
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*����������

© 2010, IJARCS All Rights Reserved 51

�����������	
��
�	�

Transformation by Modeling MOF QVT 2.0: From UML to MVC2 Web model

Redouane Esbai*
MATSI Laboratory, EST

Mohammed First University

Oujda, Morocco

es.redouane@gmail.com

Ibtissam Arrassen�
LARI Laboratory, Faculty of

sciences

Mohammed First University,

Oujda, Morocco

arrassen@yahoo.com

Mimoun Moussaoui
MATSI Laboratory, EST

Mohammed First University,

Oujda, Morocco

moussaoui@est.univ-oujda.ac.ma

Mohammed Erramdani
Department of Management, EST

Mohammed First University

Oujda, Morocco

mramdani69@yahoo.co.uk

Samir Mbarki
Department of Computer Science,

Ibn Tofaïl University,

Kenitra, Morocco

mbarkisamir@hotmail.com

Abdelouafi Meziane
Department of Mathematics

Mohammed First University,

Oujda, Morocco

abdelouafi_meziane@yahoo.fr

Abstract: The continuing evolution of business needs and technology makes Web applications more complex in terms of development,

maintenance, and management. To cope with this complexity, several Frameworks have emerged. Given this diversity of solutions, the

generation of a code based on UML models has become a necessity. This paper presents the application of the MDA (Model Driven

Architecture) to generate, from the UML model, the Code following the MVC2 pattern (Model-View-Controller) using the standard MOF 2.0

QVT (Meta-Object Facility Model 2.0 Query-View-Transformation) as a transformation language. This standard defines the meta-model for the

development of model transformation. The transformation rules defined in this paper can generate, from the class diagram, an XML file

containing the Actions, the Forms, and JSP pages. This file can be used to generate the necessary code of a web application.

Keywords: MDA, model transformation, MVC 2, transformation rules, MOF 2.0 QVT, meta-model, OCL.

I. INTRODUCTION

In recent years many organizations have begun to
consider MDA as an approach to design and implement
enterprise applications. The key principle of MDA is the use
of models at different phases of application development by
implementing many transformations. These changes are
present in MDA, and help transform a CIM (Computation
Independent Model) into a PIM (Platform Independent
Model) or to obtain a PSM (Platform Specific Model) from
a PIM.

MVC2 is a programming scheme that takes into account
the entire architecture of a program. It categorizes the
different types of objects that make up the application into
three categories: The model representing the behavior of the
application, the design corresponding to the interface with
which users interact, and the Controller that supports event
management synchronization to update the model. This
pattern saves time for maintenance as well as upgrading and
greater flexibility to organize the development of different
developers (independent data, display and actions). Many
frameworks that implement the MVC2 pattern have
emerged; for instance: Struts [3], PureMVC [31], Gwittir
[16], SpringMVC [33] Zend [36], ASP.NET MVC2 [4].
Struts remains the most mature and highly trusted solution
among developers.

In articles [22] and [23], both source and target meta-
models have been developed. The first corresponds to a
specific PIM meta-model class diagram, and the second is a
PSM meta-model for MVC2 web application. The
development was done via RSM (Rational Software
Modeler) based on a programming approach. This means
that programming transformations models was done in the

same way as programming computer applications. This
paper aims to rethink the work presented in [22] [23].
However, we develop the transformation rules using the
“MOF 2.0 QVT” standard to generate an XML file which
contains actions, forms and JSP pages used to produce the
code for the target application, the advantage of this
standard is the bidirectional execution of transformation
rules.

This paper is organized as follows: related works are
presented in the second section, the third section defines the
MDA approach, and the fourth section presents the MVC2
model and its implementation as a framework, Struts in this
case. The transformation language MOF 2.0 QVT and the
language of OCL constraints are the subject of the fifth
section. In the sixth section, we present the UML and
MVC2 meta-models. In the seventh section, we present the
transformation rules using MOF 2.0 QVT from UML source
model to the MVC2 target model. The last section concludes
this paper and presents some perspectives.

II. RELATED WORK

A much relevant work on meta-modeling was completed
in 2007 [13] in which the authors have developed a meta-
model for web needs. This meta-model takes into account
concepts such as “use cases”. The authors have developed
transformation rules, but the main aim of this work was the
use of this meta-model as a CIM to turn it into a PIM and
then to a PSM.

Two other works followed the same logic and have been
the subject of two articles [11] [15]. A meta-model for Ajax
was defined using AndroMDA tool. The generation of Ajax
code has been illustrated by an application CRUD (Create,
Read, Update, and Delete) that manages people.

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 52

The authors of the article [21] show how to build JSP
pages and JavaBeans using the UWE [20], (UML-based
Web Engineering) and the ATL transformation language
[19].

The objective of the work presented in article [29] was
to generate a code for the DotNet application «Student
Nomination Management System».The method used is
WebML and the code was generated by applying the MDA
approach, but the creation was not done according to the
DotNet MVC 2 logic.

The work presented in article [2] aims at providing a
generic approach to automate the translation of conceptual
models’ integrity constraints to the relational context of the
MDA approach. To do this, the authors proposed a
transformational model based on the UML meta-model. The
rules of that transformation are described by the graphical
notation of QVT-Relations language.

The article [30] examined the safety aspects. A meta-
model was developed to integrate the roles of users to access
various pages of the Web application. Each page contains
navigation rules and each rule contains a decision (if, else if,
else).

Recently, a work [24] was conducted to model Web
MVC2 generation using the ATL transformation language.
This paper aims to rethink the work presented in articles
[22] [23], by applying the standard MOF 2.0 QVT to
develop the transformation rules aiming at generating the
MVC2 target model. It is actually the only work for
reaching this goal.

III. MODEL DRIVEN ARCHITECTURE (MDA)

In November 2000, OMG, a consortium of over 1 000
companies, initiated the MDA approach. The key principle
of MDA is the use of models at different phases of
application development. Specifically, MDA advocates the
development of requirements models (CIM), analysis and
design (PIM) and code (PSM).

The major objective of MDA is to develop sustainable
models; those models are independent from the technical
details of platforms implementation (J2EE, DotNet, PHP or
other), in order to enable the automatic generation of all
codes and applications leading to a significant gain in
productivity. MDA includes the definition of several
standards, including UML [37], MOF [25] and XMI [38].

IV. THE MVC2 PATTERN

The Model-View-Controller (MVC) design pattern is a
widely used software and was created in 1980 by Xerox
PARC for Smalltalk-80. Lately it has been recommended as
a model for J2EE by Sun. The model also won strong
popularity among PHP developers. The MVC pattern is a
useful addition to developer tools, whatever the language
used is.

The MVC pattern is a type of Design Patterns in the
"Structural Patterns' category. It is simple and very useful,
and can essentially build an application using three levels:
model, design and controller.

Fig. 1 shows the architecture of the MVC2 pattern. The
main feature of this pattern is to be composed of a single
Servlet control. This pattern distinguishes the business logic,
server-side processing and the display. Each component is
reusable and replaceable.

Figure 1. MVC2 Architecture

Based on this model many frameworks are designed to
help developers build the presentation layer of their web
applications. In the Java community, the Jakarta Struts
projects are the best examples.

A. The Struts Framework

The Struts project [3] is managed within the community
of Apache Software Foundation among the “Jakarta”
projects. The motivation of this project is to provide the Java
community with a framework based on the MVC2 design
pattern while using J2EE technologies standard: JSP /
Servlet, JavaBeans, XML.

However, Struts is not the only framework for managing
the presentation layer. Indeed, other frameworks have been
designed for the same goal, but Struts is the most mature.
The main advantage of Struts is the reduced complexity
compared to other frameworks of the same degree of power.

B. Architecture and functioning of Struts framework

The structure of the Struts framework derives from the
MVC2 model (see Fig. 2). In this model, there is a
controller, views and access to the model.

• Controller: The controller of the Struts framework is
responsible for making the link between the view and
model. It receives all client requests and redirects
them to specific actions. These correspondences
(mapping) are described in a configuration file,
“struts-config.xml”.

• View: The view is a set of JSP pages. To facilitate
construction, the Struts framework provides several
libraries of "tag".

• Model: According to the MVC2 pattern, the model is
independent from the controller. The Struts
framework does not impose any; instead,
technological choice is up to the developer (JDBC,
EJB, JDO, XML, etc) according to his needs.

Figure 2. Principle of operation of the Struts framework

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 53

The interaction between the three components is
managed by the main controller. In order to better to
understand the working of the framework, we retail the life
cycle of a HTTP request, schematized in fig. 2:

1- The customer sends his HTTP request to the
application. This request is taken in charge by the
main controller, in the ActionServlet case;

2- The request is redirected toward the adequate
controller;

3- The chosen controller does the treatment of the
request. A dialogue with business logic is started
when necessary;

4- The model provides the requested data;
5- The main controller is notified about the result of the

treatment. In case of success, data are encapsulated in
the JavaBeans (ActionForm) and then transmitted to
the JSP selected by the controller;

6- The JSP constructs the answer according to the
transmitted data;

7- The answer is sent to the browser.

V. THE TRANSFORMATIONS OF MDA MODELS

MDA establishes the links of traceability between the
CIM, PIM and PSM models thanks to the execution of the
models’ transformations.

The models’ transformations recommended by MDA are
essentially the CIM transformations to PIM and PIM
transformations to PSM.

A. Approach by modeling

Currently, the models’ transformations can be written
according to three approaches: The approach by
Programming, the approach by Template and the approach
by Modeling.

The approach by Modeling is the one used in the present
paper. It consists of applying concepts from model
engineering to models’ transformations themselves. The
objective is modeling a transformation, to reach perennial
and productive transformation models, and to express their
independence towards the platforms of execution.

Consequently, OMG elaborated a standard
transformation language called MOF 2. 0 QVT [26]. The
advantage of the approach by modeling is the bidirectional
execution of transformation rules. This aspect is useful for
the synchronization, the consistency and the models reverse
engineering [8].

Fig. 3 illustrates the approach by modeling. Models
transformation is defined as a model structured according to
MOF2.0 QVT meta-model. The MOF 2 0 QVT meta-model
express some structural correspondence rules between the
source and target meta-model of a transformation. This
model is a perennial and productive model that is necessary
to transform in order to execute the transformation on an
execution platform.

Figure 3. Approach by Modeling

B. MOF 2.0 QVT

Transformations models are at the heart of MDA, a
standard known as MOF 2.0 QVT being established to
model these changes. This standard defines the meta-model
for the development of transformation model. The QVT
standard has a hybrid character (declarative / imperative) in
the sense that it is composed of three different
transformation languages (see Fig. 4).

The declarative part of QVT is defined by 'Relations' and
'Core' languages, with different levels of abstraction.
Relations are a user-oriented language for defining
transformations in a high level of abstraction. It has a syntax
text and graphics. Core language forms the basic
infrastructure for the declaration part; this is a technical
language of lower level determined by textual syntax. It is
used to specify the semantics of Relations language in the
form of a Relations2Core transformation. The declarative
vision comes through a combination of patterns, source and
target side to express the transformation.

The imperative QVT component is supported by
Operational Mappings language. The vision requires an
explicit imperative navigation as well as an explicit creation
of target model elements. The Operational Mappings
language extends the two declarative languages of QVT,
adding imperative constructs (sequence, selection,
repetition, etc.) and constructs in OCL edge effect.

The imperative style languages are better suited for
complex transformations including a significant algorithm
component. Compared to the declarative style, they have the
advantage of optional case management in a transformation.
For this reason, we chose to use an imperative style
language in this paper.

Finally, QVT suggests a second extension mechanism
for specifying transformations invoking the functionality of
transformations implemented in an external language 'Black
Box'.

Figure 4. The QVT Structure

This work uses the QVT-Operational mappings language
implemented by SmartQVT [32]. SmartQVT is the first
open source implementation of the QVT-Operational
language. The tool comes as an Eclipse plug-in under EPL
license running on top of EMF framework. This tool is
developed by France Telecom R & D project partially
funded by the European IST Model Ware.

SmartQVT is composed of 3 components:

• QVT Editor: helps end users to write QVT
specifications.

• QVT Parser: converts the QVT concrete textual
syntax into its corresponding representation in terms
of the QVT metamodel.

• QVT Compiler: produces, from a QVT model, a
Java program on top of EMF generated APIs for
executing the transformation. The format of the input
is a QVT specification provided in XMI 2.0 in
conformance with the QVT meta-model.

Fig. 5 presents a scenario of minimal processing.

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 54

Figure 5. Transformation Scenario with SmartQVT tool

• The parser is called and gets as input a text file
containing a QVT code (qvtCode).

• The parser returns the model conforming to the QVT
metamodel.

• Then the returned model is passed to the compiler.

• Finally, we get a Java file implementing the
transformation (javaFile).

C. OCL (Object Constraint Language)

OCL has been proved be a useful ingredient in the
modeling, validation, and transformation of models. It can
be used to accurately describe the model constraints such as
invariants, pre and post-conditions, and make requests to the
system states. In addition, in the model transformation; it is
used to express queries for models, for example, to specify
the source objects in the transformations.

Currently, several tools of OCL exist, including ATL [1]
Dresden OCL Toolkit [12], Eclipse MDT OCL [27] KMF
[10], Ocle [9] …etc.

In MOF 2.0 QVT, OCL is extended to Imperative OCL
as part of “QVT Operational Mappings”. Imperative OCL
added services to manipulate the system states (for example,
to create and edit objects, links and variables) and some
constructions of imperative programming languages (for
example, loops, conditional execution). It is used in QVT
Operational Mappings to specify the transformations.

QVT defines two ways of expressing model
transformations; those are a declarative approach and an
operational approach.

The declarative approach is the “Relations” language
where transformations between models are specified as a set
of relationships that must hold for successful transformation.

The operational approach allows either defining
transformations using a complete imperative approach or
complementing the relational transformations with
imperative operations, by implementing relationships.

Imperative OCL adds imperative elements of OCL,
which are commonly found in programming languages like
Java. Its semantics are defined in [26] by a model of abstract
syntax. The complete abstract syntax ImperativeOCL is
shown in Fig. 6.

Figure 6. Imperative Expressions of ImperativeOCL

The most important aspect of the abstract syntax is that
all expression classes must inherit OclExpression.
OclExpression is the base class for all the conventional
expressions of OCL. Therefore, Imperative Expressions can
be used wherever there is OclExpressions.

VI. THE UML AND MVC2 META-MODELS

To develop the algorithm of transformation between the
source and target model, we present in this section, the
different meta-classes forming the UML source meta-model
and the MVC2 target meta-model. The meta-model source
structure simplified UML model based on a package
containing the data types and classes. These classes contain
properties typed and characterized by multiplicities (upper
and lower). The classes contain operations with typed
parameters. Fig. 7 shows the source meta-model:

Figure 7. Simplified UML Meta-model

Fig. 8 illustrates the first part of the target meta-model.
This meta-model is a simplified diagram of relational
databases.

It consists of several tables, themselves composed of
typed columns.

Figure 8. Simplified meta-model of a relational database

Fig. 9 illustrates the second part of the target meta-
model. This is the business model of the application to be
processed. In our case, we opted for components such as
Beans. We recall that Struts does not provide specific
classes.

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 55

Figure 9. Simplified meta-model of a modelPackage

Fig. 10 illustrates the third part of the target meta-model.
This meta-model illustrates the models that represent the
display of the application. In this model, the servlet calls the
execute () method on the instance of the class action. It
performs its processing and then calls the
mapping.Findforward () method with a return to the JSP
page specified.

Figure 10. Simplified meta-model of a viewPackage

Fig. 11 shows the fourth part of the target meta-model.
This meta-model is the package controller. This meta-model
illustrates models that represent the controller application.

The controller is responsible for receiving applications
sent by the client, with the invocation of the class action. It,
thus, interacts with the business model and coordinates with
the display by sending it to the client.

Figure 11. Simplified meta-model of a controllerPackage

For more information, articles [22] and [23] detail out
this part.

VII. THE PROCESS OF TRANSFORMING UML

SOURCE MODEL TO MVC2 TARGET MODEL

(STRUTS)

CRUD operations (Create, Read, Update, and Delete)
are most commonly implemented in all systems. That is why
we have taken into account in our transformation rules these
types of transactions. In [22], it was implemented that read
operation, however, our work aims to implement all CRUD
operations.

We first developed ECORE models corresponding to our
source and target meta-models, and then we implemented
the algorithm using the transformation language QVT
Operational Mappings. To validate our transformation rules,
we conducted several tests. For example, we considered the
class diagram (see Fig. 12). After applying the
transformation on the UML model, composed by the classes
Department, Employee and City (ville), we generated the
target model (see Fig. 16).

Figure 12. UML instance model

A. The transformation rules:

Fig. 13 illustrates the first part of the transformation
code of UML source model to the MVC2 target.

Figure 13. The transformation code UML2Struts

The transformation uses as input a UML type model,
named umlModel, and as output a STRUTS type model
named strutsModel.

The entry point of the transformation is the 'main'
method. This method makes the correspondence between all
elements of type UmlPackage of the input model and the
elements of type StrutsProjectPackage output model.

The objective of the second part of this code is to
transform a UML package to Struts package, creating an
item such 'View ' package and 'Controller' package. It is to
turn each class in UML package, into JSP in the View
package, and into Action in the Controller package making
sure to give names to different packages.

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 56

Figure 14. The mapping class2view and Operation2JspPage

The methods presented in Fig. 14 means that each
operation in a class corresponds to JSP page.

Figure 15. The mapping class2action

The method presented in Fig. 15 means that each class
corresponds to one or more actions as the name and type of
operations which contains it.

B. Result

The first element in the generated PSM model is:
viewPackage that contains the nine JSPs, namely
DisplayVillePage.jsp, DisplayDepartementPage.jsp,
DisplayEmployePage.jsp, CreateVillePage.jsp, Create-
DepartementPage.jsp, CreateEmployePage.jsp, UpdateVille
Page.jsp, UpdateDepartementPage.jsp and UpdateEmploye-
Page.jsp. Since the operation of the removal requires any
form, we'll go to the controllerPackage element, which
contains a single element ActionMapping.
The latter contains eighteen actions whose names are
respectively DisplayXAction, CreateXAction, UpdateX-
Action, RemoveXAction, CreateXEndAction, UpdateX-
EndAction, where X should be replaced by City(Ville) by
Department, and Employee. Operations for creation and
update, add forms to enter new values. For this reason, we
add and CreateXEndAction UpdateXEndAction.

For each element, for example, 'DisplayDepartement-

Action' contains two elements: the 'attribute' element

indicating the form entered in this action is the ActionForm

'DisplayDepartementForm', and “Forwards” element with

“forward” attribute 'DisplayDepartementPage.jsp. The

Action element 'DisplayVilleAction' contains only one

'Forwards' element with 'forward ' attribute DisplayVille-

Page.jsp. The remaining actions follow the same principle.

Figure 16. Generated PSM MVC2 Web model

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we applied the MDA to generate the
MVC2 code web application based on UML class diagram.
This involves applying the approach by modeling and using
MOF 2.0 QVT as a transformation language. The
transformation rules were developed to browse the class
diagram and generate, through these rules, an XML file
containing all the actions, forms and JSP pages. This file can
be used to produce the necessary code to the target
application. The transformation algorithm handles all CRUD
operations. In addition, it can be reused for all kinds of
methods represented in the class diagram source.

Moreover, this work can be complemented by advanced
features of Web applications. For example, we can provide
some user interface as well as the ability to incorporate other
features: the persistence of objects in relational database
(Hibernate) and dependency injection (Spring) to produce a
complete web application according to the n-tier
architecture. This is the subject of a work in finalization
phase.

IX. REFERENCES

[1] Allilaire, F., Bézivin, J., Jouault, F., and Kurtev, I., Atl -
eclipse support for model transformation. In
Proceedings of the Eclipse Technology eXchange

Redouane Esbai et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,51-57

© 2010, IJARCS All Rights Reserved 57

workshop (eTX) at the ECOOP 2006 Conference,
Nantes, France, 2006.

[2] Amen, B., Abdelaziz, A., Samir, B., Transformation des
contraintes d'intégrité - Des modèles conceptuels vers le
relationnel. INFORSID 2007, pages 398-415.

[3] Apache Software Foundation: The Apache Struts Web
Application Software Framework
(http://struts.apache.org).

[4] ASP.NET MVC site http://www.asp.net/mvc/

[5] Blanc, X., MDA en action : Ingénierie logicielle guidée
par les modèles (Eyrolles, 2005).

[6] Caron, P-A., Spécialisation d'un environnement de
conception de systèmes flexibles aux Environnements
Informatiques pour l'Apprentissage Humain (Mémoire
de DEA, Université des Sciences et Technologies de
LILLE, 2003).

[7] Cook, S., Domain-Specific Modelling and Model
Driven Architecture. MDA Journal, pp. 1-10, 2004.

[8] Czarnecki, K., Helsen, S., Classification of Model
Transformation Approaches, in online proceedings of
the 2nd OOPSLA’03 Workshop on Generative
Techniques in the Context of MDA. Anaheim, October,
2003.

[9] Dan, C., OCLE-Team, Object Constraint Language
Environment 2.0, 2008, http://lci.cs.ubbcluj.ro/ocle/,
2008.

[10] Dave, A., Octavian, P., The Kent Modeling Framework
(KMF), University of Kent, 2005,
http://www.cs.kent.ac.uk/projects/ocl.

[11] Distante, D., Rossi, G., Canfora, G., Modeling Business
Processes in Web Applications: An Analysis
Framework. In Proceedings of the The 22nd Annual
ACM Symposium on Applied Computing (Page: 1677,
Year of publication: 2007, ISBN: 1-59593-480-4).

[12] Dresden-OCL-Team. Dresden OCL Toolkit, 2008,
http://dresden-ocl.sourceforge.net.

[13] Escalona, M-J., Koch N., Metamodeling the
Requirements of Web Systems. Lecture Notes in
Business Information Processing. Vol. 1, ©Springer, pp.
267-282, August 2007.

[14] Favre, J-M., Towards a Basic Theory to Model Driven
Engineering. Workshop in Software Model
Engineering (Year of publication: 2004).

[15] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and
Generating AJAX Applications: A Model-Driven
Approach. Proceeding of the7th International Workshop
on Web-Oriented Software Technologies, New York,
USA (Page: 38, Year of publication: 2008, ISBN: 978-
80-227-2899-7)

[16] Gwittir Source Web Site
http://code.google.com/p/gwittir/

[17] Hibernate Framework (http://www.hibernate.org/)

[18] Hunter, J., Crawford, W., Java Servlet Programming
(O’Reilly, 2001).

[19] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., ATL: A
model transformation tool. Science of Computer
Programming-Elsevier Vol. 72, n. 1-2: pp. 31-39,
2008.

[20] Koch, N., Transformations Techniques in the Model-
Driven Development Process of UWE, Proceeding of
the 2nd International Workshop Model-Driven Web
Engineering, Palo Alto (Page: 3 Year of publication:
2006 ISBN: 1-59593-435-9).

[21] Kraus, A., Knapp, A., Koch N., Model-Driven
Generation of Web Applications in UWE. Proceeding of
the 3rd International Workshop on Model-Driven Web
Engineering, CEUR-WS, Vol. 261, 2007

[22] Mbarki, S., Erramdani, M., Toward automatic
generation of mvc2 web applications, InfoComp -
Journal of Computer Science, Vol.7 n.4, pp. 84-91,
December 2008, ISSN: 1807-4545.

[23] Mbarki, S., Erramdani, M., Model-Driven
Transformations: From Analysis to MVC 2 Web Model,
International Review on Computers and Software
(I.RE.CO.S.), Vol. 4. n. 5, pp. 612-620,
September 2009.

[24] Mbarki, S., Rahmouni, M., Erramdani, M.,
Transformation ATL pour la génération de modèles Web
MVC 2, 10e Colloque Africain sur la Recherche en
Informatique et en Mathématiques Appliquées,
Theme5:Information Systems, CARI 2010.

[25] Meta Object Facility (MOF), version 2.0, January 2006,

 http://www.omg.org/spec/MOF/2.0/PDF/

[26] Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT), Version 1.1,
December 2009.

 http://www.omg.org/spec/QVT/1.1/Beta2/PDF/

[27] MDT-OCL-Team. MDT OCL, 2008.
http://www.eclipse.org/modeling/mdt/?project=ocl.

[28] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[29] Nasir, M.H.N.M., Hamid, S.H., Hassan, H., WebML
and .NET Architecture for Developing Students
Appointment Management System, Journal of applied
science, Vol. 9, n. 8, pp. 1432-1440, 2009.

[30] Oberortner, E., Vasko, M., Dustdar S., Towards
Modeling Role-Based Pageflow Definitions within Web
Applications, Proceeding of the 4th Model Driven Web
Engineering Workshop (Page: 1 Year of publication:
2008 ISBN: 978-3-642-01647-9s).

[31] Puremvc framework (http://puremvc.org/).

[32] SmartQVT documentation Copyright © 2007,
Copyright(c) France Telecom.
http://smartqvt.elibel.tm.fr/doc/index.html

[33] Spring Source Web Site (http://www.springsource.org/).

[34] The Model View Controller Framework for PHP Web
Applications (http://www.phpmvc.net).

[35] The Apache Cocoon Project. (http://cocoon.apache.org).

[36] Zend Framework (http://framework.zend.com/).

[37] UML Infrastructure Final Adopted Specifcation, version
2.0, September 2003, http://www.omg.org/cgi-
bin/doc?ptc/03-09-15.pdf

[38] XML Metadata Interchange (XMI), version 2.1.1,
December 2007, http://www.omg.org/spec/XMI/

