
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4953
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 202

ISSN No. 0976-5697

A SHARED MEMORY BASED IMPLEMENTATION OF NEEDLEMAN-WUNSCH
ALGORITHM USING SKEWING TRANSFORMATION

Vibha Patel

Information Technology Department
VGEC Chandkheda,
Ahmedabad, India

Krunal Gandhi and Darshak Bhatti
Department of Computer Science and Engineering,

Nirma University,
Ahmedabad, India

Abstract: Among various algorithms for protein and nucleotide alignment, Needleman-Wunsch algorithm is widely accepted as it can divide the
problem into sub-problems. We present two parallel approaches of Needleman-Wunsch algorithm with single kernel and multi-kernel invocation
using skewing transformation which is used for traversing and calculation of dynamic programming matrix. We also compare these with
traditional CPU sequential approach which resulted in six fold performance improvement. Furthermore, we present same single kernel ideology
on shared memory which resulted in two fold performance improvement over non-shared memory approach.

Keywords: Skewing Transformation; CUDA; Single Kernel; Multi-Kernel; Shared Memory; lock-free synchronization

1. INTRODUCTION

Genomics is a course of study in the field of genetics

which deals with genomes. Advances in genomics can help
us to understand complex biological phenomenon which in
turn can help us in prognosis and diagnosis of various
diseases. Bioinformatics which is a part of genomics
combines various disciplines such as computer science,
statistics and mathematics to elucidate and analyze biological
data. In bioinformatics, sequence alignment is a method
which compares two or more sequences and finds nearly
identical areas or identical nucleotide of DNA, RNA or
Protein to find the similarities or relationship between two
given sequences. Many bio-informatics tasks like, predicting
biological function, constructing evolutionary trees, detecting
point mutations, classifying genes and proteins, secondary
and tertiary protein structure and other prognosis and
diagnosis methods depend upon successful alignment. If the
sequence length is small then it is possible to align sequences
by human effort. However, for longer sequences, it is
difficult to align manually. Hence, computational sequence
alignment algorithms are developed by researcher to deal
with longer sequences.

There are three main categories of computational
sequence alignment algorithms: (1) Global sequence
alignment [1] (2) Local sequence alignment [2] and (3)
Hybrid or Semi-Global sequence alignment [3]. Global
alignment method attempts to align every nucleotide and it is
usually used when sequence lengths are of approximately
same length. Local alignment is used when sequences are
unalike but are supposed to contain similar regions within
long sequence. On the other hand if end of a sequence
overlaps with the beginning of other sequence then hybrid
alignment is used because global alignment method attempts
to extend the alignment past the overlapping region.
Whereas, local alignment might fail to cover the whole
overlapping region.

Several computational algorithms are developed for the
sequence alignment problem. They generally use the
concepts of dynamic programming, heuristic algorithm and

probabilistic methods. From all the approaches, dynamic
programming based implementations are more time
consuming than heuristic based implementations. However,
dynamic programming based approach provides a more
accurate solution as compared to heuristic based methods.
Needleman-Wunsch and Smith-Waterman algorithms are
two widely used dynamic programming based approaches.
Needleman-Wunsch is used for global sequence alignment
and Smith-Waterman is used for local sequence alignment.
The detailed discussion of the algorithm used for extension
in shared memory implementation is presented in [5]. We
summarize the steps of the algorithm which are as follows:
1. Initialization: This involves construction of Dynamic

programming matrix (D) with N + 1 rows and M + 1
column. Where N and M are lengths of the sequences to
be aligned. We fill the first row and column initially
with distance from origin multiplied by GAP value.

2. Matrix Fill: Fill all other (i, j) cells from the values of
(i-1, j), (i, j-1) and (i-1, j-1). Initialize trace-back matrix
according to the selected value.

3. Trace-back: (M, N) cell contains the maximum score
and it is the cell from where we begin to trace-back. We
follow arrows determined in trace-back matrix and reach
the first cell. Hence, we get the path which represents
the best alignment. We also put the values of the GAP
according to the direction traversed in the matrix into the
new sequence that we generate during trace-backing.

At the end reverse both sequences to get final aligned

sequences.
With the advent of Compute Unified Device Architecture

[4] which is programming interface provided by Nvidia, use
of GPUs for general purpose programming has increased.
Here we try to utilize computing capabilities of GPU for non-
graphics bioinformatics application. Our work focuses on
parallelization of Needleman-Wunsch algorithm using
skewing transformation on CUDA enabled GPU. We also
present implementation of same approach using shared-
memory.

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 203

Global memory in GPU is an off-chip device memory
which is usually larger in size with life until the application
closes or it is freed explicitly. It is visible to all the threads
and blocks which have a pointer to the memory region.
Shared memory on the other hand is on-chip memory. Due to
high capabilities, it is usually smaller in size depending on
the device. The visibility of shared memory is restricted to
only threads within the same block. Shared memory is
magnitudes faster to access than global memory and acts like
a local cache shared among the threads of a block. Here we
devise a method to effectively utilize the shared memory for
our approach.

In section 2, we describe the approach for parallelizing
the algorithm using skewing transformation. In section 3, we
describe how to use CUDA enabled GPU to improve
performance and reduce the time for execution. In section 4,
we compare the performance of sequential CPU based
implementation with two parallel GPU based
implementations and shared memory implementation. We
show the effectiveness of our implementations in section 4.
In this paper we present a shared memory based approach.
The related work is presented in section 5 and then we
summarize our work.

2. PARALLEL APPROACH

Each value (i, j) in the dynamic programming matrix (D)

is dependent on three values: (i-1, j), (i, j-1) and (i-1, j-1).
The dependence relation of the matrix is shown in the Figure
1 and to execute this in parallel we need to calculate the
values in anti-diagonal order.

The row major order of calculation in each iteration is
shown in Table I. In first iteration only (1, 1) will be
calculated, in second iteration (1, 2) and (2, 1) will be
calculated in parallel, in third iteration (1, 3), (2, 2) and (3, 1)
will be calculated in parallel and so on. There is no scope for
(1, 1) and (8, 8) to be executed in parallel, as the value of
(8, 8) depends on (8, 7) and (7, 8).

It is evident from Table I that in the eighth iteration
maximum parallelism can be achieved. To calculate all the
values, we apply skewing transformation on the original
iteration space. After applying skewing transformation, the
original iteration space as shown in Figure 1(a), gets
transformed to the one shown in Figure 1(b). Each iteration
with same numbers indicates the elements which can be
executed in parallel. However, each parallel section
separated by dotted lines indicates requirement of
synchronization of the iteration space. The concept of loop
skewing and block synchronization is as discussed in [5].

Figure 1. Original and Transformed iteration space

A. Impementation Approaches
The parallel approach is implemented using both, lock-

based and lock-free mechanism as shown in Figure 2. We
briefly discuss the approaches in the following subsection.

1) Lock Based Approach: In lock-based synchronization
approach a global mutex variable is created to count the
number of thread blocks that reach synchronization point.
Mutex is incremented by 1 each time a block completes its
execution. Then the value of mutex is compared with the
target value repeatedly. After synchronizing each thread
block, execution can move to next phase. Here the value of
goal is set to number of blocks in the kernel when the barrier
is invoked first. This value is then incremented by N each
time barrier is invoked. This approach is easier and efficient
than resetting mutex each time after completion of a barrier
invocation because it reduces the number of instructions and
prevents conditional branching.

Table I: Initial Matrix

1 1,1
2 1,2 2,1
3 1,3 2,2 3,1
4 1,4 2,3 3,2 4,1
5 1,5 2,4 3,3 4,2 5,1
6 1,6 2,5 3,4 4,3 5,2 6,1
7 1,7 2,6 3,5 4,4 5,3 6,2 7,1
8 1,8 2,7 3,6 4,5 5,4 6,3 7,2 8,1
9 2,8 3,7 4,6 5,5 6,4 7,3 8,2
10 3,8 4,7 5,6 6,5 7,4 8,3
11 4,8 5,7 6,6 7,5 8,4
12 5,8 6,7 7,6 8,5
13 6,8 7,7 8,6
14 7,8 8,7
15 8,8

2) Lock Free Approach: In lock-free approach, the

mutex is incremented by an atomic function. This serializes
the incrementation of mutex variable, despite the fact that all
the operations are performed in separate blocks. Here we
implement lock-free synchronization without having atomic
operations. The concept behind this method is to dedicate a
sync variable to each individual thread block, so that each
block can track its sync status without committing the global
mutex variable, thus preventing dead lock.

Figure 2. Block Synchronization with CPU and GPU

Figure 3.
3) Shared Memory Approach: In our shared memory

approach first, we divide the dynamic programming matrix

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 204

(D) in chunks and then copy these chunks to shared memory.
After that skewing transformation is applied so that
computation can be done in parallel. The computation results
are then copied back to original dynamic programming
matrix. Reading and writing overhead is not significant over
here as shared memory is much faster than global memory.
We elaborate this approach in next section.

3. IMPLEMENTATION

After applying skewing transformation, we can

parallelize NW by multiple kernel invocations at the point of
block synchronization. The alternative is to use the single
kernel call implementation using block synchronization
approach. Here, each block in the GPU needs to synchronize
the threads using syncthreads(). The block synchronization
within single kernel call can use the methods described in
subsection 2A. We use Lock-free implementation of the
block synchronization as it gives better performance than
lock-based approach.

B. Non Shared (Global) Memory Implementation

In this implementation, the GPU kernel is launched with
selected number of threads per block. The number of blocks
is function of sequence length and number of threads per
block f(sequence_length, number_of_threads). To simplify
the process, we launch threads and blocks in only x direction.
The calculation involves comparison of both sequences;
hence we pass both the sequences to the kernel at launch
time. The dynamic programming matrix (D) and trace-back
matrix (T) is determined using Algorithm 1. It makes
dependent looping structure easier to parallelize, and hence
gives performance improvement when implemented on GPU.

The calculation of the dynamic programming matrix (D)
in a single block is shown in the Algorithm 2. The same logic
is applicable to all the blocks in the grid, while applying the
algorithm for large sequence length. In that case, we require
the use block_synchronization() instead of
thread_synchronization(). This block synchronization makes
use of lock-free approach as discussed in [5].

.
Algorithm 1: Parallel Needleman-Wunsch Algorithm

Input: Dynamic Programming Matrix (d_mat), Sequence 1
(d_seq1), Sequence 2 (d_seq2), No. of Threads/Block, No.
of Blocks
Output: Updated Dynamic Programming Matrix (d_mat)
thread_id = calculate_thread_id_in_block()
block_size = calculate_block_dim()
d_mat[thread_id] = thread_id * GAP
d_mat[thread_id * block_size] = thread_id * GAP
for i = 0 block_size do
 row = thread_id
 col = i – thread_id
 if thread_id ≤ i and row ≠ 0 and col ≠ 0 then

 left = d_mat[row * block_size + col - 1] + GAP
 top= d_mat[(row-1)*block_size + col] + GAP
 if d_seq1[row – 1] == d_seq2[col-1] then
 dia = d_mat[(row-1)*block_size+col–1] + MATCH
 else
 dia=d_mat[(row-1)*block_size+col-1] + MISMATCH
 d_mat[row*block_size + c] = max(t, top, dia)
thread_synchronization()

for j = 0 block_size do
 row = block_size – 1 – thread_id + j
 col = thread_id
 if thread_id ≤ block_size then
 left = d_mat[row * block_size + col – 1] + GAP
 top = d_mat[(row-1)*block_size + col] + GAP
 if d_seq1[row-1] = d_seq2[col-1] then
 dia = d_mat[(row - 1) * block_size + col – 1] +
 MATCH

 else
 dia = d_mat[(row – 1) * block_size + col – 1] +
 MISMATCH
 d_mat[row * block_size + c] = max(left, top, dia)
 thread_synchronization()
return

C. Shared Memory Implementation
As shared memory is very limited we need to use it

prudently. First we create a shared memory of 32 x 32 size.
Then we transfer dynamic programming matrix (D) in
chunks of 32 x 32 into shared memory. Here we apply the
single kernel lock free approach as discussed in previous
section. After computation resulting matrix is transferred
back to dynamic programming matrix. This process is
repeated until whole dynamic programming matrix (D) is
computed

 Figure 3: Original and Transformed Iteration space of
Shared Memory Approach

.
Algorithm 2: Dynamic Programming Matrix Calculation
(Shared Memory)

Input: Dynamic Programming Matrix (d_mat), Sequence 1
(d_seq1), Sequence 2 (d_seq2), No. of Threads/Block, No.
of Blocks
Output: Updated Dynamic Programming Matrix (d_mat)
bx = blocks_in_x_dimension
tx = threads_in_x_dimensions
ty = threads_in_y_dimension
beg = length(d_seq1) * 32 * bx
end = beg + length(d_seq1)
step = 32
for a = beg end do
 shared int s[32*32], t[32*32]
 shared char seq1[32], seq2[32]’
 sync_threads()
 /* Copy sequences from global to shared memory*/

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 205

 size = blocks_in_x_dim * grids_in_x_dim
 grid_size = grid_dim_x
 blk_size = block_dim_x
 blk_id = block_id_x
 thread_id = calculate_thread_id_in_block()
 block_size = calculate_block_dim()
 s[thread_id] = thread_id * GAP
 s[thread_id * block_size] = thread_id * GAP
 for i = 1 block_size do

 row = thread_id
 col = i – thread_id
 if thread_id ≤ i and row ≠ 0 and col ≠ 0 then
 left = s[row * block_size + col – 1] + GAP
 top = s[(row – 1) * block_size + col] + GAP
 if seq1[row – 1] = seq2[col – 1] then
 dia =s[(row–1)*block_size + col–1] + MATCH
 else
 dia=s[(row-1)*block_size+col-1] + MISMATCH
 s[row * block_size + col] = max(left, top, dia)
 sync_threads()
 d_mat[a + length(seq1) * ty + tx] = s[ty * 32 + tx]
for w = 0 32 do
 d_traceback[((n*32) + tx)*length(seq1)+(n*32) + w] =
 t[tx * 32 + w]
return

Shared memory is made up of 32 memory banks and it is

necessary to perform synchronization. We use a stride to
copy values in matrix as it does not lead to bank conflicts.
The algorithm of the same is shown in Algorithm 2.

As shown in the Figure 3, matrix is divided into sub
matrices of 32 x 32 and copied to shared memory for
computation. Arrows indicates the flow of execution.

4. EVALUATION AND DISCUSSION

In this section we present the evaluation results and

discuss them in detail. The execution of sequential version of
the code is verified with Intel Core i3 CPU with 6 GB of
RAM and parallel implementations are verified with Tesla
C2070 GPU containing 448 CUDA cores and 5376 MB of
global memory for storage. We also verified our approaches
with Intel Xeon CPU with 16 GB of RAM and parallel
versions are verified with Tesla K40c GPU containing 2880
CUDA cores and 12 GB of global memory storage. The
execution time of a program on the GPU consists of 3
different phases:

1) Time to launch the kernel on the GPU
2) Computation done on the GPU
3) Inter block GPU communication using Block

 Synchronization
A. Results

We compared the execution time of this algorithm using
three different approaches: Sequential (CPU), Parallel GPU
based implementation with multiple kernel invocation from
CPU and Parallel GPU based implementation with single
kernel invocation using lock-free block synchronization.
Comparison of the time taken for the execution by these
three methods is shown in Figure 4. Figure 5 shows the
comparison of time taken with different block size i.e. 128 x
128, 256 x 256, 512 x 512 and 1024 x 1024.

B. Discussion
As shown in Figure 4, it is evident that both parallel

implementation with single kernel invocation and multiple
kernel invocation perform better than the CPU based
sequential implementation. These results are compared with
different input sequence lengths. It is observed from the
graph that with the increase in sequence length the speedup
of both the parallel approaches increases.

Figure 5 shows the execution time comparison of GPU
implementation with different block sizes. From the figure it
is clear that if we increase the block size the performance
drops slightly. Non-coalesced memory access and increase in
page faults contributes in reduction of performance with the
increase in number of threads per block. The device
coalesced global memory loads the values into DRAM in
row-wise or column-wise manner and as we are accessing
the values anti-diagonally it results in increase in page faults
and mismatches during memory access. This leads to
performance drop and thus we obtain maximum performance
with block size of 128 x 128. This also depends on the GPU
architecture and memory access mechanism of the GPU,
causing different optimum block sizes for different GPUs.

Figure 6 shows the speed-up of parallel GPU based single
kernel invocation and multiple kernel invocation with respect
to sequential method on CPU with icc and Figure 7 shows
the speed-up of parallel GPU based single kernel invocation
and multiple kernel invocation over sequential
implementation compiled with g++ on CPU. GPU based
single kernel implementation with lock-free synchronization
gives the same speed-up as multiple kernel invocation with
CPU based block synchronization. As the sequence length
increases the speed-up also increases. We obtained speed-up
of ~5.5 for the sequence
length of 32k with g++ and 2 for sequence length of 32k with
icc. One observation which can be made from the
performance plot is increase in the input sequence length
results in increase in the speed-up gained.

As shown in Figure 6 and 7 single-kernel and multi-
kernel invocation give same performance hence we have
implemented only multi-kernel implementation using shared
memory. From Figure 9 it is apparent that shared memory
performs ~9 times better than sequential implementation
with g++ and of ~3 times better than sequential
implementation with icc for sequence length of 32k. Figure 8
shows that our shared memory implementation on GPU is
2.2 fold faster than non shared memory based
implementation.

On GPU device shared memory has bandwidth of 1.5
TB/s and global memory has bandwidth of 150 GB/s.
Theoretically this means that shared memory should perform
10 times faster but due to our execution flow it does not yield
that kind of results in actual scenario.

Suppose memory operation on global memory takes Tg
time and on shared memory it takes Ts time hence Tg =10 x
Ts. Now suppose there is matrix of 64 x 64. So it will require
64+64 Gap value fills. Now each value is compared for
match and mismatch. Hence

Total_Comparisons = 64 x 64 = 4096

As each cell (i, j) is dependent on (i-1, j), (i, j-1) and

(i-1, j-1). So,
Total_reads = 4096 x 3

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 206

The last total 4096 write operations will be performed to
fill whole matrix. Therefore incorporating all these results in
O(20736 x Tg). Now for shared memory we apply it on
submatrix of 32 x 32. Whole calculation is done as above and
we will have O(5184 x Ts).

In addition, we are reading pairs from global to shared
memory and writing the whole matrix back to global
memory when computed. Therefore our shared memory
execution will be O(5184 x Ts + 1088 x Tg). This is for one
submatrix, to compute whole matrix we have to compute 4
submatrix, consequently our execution will be O(20736 x Ts
+ 4352 x Tg).

Now as we know that Tg =10 x Ts putting these value we
get shared memory execution complexity as O(64256 x Ts)
and global memory execution complexity as O(207360 x Ts).
This means speed up of 3 times in an ideal situation. But due
to execution dependencies this algorithm does not produce
realistic results. In skewing transformation as the size
increases, more parallelization can be exploited which is
evident from results. Initially speed up is not much but as we
increase the sequence length it increases and we have got
speed up of 2.3 for sequence length of 32k.

5. RELATED WORK

Needleman-Wunsch [1] and Smith-Waterman [2] are two

well known dynamic programming based algorithms
developed in the 70s and early 80s to detect similarity
between a pair of DNA/protein sequences. BLAST [6] is the
most commonly used sequence alignment program for a pair
wise alignment. It is based upon the principle of hashing
small matching sequences and then extending the hash
matches to create high-scoring segment pairs until the
highest possible score is obtained. BLAST is faster than any
dynamic programming based approach. However, it does not
guarantee the optimal alignment of the query and database as
dynamic programming.

Figure 4: Execution time of CPU and GPU implementation

Figure 5: GPU (Shared Memory Execution time for varying

block size

 Figure 6: Speedup of Single Kernel/Multi-Kernel Non-
Shared

 GPU over CPU (icc)

Figure 7: Speedup of Single Kernel/Multi-Kernel Non-
Shared

 GPU over CPU (g++)

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 207

Figure 8: Speedup of Shared Memory over Non-Shared
Memory

Figure 9: Speedup of Shared Memory Multi-Kernel

CS-BLAST [7] a protein sequence search tool is an

extension of BLAST, which is based on context-specific
mutation probabilities. Several researchers have developed
parallel versions of the Smith-Waterman algorithm that are
suitable for Graphics Processing Units (GPUs) [8], [9], [10],
[11], [12]. Zheng et. Al. [13] introduced a metric based
approach to estimate the performance of compute-bound
GPU kernels with control flow divergence. The thread re-
grouping algorithms further make use of the metric based
value function.

An efficient GPU based implementation of Multiple
Sequence Alignment is given by Liu et. al. [14]. They
reformulated the compute intensive stage of CLUSTAL-W,
so that it suits the GPU architecture. It involves parallelizing
the Needleman-Wunsch algorithm. An efficient
implementation of Needleman Wunsch algorithm on
graphics processing unit is also presented in [15]. Our
approach differs from the one presented in [15] by the use of
lock free and lock based approaches for block
synchronization on GPU. Our approach for parallelizing the
Needleman-Wunsch algorithm differs by using skewing
transformation on the original data access pattern to exhibit
the inherent parallelism existing in the code.

A shared memory implementation of Needleman-
Wunsch is presented in [16] by Shivaram Venkataraman,

Reza Farivar, Harshit Kharbanda, Roy Campbell for pairwise
alignment. They have modified the original NW algorithm to
make it two pass process. In first pass original dynamic
programming matrix is divided into quadrants by computing
only boundary values of quadrants using original NW
algorithm and in second pass all these quadrants are
processed in shared memory simultaneously. The results are
very impressive.

Another shared memory approach presented by
Siriwardena and Ranasinghe in [17] is improvement over the
sequential approach up to 4.2 times. It uses blocking strategy
in minor diagonals which copies minor diagonal blocks in
shared memory and computes the results and copies back to
global memory. Here they have used barrier synchronization
in shared memory for threads. Our approach differs from this
with skewing transformation which changes iteration space
to improve performance in parallel.

6. CONCLUSION

In this research, we used CUDA enabled GPU to improve

the performance of the Needleman-Wunsch algorithm.
Although, the data level parallelism in Needleman-Wunsch
algorithm is low, the data dependencies are such that
skewing transformation technique is used to solve anti-
diagonal dependencies. Using this approach, we achieved a
speed-up of ~6 using multiple kernel GPU implementation as
compared to CPU based implementation. The single kernel,
lock-free block synchronization technique gave a speed-up of
6 over CPU based implementation. The speed-up increases
with the increase in the sequence length. Shared memory
implementation gave speed up almost double of our GPU
implementation for sequence length more than 12k. Our CPU
results of Intel C Compiler (icc) gave 3 times speed up
compared to CPU sequential code. This result clearly
acknowledges the effective use of GPU hardware for
computation.

REFERENCES

[1] S. B. Needleman and C. D. Wunsch, “A general method

applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of molecular biology, vol.
48, no. 3, pp. 443–453, 1970.

[2] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of molecular biology, vol.
147, no. 1, pp. 195–197, 1981.

[3] A. Layeb, S. Meshoul, and M. Batouche, “A hybrid method
for effective multiple sequence alignment,” in . IEEE
Symposium on Computers and Communications, 2009. ISCC
2009, pp. 970–975.

[4] “NVIDIA CUDA Programming Guide, Version 4.2.”
[Online]. Available:
http://developer.download.nvidia.com/compute/DevZone/docs
/html/C/doc/CUDA C Programming Guide.pdf

[5] A. Chaudhary, D. Kagathara, and V. Patel, “A gpu based
implementation of needleman-wunsch algorithm using
skewing transformation,” in Eighth IEEE International
Conference on Contemporary Computing (IC3), 2015, pp.
498–502.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of
molecular biology, vol. 215, no. 3, pp. 403–410, 1990.

[7] uller, A. Biegert, and J. Soding, “Discriminative
modelling of context-specific amino acid substitution

Vibha Patel et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,202-208

© 2015-19, IJARCS All Rights Reserved 208

probabilities,” Bioinformatics, vol. 28, no. 24, pp. 3240–3247,
2012.

[8] S. A. Manavski and G. Valle, “Cuda compatible gpu cards as
efficient hardware accelerators for smith-waterman sequence
alignment,” BMC bioinformatics, vol. 9, no. 2, p. 1, 2008.

[9] L. Ligowski and W. Rudnicki, “An Efficient Implementation
of Smith Waterman Algorithm on GPU Using CUDA, for
Massively Parallel Scanning of Sequence Databases,” in
Proceedings of the 2009 IEEE International Symposium on
Parallel & Distributed Processing, ser. IPDPS ’09, 2009, pp.
1–8.

[10] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of
the smith–waterman algorithm using single and multiple
graphics processors,” Journal of Computational Physics, vol.
229, no. 11, pp. 4247–4258, 2010.

[11] A. Khalafallah, H. F. Elbabb, O. Mahmoud, and A. Elshamy,
“Optimizing smith-waterman algorithm on graphics
processing unit,” in 2nd IEEE International Conference on
Computer Technology and Development (ICCTD), 2010, pp.
650–654.

[12] J. Li, S. Ranka, and S. Sahni, “Pairwise sequence alignment
for very long sequences on gpus,” International Journal of

Bioinformatics Research and Applications, vol. 10, no. 4-5,
pp. 345–368, 2014.

[13] Z. Cui, Y. Liang, K. Rupnow, and D. Chen, “An accurate gpu
performance model for effective control flow divergence
optimization,” in IEEE 26th International Symposium on
Parallel & Distributed Processing Symposium (IPDPS), 2012.
IEEE, 2012, pp. 83–94.

[14] uller-Wittig,
“Gpu-clustalw: using graphics hardware to accelerate multiple
sequence alignment,” in High Performance Computing - HiPC
2006, Springer, 2006, pp. 363–374.

[15] C. S. Khaladkar, “An efficient implementation of needleman
wunsch algorithm on graphical processing units,” Honours
Programme of the School of Computer Science and Software
Engineering, The University of Western Australia , 2009.

[16] R. Farivar, H. Kharbanda, S. Venkataraman, and R. H.
Campbell, “An algorithm for fast edit distance computation on
gpus,” in Innovative Parallel Computing (InPar), 2012,
IEEE, 2012, pp. 1–9.

[17] T. Siriwardena and D. Ranasinghe, “Accelerating global
sequence alignment using cuda compatible multi-core gpu,”
in The 5th IEEE International Conference on Information and
Automation for Sustainability (ICIAFs), 2010, pp. 201–206.

	1. INTRODUCTION
	2. PARALLEL APPROACH
	Impementation Approaches
	Lock Based Approach: In lock-based synchronization approach a global mutex variable is created to count the number of thread blocks that reach synchronization point. Mutex is incremented by 1 each time a block completes its execution. Then the value o...
	Lock Free Approach: In lock-free approach, the mutex is incremented by an atomic function. This serializes the incrementation of mutex variable, despite the fact that all the operations are performed in separate blocks. Here we implement lock-free syn...
	Shared Memory Approach: In our shared memory approach first, we divide the dynamic programming matrix (D) in chunks and then copy these chunks to shared memory. After that skewing transformation is applied so that computation can be done in parallel....

	3. IMPLEMENTATION
	Non Shared (Global) Memory Implementation
	Shared Memory Implementation

	4. EVALUATION AND DISCUSSION
	Time to launch the kernel on the GPU
	Computation done on the GPU
	Inter block GPU communication using Block
	Synchronization
	Results
	Discussion

	5. RELATED WORK
	6. CONCLUSION
	REFERENCES

