible to achieve 100% accuracy for class I and more 
than 95% accuracy for classes II and III with very small 
lattice size 3×3 and with reduced components than the 
standard SOM model that saves lots of computation time 
and space, in turn. 
It can also be seen from Table II that although the standard 
SOM is unable to classify the data from lattice sizes 7×7 to 



Parthajit Royet al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018, 40-47 

© 2015-19, IJARCS All Rights Reserved       43 

10×10, theproposed method is able to classify with more 
than 94% accuracy for class I, 88% to 95% accuracy for 
class II and 95% to 100% accuracy for class III. Although, 
for these higher percentages of accuracies,K-means 
algorithm needs to consider more number of SOM 
prototypes while merging them than the previous set of 
lattice sizes for a small dataset, it may become effective for 
a dataset with larger set of attributeswhere standard SOM 
fails to classify it properly. 
 
Comparison with the model when Kaiser Criterion used as 
component selection method: 
Table V shows the comparative study between the proposed 
principal component selection method using eigenvalues 
clustering for classification of winedatasetand the model 
where Kaiser Criterion is used as component selection 
method. 
It is seen from Table V that the proposed approach is 
classifying the test dataset with improved accuracy than the 
existing one in all the classes with all lattice sizes. This is 
obvious because, the proposed method is classifying the 
dataset with 11 components whereas the existing one is 
classifying with only 8 components. As a result,the 
accuracyhas also been improved, because comparatively 
very few components are lost in the proposed case. 
Although, it seems that the proposed approach is taking 
more space and computation time than the existing one but 
this may not be always true for all datasets.How many 
componentswill be extracted from a dataset depends on the 
pattern of data, size of the datasetand original number of 
components in a dataset for which more or less number of 
clusters of eigenvalues can be obtained. 
 
Comparison with the model when Cumulative Percentage of 
Total Variation used as component selection method: 
Table V shows the comparative study between the proposed 
principal component selection method using eigenvalues 
clustering for classification of winedataset and the model 
where Cumulative Percentage of Total Variation is used as 
component selection method. 
From Table V, it can be seen that for almost all lattice sizes, 
theproposedmodelis classifying all the classes with 
improved accuracy than this existing method. In this case, 
the existing method is using 5 components and the proposed 
one is using 11 components. Obviously, the result is also 
muchbetter with the proposed model. Same explanation,as 
given for the other existing component selection method, is 
also applicablein the present case. 
A graphical representation of the performance of the 
proposed principal component selection method based 
clustering model has been given in Figure 1where the top 
line represents the overall accuracy for different lattice 
sizesof the proposed clustering model and the bottom two 
lines represent that of the other two existing component 
selection methods based clustering models. From Figure 1 it 
is clear that the proposed method has the superiority over 
other two existing component selection methods. 
 
B. When eigenvectors clustering method is chosen as 

component selection method 
In this case, 7 principal components have been extracted by 
the proposed component selection method and these 
components are presented to the SOM network. 

Table III shows the results which are considered to be the 
best output. 
It is clear from Table III that the percentage of accuracy 
varies from 79% to 93% for class I upto lattice sizes 3×3 to 
10×10.For class II, the same varies from 88% to 95% and 
for class III, it varies from 91% to 97%. 
Comparison with standard SOM: 
Table IV shows the comparative study between the 
proposed principal component selection method using 
eigenvectors clustering and the standard SOM model in 
clustering of wine dataset. 
It is seen from Table IV that with this proposed approach,in 
almost all the cases it is possible to have 88% to 92% 
accuracy for class II and 91% to 97%accuracy for class 
IIIupto lattice sizes 3×3 to 6×6. For these two classes, the 
accuracy is improving than the standard SOM for some of 
the lattice sizes. For class I, 84% to 89% accuracy is 
achieved through this set of lattice sizes. It is clear from 
Table IV that around 84% accuracy for class I and more 
than 90% accuracy for other two classes can be achieved 
with very small lattice sizes 3×3 or 4×4 with reduced 
components than the standard SOM which saves lots of 
computation time and space. 
Table IV also shows that from lattice sizes 7×7 to 10×10, 
the standard SOM fails whereas theproposed approach is 
able to classify with 79% to 93% accuracy for class I, 90% 
to 95% accuracy for class II and 93% to 97% accuracy for 
class III. Although,due to thesehigher percentages of 
accuracy,K-means algorithm needs to consider more number 
of SOM prototypeswhile merging them than the previous set 
of lattice sizes, its significance can be well explained in the 
same way as it has been explained in the last subsection. 
Comparison with the model when Kaiser Criterion used as 
component selection method: 
Table VI shows the comparative study between the 
proposed principal component selection method using 
eigenvectors clustering for classification of winedatasetand 
the model where Kaiser Criterion is used as component 
selection method. 
It can be seen from Table VIthat with theproposed approach, 
all the classes are classifying with improved accuracy than 
the existing methodin almost all the cases.Although in some 
cases, one class is classifying with decreased accuracy, the 
overall percentage of accuracy is improving because this 
proposedmethod is using only 7 components for 
classification of the dataset whereas the existing method is 
using 8 components. So, it can be said that proposedmethod 
is computationally efficient in terms space and time than the 
existing method.Again, this must be kept in mind that 
number of extraction of components depends on several 
factors. 
Comparison with the model when Cumulative Percentage of 
Total Variation used as component selection method: 
Table VI shows the comparative study between the 
proposed principal component selection method using 
eigenvectors clustering for classification of winedataset and 
the model where Cumulative Percentage of Total Variation 
is used as component selection method. 
It can be easily seen from Table VI that 
theproposedmethodis capable of classifying almost all the 
classes with improved accuracy than this existing method 
for almost all lattice sizes. Again, as this existing method of 
component selection is using only 5 components and the 
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proposed one is using 7, the result obtained with the 
proposed method is also better. But theproposed approach is 
showing improved accuracy for all the classes with higher 
order lattice sizes like 8×8 to 10×10.This leads to the 
requirement of more computation time. 
Figure 2 represents a graphical view of the performance of 
the proposed principal component selection method based 
clustering model.Here, the top line represents the overall 
accuracy for different lattice sizes of the proposed clustering 
model and the bottom two lines represent that of the other 
two existing component selection methods based clustering 
models. It is clear from Figure 2 that the proposed method 
has the superiority over other two existing component 
selection methods. 
Comparison between the two proposed component selection 
methods: 
Table VII shows a comparative study of the two proposed 
principal component selection methods in PCA for 
classification of winedataset using SOM model. 
It is clear from Table VII that the accuracy level is same for 
all the classes of both of the proposed methods with almost 
all the cases. Although, sometimes it is deviating from one 
another in some of the cases, it is negligible in terms of 
number of components they are using; sometimes it also 
remains same. To maintain this accuracy level, the 
eigenvalues clustering method is using 11 components 
whereas eigenvectors clustering method is using only 
7components. So, the second method is consuming less 
space and computation time than the first. And hence, it can 
be said that the second method is computationally more 
efficient than the first for clustering of the wine dataset. 

Figure 3 shows a graphical representation of the 
performance of the clustering models based on two 
proposed principal component selection methods. Although 
from Figure 3 it seems that the eigenvalues clustering based 
component selection method gains the superiority over the 
other proposed component selection method, if individual 
accuracy level is compared for each class and the number of 
components the proposed methods are using is also taken 
into account, it can be said that the eigenvectors based 
clustering method is superior. 
 
7.  CONCLUSION 
 
In this paper, two different techniques for selection of 
principal components in PCA have been proposed.Both of 
the methods are able toproduce satisfactory results with 
improved accuracy in clustering of the SOM model.So,it can 
be concluded that the proposed models are better than the 
existing models. Proposed models also have the abilityto 
cluster data at small lattice size and have the power of 
reducing the dimension of data.So, it can also be concluded 
that the proposed methods are computationally efficient.In 
spite of these satisfactory results, there is also scope for 
further improvement in the proposed models. Instead of K-
means clustering algorithm,other clustering techniques can 
be used to cluster eigenvalues and eigenvectors of the 
covariance matrix and also to produce final clusters from the 
SOM model. Other pre-processing techniques can also 
become effectivein clustering SOM model with better 
output. 

 
 

TABLEI.   Classification of Wine Data [18] using PCA Based SOM Showing Best Outputs with Different Lattice Sizes by 
Clustering Eigenvalues and Choosing Highest Number of Eigenvalues Classified as the Principal Component Selection Method 

 

Lattice 
Size 

Classification using Eigenvalues Clustering as the Principal 
Component Selection Method (No. of components = 11) 

Accuracy (%) 

Class I Class II Class III 
Class I Class II Class III 

Correct Wrong Correct Wrong Correct Wrong 

3×3 59 2 68 1 47 1 100 95.77 97.92 
4×4 53 0 63 6 48 8 89.83 88.73 100 
5×5 58 2 68 4 44 1 98.31 95.77 91.66 
6×6 59 7 64 1 47 0 100 90.14 97.92 
7×7 57 1 68 4 46 2 96.61 95.77 95.83 
8×8 57 6 63 3 47 2 96.61 88.73 97.92 
9×9 56 4 65 4 47 2 94.92 91.55 97.92 

10×10 58 4 65 1 48 2 98.31 91.55 100 
 
TABLE II.  Comparative study of the Proposed Principal Component Selection Method for Classification of Wine Data [18] using 

Eigenvalues Clustering with the Standard SOM Model. 
 

Lattice 
Size 

Comparative study of the Proposed Principal Component Selection Method for 
Classification of Wine Dataset using Eigenvalues Clustering with the Standard SOM Model
[The values are percentage of Correct Classification, No. of Components (for Standard 

SOM)=13, No. of Components (for Eigenvalues Clustering)=11]  
Class I Class II Class III 

Standard 
SOM 

Eigenvalues 
Clustering 

Standard 
SOM 

Eigenvalues 
Clustering 

Standard 
SOM 

Eigenvalues 
Clustering 

3×3 100 100 95.77 95.77 100 97.92 
4×4 100 89.83 91.55 88.73 91.67 100 
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5×5 100 98.31 88.73 95.77 100 91.66 
6×6 100 100 85.92 90.14 100 97.92 
7×7 × 96.61 × 95.77 × 95.83 
8×8 × 96.61 × 88.73 × 97.92 
9×9 × 94.92 × 91.55 × 97.92 

10×10 × 98.31 × 91.55 × 100 
 

TABLE III.  Classification of Wine Data [18] using PCA Based SOM Showing Best Outputs with Different Lattice Sizes by 
Clustering Eigenvectors and Choosing Highest Number of Eigenvectors Classified as the PrincipalComponent Selection Method. 

 

Lattice 
Size 

Classification using Eigenvectors Clustering as the Principal 
Component Selection Method (No. of components = 7) 

Accuracy (%) 

Class I Class II Class III 
Class I Class II Class III 

Correct Wrong Correct Wrong Correct Wrong 

3×3 50 7 65 4 47 5 84.75 91.55 97.92 

4×4 50 6 66 1 46 9 84.75 92.96 95.83 

5×5 51 7 65 6 44 5 86.44 91.55 91.66 

6×6 53 11 63 1 45 7 89.83 88.73 93.75 

7×7 47 3 68 8 47 5 79.66 95.77 97.92 

8×8 54 9 64 1 46 4 91.53 90.14 95.83 

9×9 55 9 64 1 45 4 93.22 90.14 93.75 

10×10 50 3 68 7 46 4 84.75 95.77 95.83 

 
TABLE IV.  Comparative study of the Proposed Principal Component Selection Method for Classification of Wine Data [18] using 

Eigenvectors Clustering with the Standard SOM Model. 
 

Lattice 
Size 

Comparative study of the Proposed Principal Component Selection Method for 
Classification of Wine Dataset using Eigenvectors Clustering with the Standard SOM 

Model 
[The values are percentage of Correct Classification, No. of Components (for Standard 

SOM)=13, No. of Components (for Eigenvalues Clustering)=7]  
Class I Class II Class III 

Standard 
SOM 

Eigenvectors 
Clustering 

Standard 
SOM 

Eigenvectors 
Clustering 

Standard 
SOM 

Eigenvectors 
Clustering 

3×3 100 84.75 95.77 91.55 100 97.92 
4×4 100 84.75 91.55 92.96 91.67 95.83 
5×5 100 86.44 88.73 91.55 100 91.66 
6×6 100 89.83 85.92 88.73 100 93.75 
7×7 × 79.66 × 95.77 × 97.92 
8×8 × 91.53 × 90.14 × 95.83 
9×9 × 93.22 × 90.14 × 93.75 

10×10 × 84.75 × 95.77 × 95.83 
 

TABLE V. Comparative study of the Two Existing and the Proposed Eigenvalues Clustering Principal Component Selection 
Methods for Classification of Wine Data [18] using PCA Based SOM. 

 

Lattice 
Size 

Comparative Study of the two existing and the proposed Eigenvalues Clustering Principal 
Component Selection Methods for classification of Wine Dataset using PCA based SOM 

[The values are percentage of Correct Classification, No. of Components (for Kaiser 
Criterion)=8, No. of Components (for C.P. of Total Variation)=5, No. of Components (for 

Eigenvalues Clustering)=11]  
Class I Class II Class III 

Kaiser 
Criterion 

C.P. of 
Total 

Variation 

Eval. 
Clust. 

Kaiser 
Criterion

C.P. of 
Total 

Variation

Eval. 
Clust.

Kaiser 
Criterion 

C.P. of 
Total 

Variation 

Eval. 
Clust.

3×3 86.44 93.22 100 88.73 81.69 95.77 85.42 87.50 97.92 
4×4 86.44 91.52 89.83 88.73 80.28 88.73 93.75 93.75 100 
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5×5 86.44 94.92 98.31 87.32 84.51 95.77 89.58 87.50 91.66 
6×6 86.44 83.05 100 84.51 84.51 90.14 97.92 87.50 97.92 
7×7 96.61 88.14 96.61 84.51 81.69 95.77 89.58 87.50 95.83 
8×8 86.44 81.36 96.61 84.51 81.69 88.73 89.58 91.66 97.92 
9×9 86.44 84.75 94.92 94.36 81.69 91.55 79.16 91.66 97.92 

10×10 81.36 88.14 98.31 91.55 84.51 91.55 89.58 87.50 100 
 
 

TABLE VI.  Comparative study of the Two Existing and the Proposed Eigenvectors Clustering Principal Component Selection 
Methods for Classification of Wine Data [18]using PCA Based SOM 

 

Lattice 
Size 

Comparative Study of the two existing and theproposed Eigenvectors Clustering Principal 
Component Selection Methods for classification of Wine Dataset using PCA based SOM 
[The values are percentage of Correct Classification, No. of Components (for Kaiser 
Criterion)=8, No. of Components (for C.P. of Total Variation)=5, No. of Components (for 
Eigenvectors Clustering)=7]  

Class I Class II Class III 

Kaiser 
Criterion 

C.P. of 
Total 

Variation 

Evect. 
Clust. 

Kaiser 
Criterion

C.P. of 
Total 

Variation

Evect. 
Clust. 

Kaiser 
Criterion 

C.P. of 
Total 

Variation 

Evect. 
Clust. 

3×3 86.44 93.22 84.75 88.73 81.69 91.55 85.42 87.50 97.92 
4×4 86.44 91.52 84.75 88.73 80.28 92.96 93.75 93.75 95.83 
5×5 86.44 94.92 86.44 87.32 84.51 91.55 89.58 87.50 91.66 
6×6 86.44 83.05 89.83 84.51 84.51 88.73 97.92 87.50 93.75 
7×7 96.61 88.14 79.66 84.51 81.69 95.77 89.58 87.50 97.92 
8×8 86.44 81.36 91.53 84.51 81.69 90.14 89.58 91.66 95.83 
9×9 86.44 84.75 93.22 94.36 81.69 90.14 79.16 91.66 93.75 

10×10 81.36 88.14 84.75 91.55 84.51 95.77 89.58 87.50 95.83 
 

[Note: C.P. – Cumulative Percentage, Eval. Clust. – Eigenvalues Clustering, Evect. Clust. – Eigenvectors Clustering] 
 
TABLE VII. Comparative study of the Two Proposed Principal Component Selection Methods for Classification of Wine Data[18] 

using PCA Based SOM 
 

Lattice 
Size 

Comparative Study of the two proposed Principal Component Selection Method for 
classification of Wine Dataset using PCA based SOM 

[The values are percentage of Correct Classification, No. of Components (for 
Eigenvalues Clustering)=11, No. of Components (for Eigenvectors Clustering)=7]  

Class I Class II Class III 
Eigenvalues 
Clustering 

Eigenvectors 
Clustering 

Eigenvalues 
Clustering 

Eigenvectors 
Clustering 

Eigenvalues 
Clustering 

Eigenvectors 
Clustering 

3×3 100 84.75 95.77 91.55 97.92 97.92 
4×4 89.83 84.75 88.73 92.96 100 95.83 
5×5 98.31 86.44 95.77 91.55 91.66 91.66 
6×6 100 89.83 90.14 88.73 97.92 93.75 
7×7 96.61 79.66 95.77 95.77 95.83 97.92 
8×8 96.61 91.53 88.73 90.14 97.92 95.83 
9×9 94.92 93.22 91.55 90.14 97.92 93.75 

10×10 98.31 84.75 91.55 95.77 100 95.83 
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