
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 255

ISSN No. 0976-5697

Formal Verification of Access Control Policies

Ramanuj Chouksey*
Asst.Professor

 School of Information Technology and Engineering

 Vellore Institute of Technology, Vellore

 Tamilnadu - 632014, India

 ramanuj@vit.ac.in

R Sivashankari
Asst.Professor

 School of Information Technology and Engineering

 Vellore Institute of Technology, Vellore

 Tamilnadu - 632014, India

 sivashankari.r@vit.ac.in

Abstract: The primary purpose of security mechanisms in a system is to control access to information. Access control is the process of limiting

access to the resources of a system to authorized users, programs, processes, or other systems. In this paper we illustrate different access control

techniques and models that have been proposed in the literature and model checking approach to verify the properties of models. Model

checking approach first expresses access control models in the specification language of a model checker. It expresses generic access control

properties in temporal logic formulas and then uses the model checker to verify these properties for the access control models and generate the

counter example for those properties which is not true in the specified model. We use NuSMV model checker tool. We present a case study of a

health care system. The goal of our paper is to give a general approach for verification of a health care system using model checking.

Keywords: Access Control; RBAC,Model Checking;NUSMV;LTL;CTL;

I. INTRODUCTION

An important requirement of any system is to

protect data and resources against unauthorized disclosure

(secrecy) and unauthorized or improper modifications

(integrity), while at the same time ensuring their availability

to authorized users. Enforcing protection therefore requires

that every access to a system and its resources be controlled

so that only authorized accesses can take place. Thus the

primary purpose of security mechanisms in a system is to

control access to information. Access control [1, 2] is the

process of limiting access to the resources of a system to

authorized users, programs, processes, or other systems. The

importance of access control is growing rapidly in a world

where computers are ever-more interconnected. When

planning an access control system, three abstractions of

controls should be considered:

• Access control policies: Access control policies

are high-level requirements that specify how access is

managed and who may access information under what

circumstances.

• Security models: Security models are formal

presentations of the security policies enforced by the system

and are useful for proving theoretical limitations of a

system.

• Security mechanism: At a high level, access

control policies are enforced through a mechanism that

translates a user's access request, often in terms of a

structure that a system provides.

For an access control system to be effective, it is

important to ensure that its access control policies are

properly defined. It is common that a system's privacy and

security are compromised due to the misconfiguration of

access control policies instead of the failure of protocols.

The access control policy should consist of two aspects.

First, the policy should provide users enough permissions to

carry out their actions and achieve their legitimate goals.

Secondly, at the same time, the policy should prohibit

malicious goals from being reached. The achievability of

malicious goals may reveal certain security holes in the

policy. To formally and precisely capture the security

properties that access control should contains, access control

models are usually built and model checking approach is

used to verify them.

The paper is organized as follow. Section II

introduces some of the concepts that are commonly used in

the field of access control and are also used throughout this

paper. In Section III we described the role based access

control technique and it's related models. In section IV we

described the model checking approach for model

verification and NuSMV model checker. In section V we

present the case study of a health care system.

II. CONCEPT

• Object: An entity that contains or receives information.

Access to an object implies access to the information it

contains. Examples of objects are records, fields (in a

database record), blocks, pages, segments, files,

directories, programs etc.

• Subject: Active entities that can access or manipulate

objects. At a high level users are subjects, but within the

system, a subject is usually considered to be a process,

job, or task, operating on behalf of the user.

• Operation: An active process invoked by a subject.

• Permission (privilege): An authorization to perform some

action on the system.

III. ACCESS CONTROL TECHNIQUE

Access control techniques are sometimes

categorized as either discretionary or non-discretionary. The

three most widely recognized techniques are :

1. Discretionary Access Control (DAC)

2. Mandatory Access Control (MAC)

3. Role Based Access Control (RBAC)

Ramanuj Chouksey et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,255-260

© 2010, IJARCS All Rights Reserved 256

In DAC, each object has an owner who exercises

primary control over the object and can set an access control

mechanism to allow or deny access to an object. The access

matrix model [3] provides a framework for describing

discretionary access control. MAC [1] is a security

mechanism that restricts the level of control that users

(subjects) have over the objects that they create. Unlike in a

DAC implementation, where users have full control over

their own files, directories, etc., MAC adds additional labels,

or categories, to all system objects. DAC allows user to pass

rights they possess to other users without constraints, MAC

restrict how users can pass rights to others users. In DAC

there is no distinction between users and subjects while

MAC make a distinction between users and subjects. Users

are human beings who can access the system, while subjects

are processes (i.e., programs in execution) operating on

behalf of users. This distinction allows the policy to control

the indirect accesses (modifications) caused by the

execution of processes and controls the direct and indirect

flows of information to the purpose of preventing leakages

to unauthorized subjects. The best known security model for

MAC is Bell and LaPadula model.

A. Role Based Access Control (RBAC)

Role-based access control (RBAC) [4] is an

approach to restricting system access to authorized users. In

role-based access control, access decisions are based on the

roles that individual users have as part of an organization.

Role can be defined as a set of actions and responsibilities

associated with a particular working activity such as doctor,

nurse, manager. In RBAC instead of specifying all the

accesses each users is allowed to execute, access

authorizations are specified for roles. Users are then given

authorizations to adopt roles. Thus in RBAC permissions are

associated with roles, and users are made members of

appropriate roles thereby acquiring the role's permissions.

This greatly simplifies management of permissions. Users

can be easily reassigned from one role to another. Roles can

be granted new permissions and permissions can be revoked

from roles as needed.
Four conceptual models has been defined to understand

the RBAC. The relationship between these four models is

shown in Figure 1. 0RBAC , the base model. 1RBAC and

2RBAC both include 0RBAC ,but add independent

features to it. 1RBAC adds the concept of role hierarchies

(situations where roles can inherit permissions from other

roles). 2RBAC adds constraints (which impose restrictions

on different components of RBAC). 1RBAC and 2RBAC

are incomparable to one another. 3RBAC , includes

1RBAC and 2RBAC and, by transitivity, 0RBAC . A

general family of RBAC models called RBAC96 was
defined by Sandhu et al. The RBAC96 model [5] is a

comprised of four models: 0RBAC , 1RBAC , 2RBAC ,

3RBAC ..

Figure 1: Relationship among RBAC models

B. RBAC 96

Figure 2 illustrates the RBAC96 model. In Figure 2

a single headed arrow indicates a one to one relationship and

a double headed arrow indicates a many to many

relationship. The top half of the figure shows roles and

permissions in the system and the bottom half shows

administrative roles and administrative permissions.

Figure 2: RBAC96 model

The RBAC96 model has the following

components:

• Users : A user is a human being or an autonomous

agent.

• Roles : A role is a job function or job title within the

organization with some associated semantics regarding

the authority and responsibility. A role may be a

administrative role)(AR or regular role)(R (non-

administrative). It is required that AR must be disjoint

from R .

• Permission: Permission may be regular permission)(P

or administrative permission)(AP . Administrative

permissions control operations which modify the

components of RBAC, such as adding new users and

roles and modifying the user assignment and permission

assignment relations. Regular permissions on the other

hand control operations on the data and resources and

do not permit administrative operations. P must be

disjoint from AP .

• The user assignment)(UA : UA is many-to-many

relation. A user can be a member of many roles, and a

role can have many users.

Ramanuj Chouksey et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,255-260

© 2010, IJARCS All Rights Reserved 257

• Permission assignment)(PA : PA is many-to-many

relation. A role can have many permissions, and the

same permission can be assigned to many roles. There

is similarly a administrative permission assignment

)(APA relation.

• Role hierarchy)(RH : RH is a partially ordered

relation also written as ± , where yx ± signifies that

role x inherits the permissions assigned to role y.

Equivalently yx ± signifies a user who is a member of

x is also implicitly a member of y . There is similarly

a partially ordered administrative role hierarchy

)(ARH .

• Session : Session relates one user to possibly many

roles. The double-headed arrows from a session to R

and AR indicate that multiple roles and administrative

roles can be activated simultaneously. Each session is

associated with a single user, as indicated by the single-

headed arrow from the session to U . This association

remains constant for the life of a session. A user may

have multiple sessions open at the same time.

• Constraints : Constraints can apply to any components

of RBAC. An example of constraints is mutually

disjoint roles, such as purchasing manager and accounts

payable manager, where the same user is not permitted

to be a member of both roles.

• RBAC96 model components can be formalize as

follow:

• U is a set of users.

• R and AR are disjoint sets of roles and

administrative roles, respectively.

•)(ARRUUA ∪×⊆ , is a many-to-many user to

role, and administrative role assignment relation.

•)(RPPA ×⊆ and)(ARAPAPA ×⊆ , are

respectively, many-to-many permission to role

assignment and administrative permission to

administrative role assignment relations.

•)(RRRH ×⊆ and)(ARARARH ×⊆ , are

respectively, partially ordered role and

administrative role hierarchies.

• S is a set of sessions.

• user : ,US → is a function mapping each

session is to the single user)(isuser and is

constant for the session's lifetime.

• roles :
ARR

S
∪→ 2 is a function mapping each

session is to a set of roles and administrative roles.

• []{ }UArsuserrrrsroles ii ∈≥∃⊆)),(()'(|)('

so that session is has the permission

�)(
i

srolesr∈

[]{ }APAPArprrp ∪∈≤∃
′
),()'(| '

There are many components in RBAC96 model.

The issue of assigning users to role, assigning permission to

roles, and assigning role to role are separated through an

administrative model called ARBAC97 by R.Sandhu et al.

ARBAC97 model [6, 7] has three components: URA97

(user--role assignment) model. PRA97 (permission--role

assignment) model. RRA97 (role--role assignment) model.

We will mainly concerned upon URA97 model and PRA97

model.

C. URA 97 Model

URA97 model is used for managing user role

assignment defined in two steps : granting a user

membership in a role and revoking a user's membership.

URA97 uses the prerequisite condition to impose the

restriction on which users can be added to a role.

• A prerequisite condition is a boolean expression on roles

using the usual ∧ and ∨ of the form x and x¬ ,

where x is a regular role),.(Rxei ∈ .

• A prerequisite condition is evaluated for a user u by

interpreting x to be true if UAxuxx ∈∃)',()'(± ,

and x¬ to be true if UAxuxx ∉∀)',()'(± .

URA97 controls user-role assignment and

revocation can be defined by following relations
R

CRARassigncan 2_ ××⊆ .

R
ARrevokecan 2_ ×⊆ .

{ }),,,,(_ cbayxassigncan means that a

member of the administrative role x (or a member of an

administrative role that is senior to x) can assign a user that

satisfies the prerequisite condition y to be a member of

regular roles ba, or c .),(_ Yxrevokecan means that a

member of the administrative role x (or a member of an

administrative role that is senior to x) can revoke

membership of a user from any regular role Yy ∈ .

D. PRA 97 Model

PRA97 is concerned with role-permission

assignment and revocation. PRA97 is dual of URA97

model. The prerequisite condition is identical to that in

PRA97, except the boolean expression is now evaluated for

membership and non membership of a permission in

specified role. Permission-role assignment and revocation

can be defined by the following relations
R

CRARassignpcan 2_ ××⊆ .

R
ARrevokepcan 2_ ×⊆ .

{ }),,,,(_ cbayxassignpcan means that a

member of the administrative role x (or a member of an

administrative role that is senior to x) can assign a

permission that satisfies the prerequisite condition y to

regular roles ba, or c .),(_ Yxrevokepcan means that

a member of the administrative role x (or a member of an

administrative role that is senior to x) can revoke

membership of a permission from any regular role Yy ∈ .

IV MODEL CHECKING

Model checking [8] is an automatic technique for

verifying finite state systems. Specifications about the

Ramanuj Chouksey et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,255-260

© 2010, IJARCS All Rights Reserved 258

system are expressed as temporal logic formulas, and the

system is modeled as a state transition graph. The proof of

specification is entirely carried out by machine. In the case

specification does not hold, the model checker will construct

a counterexample suitable for failure diagnosis.

Definition 1 A finite state system can be described

as a tuple LsRSM ,,,= 0 where

• S =is a finite set of states.

•)(SSR ×⊆ transition relation satisfying

SS ∈∀ . RssSs ∈∈∃)',(.' .

• Ss ⊆0 set of initial states.

• L is a function that labels states with atomic

proposition from a given language.

We use NuSMV model checker [9, 10]. In the following

section, we discuss the NuSMV model checker which will be
later employed for the verification of a health care system.

E. Temopral Logic

Temporal logic is [11] an extension of classical

logic. It uses atomic propositions, boolean connectives and

some temporal operators. Temporal logic has been proposed

as applying both to the specification and verification of

program behavior, and to the specification of system

behavior. Two useful temporal logics are Linear Temporal

Logic (called LTL) and Computation Tree Logic (called

CTL).

F. Linear Temporal Logic

Linear--Time temporal logic [11], or LTL for short,

is temporal logic, with connectives that allow us to refer to

the future. It models time as a sequence of states, extending

infinitely into the future. This sequence of states is

sometimes called a computation path, or simply a path.

When a set of paths is considered, the LTL formula has to

be true on all paths.

LTL uses atomic propositions, the usual boolean

connectives →∨∧¬ ,,, and the following temporal

operators:

• X (neXt) requires that the property holds at the next

state of the path.

• G (Globally) requires that the property holds at every

state on the path.

• F (eventually or in the future) holds when a property is

true at some state of the path.

• U (Until) is a binary operator. Formula P U Q holds

when P is true until Q becomes true. Also, the second

argument must become true at some point.

• W (Weak-until) is a binary operator. Weak-until just like

an Until operator except that formula P W Q does not

require that Q is eventually satisfied along the path,

which is required by P U Q .

• R (Release) is a binary operator. Formula P R Q

requires that either Q is always true or it is true until

P becomes true. For example

LTL formula))((cbUaG ∧ would mean that

on every path either b or c is true at the current position or

a holds until either b or c becomes true.

• The prefix “non” is not a word; it should be joined to
the word it modifies, usually without a hyphen.

• There is no period after the “et” in the Latin
abbreviation “et al.”.

• The abbreviation “i.e.” means “that is”, and the
abbreviation “e.g.” means “for example”.

G. The NuSMV Model Checker

NuSMV stands for New Symbolic Model Verifier.

NuSMV is a symbolic model checker that can be used to

analyze temporal logic (LTL or CTL) specifications of

various systems. The system can be expressed in the

NuSMV modeling language. The system specifications are

expressed in temporal logic. NuSMV takes as input a text

consisting of a program describing a model and some

specifications (temporal logic formulas). It produces as a

output either the word true if the specification hold, or

generate a counter example for the model represented by

program. The analysis of the counter example is usually

impossible to do automatically and thus involves human

assistance. The counter example can help the designer to

find the errors in the design or in the model. Specifications

can be added in any module of the program. Each

Specification is verified separately.

The NuSMV modeling language allows the

representation of synchronous and asynchronous finite state

systems. The models consist of one or more modules. Every

model contains the main module, which can have references

to the other modules. The states of a finite state system are

described by the state variable values in NuSMV. Modules

can declare variable and assign to them. With the help of init

function, we can also set the initial values for state variables.

It is also possible to define variables which do not change

over time and variables which are completely unrestricted.

The transition relation of a finite state system is represented

as next commands in the NuSMV model. If no next is

specified for a variable, then the variable can evolve

nondeterministically.

In order to specify asynchronous systems, a process

statement can be used. For a asynchronous systems (having

more than one component), it is not required that each

component be eventually executed, this is ensured through

fairness conditions. NuSMV allows to specify fairness

constraints. Thus, in order to ensure that an asynchronous

process is eventually executed add the following condition

to the module: FAIRNESS running.

IV. CASE STUDY HEALTH CARE SYSTEM

The policy for our health care system is based on

the policy for a small aged-care facility [12] and with some

aspects of the electronic health records policy [13]. We use

RBAC96 style role based access control approach for our

health care system and model checking approach to verify

the properties. We write a smv program to describe the

model and use LTL and CTL logic to specify the properties.

Our health care system has Patient, Doctor, Nurse, and

Manager roles. Manager role is an administrative role,

decision for assigning this role to the user is taken by central

Ramanuj Chouksey et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,255-260

© 2010, IJARCS All Rights Reserved 259

authorities. Role hierarchy relationship between these roles

are as follow:

We use USER() module to define the initial role

membership of the user. For example VAR Ram : array 1..4

of Patient, Employee, Manager, Nurse, Doctor, NoRole;

ASSIGN init(Ram[1]):= Employee; init(Ram[2]):= NoRole;

init(Ram[3]):= NoRole; init(Ram[4]):= NoRole;

next(Ram[1]):= Ram[1]; next(Ram[2]):= Ram[2];

next(Ram[3]):= Ram[3]; next(Ram[4]):= Ram[4]; where

entry in Ram[1] implies that whether Ram is an Employee

or Patient or no role is assigned to him, entry in Ram[2]

implies that whether he is Manager or not, entry in Ram[3]

implies that whether he is Doctor or not, entry in Ram[4]

implies that whether he is Nurse or not. The above code

defines that initially Ram is only Employee.

Each role has some permissions, whenever some

role is assigned to user, permissions associated with role

applies to user. Permissions associated with role can be

defined using permission assignment)(PA relation.

),(rpPA means that role r has permission P . In our

health care system permission associated with roles are as

follow:

PA (Doctor, View_OldMedicalRecords)

PA (Doctor, View_RecentMedicalRecords)

PA (Doctor, Add_RecentMedicalRecords)

PA (Doctor, View_Prescriptions)

PA (Doctor, Add_Prescriptions)

PA (Doctor, View_PrivateNotes)

PA (Doctor, Add_PrivateNotes)

PA (Manager, View_OldMedicalRecords)

PA (Manager, View_RecentMedicalRecords)

PA (Manager, Add_RecentMedicalRecords)

PA (Manager, Access_PatientPersonalInfo)

PA (Nurse, View_OldMedicalRecords)

PA (Nurse, View_RecentMedicalRecords)

PA (Nurse, Add_ProgressNotes)

PA (Nurse, View_CarePlan)

PA (Patient, (View_OldMedicalRecords)

PA (Patient, (View_RecentMedicalRecords)

PA (Patient, View_Prescriptions)

PA (Patient, View_Bills)

A. Modeling Role Assignment and Revocation in

SMV

Our Health care system has following ARBAC

policy related to role assignment and revocation:

assigncan_ (Manager, true, Employee)

assigncan_ (Manager, Employee, Nurse)

assigncan_ (Manager, Employee, Doctor)

revokecan_ (manager, Employee, Nurse, Doctor)

The above policies say that Manager can assign a

Employee role to any user and can assign the role of Doctor

or Nurse to Employee. Manager can also revoke the

Employee, Doctor, Nurse role.

ROLE_ASSIGNMENT(USER) module is used for

user role assignment in our smv program which takes the

instance of USER() module as an argument. For example

following code express that Manager can assign Nurse role

to Ram if Ram is an Employee. next(USER.Ram[4]) :=

case (USER.Ram[1] = Employee) (USER.Ram[2] =

Manager | USER.John[2] = Manager | USER.Tom[2] =

Manager) : Nurse; 1 : USER.Ram[4]; esac;

ROLE_REVOKE(USER) module is used for user role

revocation in our smv program which takes the instance of

USER() module as an argument. For example following

code express that Manager can revoke the Nurse role from

Ram.

next(USER.Ram[4]) := case (USER.Ram[2] =

Manager | USER.John[2] = Manager | USER.Tom[2] =

Manager) : NoRole; 1 : USER.Ram[4]; esac;

B. Modeling Permission Assignment and

Revocation from Users in SMV

C. PERMISSION_ASSIGNMENT module is

defined to assign permission to users in our smv

program. For example:

VAR View_OldMedicalRecords : array 1..3 of

Assign, NoAssign; ASSIGN Patient | USER.Ram[2] =

Manager | USER.Ram[3] = Doctor | USER.Ram[4] = Nurse)

: Assign; 1 : NoAssign; esac;

 where View_OldMedicalRecords[1] implies that whether

Ram has permission to view old medical records or not. Above

code describes that if Ram is Patient or Manager or Doctor or

Nurse then he is eligible to view the Old medical records.

Whenever these roles are revoked from Ram then permission

are revoked from Ram in our smv program as follow:

next(View_OldMedicalRecords[1]) := case

 (USER.Ram[1] = Patient | USER.Ram[2] = Manager |

 USER.Ram[3] = Doctor| USER.Ram[4]) = Nurse : Assign;

1 : NoAssign; esac;

D. Specifying Properties in LTL/CTL

We specify the property of our health care system

using LTL and CTL temporal logic in our smv program. The

properties of our health care system are as follow:

Property1.

Is every Doctor an Employee? For our health care system

this property is true since this follows directly from the role-

hierarchy. We can express this in LTL as follow: G

(USER.Ram[3] = Doctor -> USER.Ram[1] = Employee);

Property2.

Can a user may be a member of Doctor and Nurse role

simultaneously? For our health care system this property is

true since the policy does not enforce disjointness of these

roles. We express this in CTL as follow: EF (USER.Ram[3]

= Doctor USER.Ram[4] = Nurse);

Property3.

Can a user have Add_ProgressNotes and Add_PrivateNotes

permission simultaneously? For our health care system this

property is true because a user can be a member of Doctor

and Nurse role and these permission is assigned to

Doctorand Nurse. We express this in CTL as follow:

EF (PERMISSION_ASSIGNMENT.Add_ProgressNotes[1]
= Assign & PERMISSION_ASSIGNMENT

.Add_PrivateNotes[1] = Assign

Ramanuj Chouksey et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,255-260

© 2010, IJARCS All Rights Reserved 260

Property4.
Is every user with permission View_RecentMedicalRecords

a member of some role in { }PatientDoctor, ? This

property is false for our health care system since nurse has

also this permission. We express this in LTL as follow: G

((PERMISSION_ASSIGNMENT.View_RecentMedicalRec

ords[1] = Assign) ->(USER.Ram[4] = Doctor |

USER.Ram[1] = Patient));

E. VI. RESULTS

In the previous section, we described the smv

program and properties of our health care system. We

verified the properties using NuSMV model checker.

NuSMV model takes smv program as a input, verifies each

property separately and returns true if property hold

otherwise it gives the counter example. In our health care

system model the no. of reachable states are 1989 out of
642 states. In Table 1 we summarize the result obtained for

different properties and the time taken to verify the property.

The computer used is a laptop running widows vista on a

intel dual core 2 GHz and 3GB RAM.

Table 1: Results of Verification

Property Time taken

(in seconds)

Result

Property1 0.1 True

Property2 0.1 True

Property3 0.1 True

Property4 0.8 False

VII CONCLUSION

In this paper we have illustrated different access

control techniques and models that have been proposed in

the literature. The concept of role is associated with the

notion of functional roles in an organization, hence RBAC

models provide support for expressing organizational access

control. RBAC model are suitable for handling access

control requirements of various organizations and service-

based applications such as e-commerce, Loan origination

process etc. ARBAC97 model controls changes to the user-

role assignment, the permission-role assignment and the role

hierarchy relation. We have taken health care system as a

case study. We applied the RBAC technique to design the

model of our health care system. We applied model

checking technique to verify the specification of our health

care system. We used NuSMV as model checker. Using a

case study of a health care system, we have shown how an

application can be specified and verified with the models in

NuSMV via model checking. In our future work we would

like to verify more complicated system where role hierarchy

can be changed and two users for the same role having

different permissions.

REFERENCES

[1] P. Samarati and S. de Capitani di Vimercati, “Access

control: Policies, models, and mechanisms,” Lecture

Notes in Computer Science, vol. 2171, pp. 137–196,

2001.
[2] V. C. Hu, D. Ferraiolo, and D. R. Kuhn, “Computer

security - access control,” NIST Interagency Report

7316, Tech. Rep., 2006.

[3] M. Harrison, W. Ruzzo, and J.Ullman, “Protection in

operating systems,” Communication of the ACM, vol.

19, no. 8, pp. 461–471, 1976.

[4] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C.
harles E. Youman, “Role-based access control models,”
IEEE Computer, vol. 20, no. 2, pp. 38–47, Feb. 1996.

[5] R. S. Sandhu, “Rationale for the RBAC96 family of

access control models,” in ACM Workshop on Role-

Based Access Control, 1995.

[6] R. S. Sandhu, V. Bhamidipati, and Q. Munawer, “The
ARBAC97 model for role-based administration of
roles,” ACM Trans. Inf. Syst. Secur, vol. 2, no. 1, pp.
105–135, 1999.

[7] R. S. Sandhu and V. Bhamidipati, “Role-based

administration of user-role assignment: The URA97

model and its oracle implementation,” Journal of

Computer Security, vol. 7, no. 4, 1999.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. Cam-bridge, Massachusetts: The MIT Press,
1999.

[9] R. Cavada, R. Cimatti, E. Olivetti, and M. Pistore,
“NuSMV 2.1 user manual,” jun 2004.

[10] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M.

Roveri, “NUSMV: A new symbolic model checker,”

STTT, vol. 2, no. 4, pp. 410–425, 2000.

[11] M. Huth and M. Ryan, Logic in Computer Science, 2nd
ed. Cambridge University Press, 2004.

[12] M. Y. Becker, “A formal security policy for an NHS
electronic health record service,” Tech. Rep., Mar.
2005.

[13] R. S. Sandhu and V. Bhamidipati, “Role-based

administration of user-role assignment: The URA97

model and its oracle implementation,” Journal of

Computer Security, vol. 7, no. 4, 1999.

