
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4839
Volume 8, No. 8,September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 732

 ISSN No. 0976-5697

SIGNIFICANCE OF SOFTWARE DEVELOPMENT MODELS
Rayan Dasoriya

Department of Computer Engineering
SVKM’s NMIMS Mukesh Patel School of Technology Management and Engineering

Mumbai, India

Abstract: With the evolution of different software development models over the past years, it became a topic of utmost interest to categorize and
segregate them depending upon the applications, advantages and disadvantages. There are various factors that affect the projects. They should
also be taken care of when we select a development model. Many software projects fail due to reasons like an unskilled developer, time limit,
poor quality, less user involvement and much more. Software development models should be selected wisely looking at the conditions and
quality of the developer, user, time and complexity of the project. All these factors play a vital role in the success of the project. Models can be
categorized as light weight models and heavy weight models. This paper discusses various models on different metrics with pros and cons of
each of them and also help us select an appropriate model depending upon the project.

Keywords:Software Development; SDLC; Waterfall model; Agile Model; Incremental model; Prototype model

I. INTRODUCTION

Software is a term whose definition has evolved over the
time. With the passing years, the definition of software was
changing. Some of the proposed changes were accepted and
some were rejected. After that, a definition was suggested
which gives us detail about software. It describes software as a
set of different functionalities [1]. These include:

• Set of programs/instructions that when executed
provide desired features, function and performance

• Data structure that enables the program to
manipulate the information adequately.

• Information in the form of hard copy and virtual
forms that describe the use and operations of
programs.

Unlike a physical system element, software is a logical
element. Further elements can be discovered to update the
definition of the software. It differs from the hardware in the
following manner:

• Rather than being manufactured, it is developed or
engineered.

• Software doesn’t deteriorate with time.
• Most of the software continue to be custom-built

rather than component based construction.
Software Development, on the other hand, comprises of

programming, documenting, testing and bug fixing in the
creation and maintenance of applications which in turn result in
a software product. It is a planned and structured process of the
development of the desired software from the conception to the
final manifestation.

The role of software applications resembles in different
fields which include banking, communication, marketing,
transportation, education, etc. The software product is usually
developed in a series called life cycle.

SDLC or Software Development Life Cycle [2] consists of
a series of steps for developing and designing a software
product efficiently. Different models provide different life
cycles for a project to be completed and this can be determined
depending upon various factors which include team size, cost,
time, risk management etc.

In the earlier days, a code was written and then debug. But
this approach was unsuccessful when it was implemented to
large projects. This led to the discovery of waterfall model.

This model constitutes of various stages from communication,
planning, modeling, construction and deployment. It is also
known as a classic life cycle. It suggests a sequential and
systematic approach for developing a software according to the
need of specification provided by the customer. This model is
useful when well define enhancements to the existing software
is to be made. It is used only when the requirements are well
defined and stable.

Another model is the spiral model [3] in which a software is
developed in a series of releases. In the earlier stage, the
versions of the product may be used as a prototype. Later on,
complete and more complex versions are released. In the spiral
model, as the iterations increase, we come near our target and
with subsequent passes in the spiral, we are progressively
improving our system. Risk is also considered as each
evolution is made. All the milestones that are achieved during a
spiral are noted down and it is referred as anchor point
milestones. This model can be applied to the software even
after it is delivered.

The incremental model applies linear sequences as the
calendar time progresses. Each deliverable sequences
increments in a similar manner as the evolutionary process flow
produces. The first increment is usually produces a core
product. All the basic requirements are mentioned but many of
the extra features are remain undelivered. The customer on
using the core product tells the developer upon certain changes
that are required and they are made over the time.

Most of the times, the customer defines general objectives
that are to be covered in the product but does not gives a brief
about the functionalities and features of the product. Also, the
developer can be unsure of the algorithm efficiency, OS
adaptability or human-machine interaction. In such conditions,
prototype paradigm is the best solution.

RAD or Rapid Application Development is a type of
incremental model. In this, the project is developed in mini
projects and then all of them are combined so that an efficient
system can be built up in parts.

Agile process model emphasizes on project agility. It is
relatively easier to make changes when the product is in
requirements gathering phase. It is a fast process. It requires
less documentation and the teammates coordinate quite well.

Rayan Dasoriya, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,732-736

© 2015-19, IJARCS All Rights Reserved 733

Over the past few years, many software projects have
failed. Not only small companies, even the big companies like

Microsoft have failed to deliver successful projects. For a
project to be claimed as successful, certain attributes should be
considered.

• Clear Requirements
• Proper planning and monitoring
• Proper technology and management
• User involvement
• Dealing with change
• Stakeholder satisfaction
• Sound project management
• Skilled resources
• Modest Execution
• Clear Business Objective
• Emotional Maturity
• Optimization

Following these practices will improve the success rates of
the project. But, even after following the best practices, many
software still fail. The reason behind the failure of such
software projects can be due to one or many of the following
reason:

• Frequent changing requirements
• Use of the wrong methodology
• Use of wrong technology
• Unmanaged risks
• Badly defined requirements
• Commercial pressures
• Inability to deal with project’s complexity
• Unrealistic project goals
• Poor communication among stakeholders
• Poor project management

The most referenced groups, the Standish Chaos [4] report,
provided the statistics of software project failures. They have
defined the success rate of software projects. The table for the
same is shown below:

Figure 1. Figures for project status

Another survey which conducted by them shows that how
the probability of success of a smaller project is much higher
than the larger ones. This was conducted from FY 2011-15.
The figures for the same are shown below:

Figure 2. Statistics for project status depending upon size

The failures of the software projects in 2007 by TCS (Tata
Consultancy Services) was reported as follows:

Figure 3. Reason for Failure

Another statistics of a research conducted by Oxford

University [5] (Saur and Cuthbertson, 2003) regarding the IT
projects success in 2003 is shown:

Figure 4. Oxford Univ. stats for IT Project

27% 31% 28% 29%

56% 50% 55% 52%

17% 19% 17% 19%

2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5

Successful Challenged Failed

2% 7%
17%6%

17%

24%

9%

26%

31%

21%

32%

17%

62%

16% 11%

S U C C E S S F U L C H A L L E N G E D F A I L E D

Grand Large Medium Moderate Small

62%

49% 47%
41%

33%

0%

10%

20%

30%

40%

50%

60%

70%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Successful Challenged Abandoned

Rayan Dasoriya, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,732-736

© 2015-19, IJARCS All Rights Reserved 734

All this statistics emphasizes the need for developing and
enhancing the software development process and that should be
done especially for the challenging process as they are
increasing. Most of the researchers have classified the
methodologies into two. One is heavy weight methodology and
the other is light weight methodology. This paper discusses
both the methodologies and their constituents in detail.

II. HEAVY WEIGHT METHODOLOGY

Heavy weight methodology [6] consists of a sequential
series of software development phases which include analysis,
design, implementation and testing. It mainly contains long
plan and design and documentation before starting the
development. Some of the well-known models, with their
advantages and disadvantages are presented below:

A. Waterfall Model
Waterfall model, also known as classic life cycle, is a well-

known and the most basic software development heavy weight
model developed in 1970. Although it’s an old one and needs
revision, it is still used for its simplicity. In this, next phase of
development begins if and only if the previous phase of
development is completed. It does not allow the process to go
backward. In another word, it is unidirectional. It is used only
in the case where the enhancements to the existing system is to
be made or when the proper requirements are known in well
advance. It acts as a baseline for future reference. The phases of
waterfall model are communication, planning, modeling,
construction, deployment. These are analogous to planning,
analysis, design, implementation, testing and maintenance.

1) Advantages

• Full and proper documentation
• Well-known and basic model
• Easy to measure project status
• Full planning is done at the beginning of the project

2) Disadvantages
• Less user involvement
• Takes long time to deliver the software system
• High amount of risk
• Not good for big projects
• Requirements may not be clearly known, especially

for applications not having existing (manual)
counterpart

• It is assumed that the requirements do not change
with time

B. Spiral Model
Spiral model is a combination of waterfall model and

prototyping model. The phases used in the spiral model are in
similar fashion to the one used in waterfall model in an iterative
manner. This software development model was introduced in
1988 to remove the shortcomings of the waterfall model which
includes changing requirements during the development. In
this, a new version is released at the end of each iteration. The
phases in his model are developed in a cycle known as a spiral.
It is mainly used for large projects where risk involvements and
requirements changing rates are high. Also, the whole project is
decomposed into smaller projects. The number of loops are not
fixed. It provides direct support for coping up with the project
risks and also the risk analysis is done through prototype
construction. After several iterations along the spiral, all the
risks are resolved.
1) Advantages

• Product is delivered shortly
• Suitable for large and complex projects

• Changing requirements is possible during construction
• Risk assessment is also carried out at the end of each

spiral
• High user involvement in comparison with the

waterfall model
• Initiation of the project can take place without

knowing the complete requirements.
• Functionalities can be added later on.

2) Disadvantages
• Cost expenses are high due to varying requirements
• Need an expert to deal with the changing requirements
• Not good for small projects
• Risk analysis is difficult

C. Incremenetal Model
 The introduction of incremental model was aimed to

overcome the shortcomings and problems in the waterfall
model. The purpose of this model is to introduce a software
system through a set of iterative cycles and with each cycle, we
will get a portion of the system which is known as an
increment.

 This model aims at developing big systems by breaking it
down to small ones and dealing with each of this segment as an
independent project. This will reduce the risk involvement in
our project. It is useful for product development where
developers define scope and features to serve many customers.
For example database products, payroll or accounting
packages. Also, early version with limited feature important to
establish market and get customer feedback. Consider an
example. Suppose we want to develop a word processing-
software using the incremental model. Then the first increment
that would be delivered will include basic file management,
document production and editing functions. Second increment
will consist of more sophisticated document editing and
production capabilities. The third increment could be spelling
and grammar checking and advanced page layout can be the
fourth increment. In this way, a software can be deployed using
the incremental model.

1) Advantages
• Early problem discovery
• Any change in requirement can be handled between

the increments
• Easier to test
• Quick delivery of the working system

2) Disadvantages
• Requires user involvement
• Expensive
• Heavy documentation required

III. LIGHT WEIGHT METHODOLOGY

Light weight methodology [7] gives developers chance to
construct software rapidly and efficiently with less
documentation and more responsive to the change in
requirements. It lays emphasis on short cycles, encourages user
involvement and delivers a working model at the end of the
cycle in less time. Some of the well-known light weight
methodologies for software development with its advantages
and disadvantages are discussed below:

A. Prototyping model
Most of the times while developing a software, the

customer mentions the general objective of the project keeping
aside the detailed requirements, functions and features. In such
cases, the developer might develop a prototype or model and in
that model, the algorithms might not be appropriate and the OS
efficiency might have been ignored. In total, only a working

Rayan Dasoriya, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,732-736

© 2015-19, IJARCS All Rights Reserved 735

model with a quick design is delivered in the beginning. Users
use the model and ask for certain changes and then the cycle
continues. If that prototype is a good start, then they carry on
with the same model and make improvements and add further
functionalities. In this, the initial model only focusses on how
the software will be visible to the end users and after
evaluating, the back end process starts. It involves various steps
such as determining the basic requirements including desired
input and output information, developing an initial prototype,
reviewing the prototype by the user and then revising and
enhancing it. In the initial stages, reliability and security
concerns are ignored. By using the feedback from the user, the
further model is developed based on the requirements.
Negotiation is done then on the basis of the scope of the
functions.

1) Advantages
• Faster development
• Early delivery
• Cost saving
• Easy to integrate with other models
• Easy to refine and define the requirements
• Demonstrate technical feasibility of the system

2) Disadvantages
• Lack/ Poor documentation which makes it difficult

to maintain
• Poor quality due to fast development
• Can lead to optimism

B. RAD Model
RAD Model or Rapid Application Development model is

an iterative based-development which does not include any
particular planning. It uses minimal planning for rapid
prototyping. In this, the functional modules are developed
independently in parallel and are integrated later on to complete
the software product. Due to the absence of detailed
preplanning, incorporating changes with development is easy.
The main aspect of this is to make sure that the prototypes that
are developed are reusable. The various phases of RAD model
include business modelling, data modelling, process modelling,
application generation and testing and turnover. It enables rapid
delivery of the product. It requires availability of highly skilled
engineers and the customer who committed towards the target.
Lack of commitment on either side can lead to failure of this
model.

1) Advantages
• Reduces development time
• Progress can be measured
• Quick initial review occurs
• Encourages customer feedback
• Changing requirements can be accommodated
• Increases reusability of components

2) Disadvantages
• Requires high skilled developers
• Management complexity is more
• RAD built only system that can be modularized
• High dependency on modelling skills
• User involvement throughout the life cycle is must
• Suitable for shorter time development projects

C. Agile Development Model
It is a type of increment model. Developing a software in

increment and rapid cycles result in small release and with each
release, functionalities are build up. Each release will be tested
and software quality is assured. It is generally used when new
changes need to be implemented. In this model, new changes
can be implemented at a very low cost in comparison with the
other models. For implementing a new features, the developers

need to roll back for a few days and then implement it. It
believes that every project needs to be handled uniquely and
also the existing techniques should be changed to get the best
fitting model for the existing software development model. The
final build contains all the requirements mentioned by the
customer. Continuous customer interaction is an important
condition. Pair programming is encouraged. Working software
or a prototype is considered as a best practice for a customer to
see and inform the changes. It also focuses on quick response
for change and development by the customer.

1) Advantages
• Realistic approach to software development
• Suitable for varying requirements
• Easy to manage
• Little/no planning required
• Delivers early partial solution
• Resource requirement are minimum
• Promotes teamwork

2) Disadvantages
• More risk involvement
• Depends on customer interaction
• New team member involvement is an issue
• Unsuitable for handling complex dependencies
• Practicing it is must
• High individual dependency due to less

documentation
• Not good for large projects

IV. COMPARISON BETWEEN METHODOLOGIES

Heavy weight methodologies consist of documents, proper
planning and large teams whereas light weight methodologies
consist of less documentation, less planning and small teams
with great collaboration [8]. They are usually small projects.
There are some criteria which can be used to select a
methodology for a certain type of project:
• Documentation: Light methodology mainly concentrates

on working on project whereas heavy weight rely on
proper documentation without starting the project. It
depends upon the project that which approach it should
follow. If the software needs to fix small bugs or make
small changes, then however, documentation is not
required. If we are building the project from scratch and
working in a team, we require a proper documentation for
synchronization.

• Team size: Team size is small in light methodologies
whereas large team is required in heavy methodology.
Light methodology usually covers small or short timed
projects which involve less man power in comparison with
heavy weight methodology.

• Planning: Pre planning is required in heavy weight which
results in a proper documentation whereas the planning is
informal in light weight and hence, no proper
documentation is required.

• Requirements: Requirements are mentioned previously in
heavy weight due to large project size. In case of light
weight due to small project size, requirements, if not
mentioned earlier, is not a big issue.

• Communication: Light methodology has face to face
communication between developers and the customers.
This helps in delivering a good software with all the users
requirements fulfilled.

• Change of requirement: Heavy methodology does not
accept the change in requirements and involves heavy
costing at last phases. It is because if there is a change in
the development phase, then there are many inter-
dependent links that need to get updated for proper

Rayan Dasoriya, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,732-736

© 2015-19, IJARCS All Rights Reserved 736

working on the software. Light methodology validates the
change of requirements.

V. FACTORS FOR CONSIDERING MODEL

We have seen several models which are used for software
developments. Different models have different characteristics.
They have their own features [9]. Below are the tables
comparing light weight methodologies and the heavy weight
methodologies software models:

Table I. For Heavy-weight Methodology

Properties Waterfall Incremental Spiral

Planning in
early stage

Yes Yes Yes

Handle Large
projects

Not
appropriate

Not
appropriate

Appropriate

Cost Low Low Expensive

Maintenance Least Promotes
maintainability

Typical

Risk
involvement

High Low Medium to
high risk

Framework type Linear Linear +
Iterative

Linear +
Iterative

Team size Large team Not large team Large team

Objective High
assurance

Rapid
development

High
assurance

Table II. For Light-weight Methodology

Properties Prototype RAD Agile

Frequency of
change

High High High

Documentation Low Low Low

Delivery time Early Early Early

User involvement Required Required Required

VI. CONCLUSION

The variety of software models vary depending upon the
factors of requirement of the project. Software models, when
used appropriately, will give us better results. When an
appropriate model is applied according to the requirements, the
success rate of software projects can increase. There is no
perfect model existing. Everything depends upon the project
and its characteristics like nature of the project, developer’s
skills and management support. Many times, models can be
combined together to get a different model which are known as
hybrid model.

VII. REFERENCES

[1] Khan, A.I., Qurashi, R.J. and Khan, U.A., 2011. A
comprehensive study of commonly practiced heavy and
light weight software methodologies. arXiv preprint
arXiv:1111.3001.

[2] Beeson, J.D. and Yates, J.B., Concurrent Ventures, LLC,
2016. System and method for dynamically load balancing
across storage media devices having fast access rates. U.S.
Patent 9,436,404.

[3] Kahtan, H., Bakar, N.A. and Nordin, R., 2012, October.
Reviewing the challenges of security features in
component based software development models. In E-
Learning, E-Management and E-Services (IS3e), 2012
IEEE Symposium on (pp. 1-6). IEEE.

[4] Standish Group International Inc, chaos chronicles, 2016
[5] Galorath, D., 2008. Software Project Failure Costs

Billions-Better Estimation & Planning Can Help. Project
Management.

[6] Vanalle, R.M., Baptista, G.L. and Salles, J.A.A., 2015. A
Software Development Process Model Integrated to a
Performance Measurement System. IEEE Latin America
Transactions, 13(3), pp.739-745.

[7] Blum, B.I., 1992. Software engineering: a holistic view.
Oxford University Press, Inc..

[8] Ben-Zahia, M.A. and Jaluta, I., 2014, June. Criteria for
selecting software development models. In Computer &
Information Technology (GSCIT), 2014 Global Summit
on (pp. 1-6). IEEE.

[9] Faradani, H., 2011. A Guide to selecting software
development methodologies.

[10] Spector, A.Z., 1990, April. Achieving application
requirements. In Distributed Systems (pp. 19-33). ACM.

	Introduction
	Heavy Weight Methodology
	A. Waterfall Model
	Advantages
	Disadvantages

	B. Spiral Model
	1) Advantages
	2) Disadvantages

	C. Incremenetal Model
	1) Advantages
	2) Disadvantages

	Light Weight Methodology
	Prototyping model
	Advantages
	Disadvantages

	RAD Model
	Advantages
	Disadvantages

	Agile Development Model
	Advantages
	Disadvantages

	COMPARISON BETWEEN METHODOLOGIES
	FACTORS FOR CONSIDERING MODEL
	CONCLUSION
	References

