Available Online at www.ijarcs.info

CONNECTED MAJORITY DOMINATION ON PRODUCT GRAPHS

J. Joseline Manora
PG \& Research Dept. of Mathematics, T.B.M.L College,
Porayar - 609 307, India.

T. Muthukani Vairavel
Dept. of Mathematics,
Sir Issac Newton College,
Nagapattinam - 611 102, India

Abstract

This paper contributes a connected majority dominating set of a product graph G . A connected majority domination number $\gamma_{\mathrm{CM}}(G)$ is determined for some product graphs such as Grid, Cylinder and Torus. Next we study connected majority dominating sets for generalized Petersen graphs and bounds of $\gamma_{\mathrm{CM}}(G)$ are also established.

Keywords: Dominating set, Majority dominating set, Connected majority dominating set

I. INTRODUCTION

Definition 1.1 [2] Let G be a finite and simple graph with a vertex set $V(G)$ and an edge set $E(G)$. Then $|V(G)|=p$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{q}$. A subset S of $\mathrm{V}(\mathrm{G})$ is said to be a dominating set of G if every vertex in (V-S) is adjacent to at least one vertex in S . A dominating set is called minimal dominating set if no proper subset of S is a dominating set. The minimum cardinality of the minimal dominating set of G is called the domination number of G , denoted by $\gamma(G)$.

Definition 1.2 [1] A dominating set S is said to be a connected dominating set if the subgraph $\langle S\rangle$ induced by S is connected in G . A connected dominating set S is minimal if no proper subset of S is a connected dominating set. The minimum cardinality of the minimal connected dominating set of G is called the connected domination number, denoted by $\gamma_{C}(G)$.

Definition 1.3 [5] A subset S of $\mathrm{V}(\mathrm{G})$ is said to be a Majority Dominating Set (MDS) if at least half of the vertices of $V(G)$ are either in S or adjacent to elements of S . A majority dominating set S is minimal if no proper subset of S is a majority dominating set. The minimum cardinality of a minimal majority dominating set is called majority domination number, denoted by $\gamma_{M}(G)$.

Definition 1.4 [6] A vertex v is called majority dominating vertex if the degree of $v, d(v) \geq\left\lceil\frac{p}{2}\right\rceil-1$. For $S \subseteq V(G)$, a vertex $v \in S$ is called an enclave of S if $N[v] \subseteq S$ and $v \in S$ is an isolate of S if $N(v) \subseteq V-S$.

Definition 1.5 [4] A subset $S \subseteq V(G)$ is a Connected Majority Dominating set (CMDS) if
(i) S is a majority dominating set and
(ii) the subgraph $\langle S\rangle$ induced by S is connected in G.

The connected majority dominating set S is minimal if no proper subset of S is a connected majority dominating set. The minimum cardinality of a minimal connected majority dominating set is called the connected majority domination number and is denoted by $\gamma_{C M}(G)$. The maximum cardinality of a minimal connected majority dominating set of G is called upper connected majority domination number of G , denoted by $\Gamma_{C M}(G)$.

Theorem 1.6 [4] Let S be a Connected Majority Dominating (CMD) set of a graph G. Then S is minimal if and only if for every vertex $v \in S$, either the condition (i) or the condition (ii) holds.
(i) $\quad|\mathrm{N}[\mathrm{S}]|=\left[\frac{p}{2}\right]$, then either v is an enclave of S or $\quad \mathrm{pn}[\mathrm{v}, \mathrm{S}] \cap(V-S) \neq \varphi$ and $\langle S\rangle$ is connected.
$|N[S]|>\left[\frac{p}{2}\right]$, then $|p n[v, S]|>|N[S]|-\left[\frac{p}{2}\right]$ and $\langle S\rangle$ is connected.

II. CMD NUMBER FOR GRID GRAPHS

Definition 2.1 [7] Let G and H be any two connected graphs with the vertex set $\left(u_{1}, u_{2}, \ldots u_{n}\right)$ and $\left(v_{1}, v_{2}, \ldots v_{n}\right)$ respectively. The (Cartesian) product graph $\mathrm{K}=\mathrm{G} X \mathrm{H}$ has $\mathrm{V}(\mathrm{K})=\mathrm{V}(\mathrm{G})$ $\mathrm{X} V(\mathrm{H})$ and vertices $\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ and $\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)$ in $\mathrm{V}(\mathrm{K})$ are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2}$ in $E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2}$ in $E(G)$. The grid is $P_{i} X P_{j}$; the cylinder is $C_{i} X P_{j}$, for $i \geq 3$ and $\mathrm{j} \geq 3$; and the torus $\mathrm{C}_{\mathrm{i}} \mathrm{X} \mathrm{C} \mathrm{C}_{\mathrm{j}}$, for $\mathrm{i} \geq 3$ and $\mathrm{j} \geq 3$.

Theorem 2.2

$$
\begin{gathered}
\text { For a grid } G=P_{2} X P_{j}, j \geq 3, \\
\gamma_{\mathrm{CM}}(\mathrm{G})= \begin{cases}\left\lfloor\frac{\mathrm{p}}{4}\right\rfloor, & \text { if } \mathrm{j} \text { is odd } \\
\left\lfloor\frac{\mathrm{p}-1}{4}\right\rfloor, & \text { if } \mathrm{j} \text { is even }\end{cases}
\end{gathered}
$$

Proof: Consider the grid graph $G=P_{2} X P_{j}$ (ladder graph) with vertex sets $\left\{v_{11}, v_{12}, \ldots v_{1 j}\right\}$ in the first row and $\left\{v_{21}, v_{22}, \ldots v_{2 j}\right\}$ in the second row respectively.

Case (i): Let j be odd. Consider the subset S of $\mathrm{V}(\mathrm{G})$ as follows $S=\left\{v_{12}, v_{13}, \ldots v_{1 t}\right\}$ with $\|S\|=\left\lfloor\frac{p}{4}\right\rfloor=t$. $\| N[S] \left\lvert\,=\sum_{i=1}^{\left[\frac{p}{4}\right]} d\left(v_{1 i}\right)-(|S|-2)=\frac{p}{2}+2>\left[\frac{p}{2}\right] . \Rightarrow S\right.$ is a MD set of G. Since every vertex of S is of distance one, the induced subgraph $\langle\mathrm{S}\rangle$ of S is connected. Hence, S is a CMD set of G.
$\therefore Y_{C M}(G) \leq\|S\|=\left\lfloor\frac{p}{4}\right\rfloor$
Let $\quad S^{s}=S-\{v\} \quad$ with $\quad\left|S^{s}\right|=\left[\frac{p}{4}\right\rfloor-1$. Then $\| N\left[S^{v}\right] \left\lvert\,=\sum_{i=1}^{\left[\frac{p}{4}\right]-1} d\left(v_{1 i}\right)-\left(\left|S^{s}\right|-1\right)=\frac{p}{2}-1<\left[\frac{p}{2}\right] \Rightarrow S^{v}\right.$ would not be a MD set of G. $\therefore \gamma_{C M}(G)>\left\|S^{t}\right\|=\left\lfloor\frac{p}{4}\right\rfloor-1$. Then

$$
\begin{equation*}
\gamma_{C M}(G) \geq\left\lfloor\frac{p}{4}\right\rfloor \tag{2}
\end{equation*}
$$

From (1) and (2), we get $\gamma_{C M}(G)=\left\lfloor\frac{p}{4}\right\rfloor$, if j is odd
Case (ii): Let j be even. Choose first row vertices from V(G) and form the subset as $S=\left\{v_{12}, v_{13}, \ldots v_{1 t}\right\}$ with the size $|S|=\left\lfloor\frac{p-1}{4}\right]$.
Now, $|N[S]|=\sum_{i=1}^{\left[\frac{p-1}{4}\right]} d\left(v_{1 i}\right)-(|S|-2)=2\left\lfloor\frac{p-1}{4}\right]+2>\left\lceil\frac{p}{2}\right\rceil$.
$\Rightarrow S$ is a MD set of G. Since every vertex of S is of distance one, the induced subgraph $\langle\mathrm{S}\rangle$ of S is connected. Hence, S is a CMD set of G.
$\therefore \gamma_{C M}(G) \leq|S|=\left\lfloor\frac{p-1}{4}\right\rfloor$
Applying the same argument as in case (i) we get,
$\gamma_{C M}(G) \geq\left\lfloor\frac{p-1}{4}\right\rfloor$
From (3) and (4), we get $\gamma_{C M}(G)=\left\lfloor\frac{p-1}{4}\right\rfloor$ if j is even.

Theorem 2.3

$$
\text { For a grid } G=P_{a} X P_{j}, j \geq 3, \gamma_{C M}(G)=\left\lfloor\frac{p}{6}\right\rfloor
$$

Proof: \quad Consider the grid graph $G=P_{3} X P_{j}, j \geq 3$. Let $V(G)=\left\{v_{11}, v_{12}, \ldots, v_{1 j}, v_{21}, \ldots, v_{2 j}, v_{21}, \ldots v_{a j}\right\}$ and it forms I row, II row and III row respectively for G. Form a subset of $\mathrm{V}(\mathrm{G})$ as $S=\left\{v_{22}, v_{2 a}, \ldots, v_{2 t}\right\}$ with $|S|=\left[\frac{p}{6}\right]$. Since each vertex of S covers 3 vertices vertically, but the first and last vertices of S cover 4 vertices.
$\therefore|N[S]|=3|S|+2 \geq\left[\frac{p}{2}\right]$. Hence, S is a MD set. Since every vertex of S is of distance one, the induced subgraph $\langle S\rangle$ of S is connected. $\Rightarrow \mathrm{S}$ is a CMD set of G .

Now,

$$
\begin{equation*}
\gamma_{C M}(G) \leq|S|=\left\lfloor\frac{p}{6}\right\rfloor \tag{1}
\end{equation*}
$$

Let $S^{v}=S-\{v\}$ with $\left|S^{v}\right|=\left\lfloor\frac{p}{6}\right\rfloor-1$.
Now $\left|\mathrm{N}\left[\mathrm{S}^{\prime}\right]\right|=3\left|\mathrm{~S}^{\prime}\right|-3+2=\frac{p}{2}-1<\left[\frac{p}{2}\right] \Rightarrow S^{v}$ would not be a MD set of G.
$\therefore \gamma_{C M}(G)>\left|S^{t}\right|=\left[\frac{p}{6}\right\rfloor-1$
$\Rightarrow \gamma_{C M}(G) \geq\left\lfloor\frac{\mathrm{p}}{6}\right\rfloor$

From (1) and (2), we obtain $\mathrm{YCM}_{\mathrm{CM}}(\mathrm{G})=\left\lfloor\frac{\mathrm{p}}{6}\right\rfloor$.

Corollary 2.4

$$
\text { For a grid } G=P_{4} X P_{j} \quad j \geq 4, \gamma_{C M}(G)=\left\lfloor\frac{p}{6}\right\rfloor .
$$

Theorem 2.5

$$
\begin{gathered}
\text { For a grid } G=P_{5} X P_{j}, j \geq 5, \\
\gamma_{C M}(G)=\left\{\begin{array}{c}
\frac{p}{6}, \text { if } j \equiv 0(\bmod 6) \\
{\left[\frac{p}{6}\right\rceil, \text { if } j \equiv 1(\bmod 6)} \\
\left\lfloor\frac{p}{6}\right\rfloor, \text { if } j \equiv 2,3,4,5(\bmod 6)
\end{array}\right.
\end{gathered}
$$

Proof: Consider the grid graph $G=P_{5} X P_{j}, j \geq 5$, with $V(G)=\left\{v_{11}, \ldots v_{1 \dot{p}} v_{21, \ldots}, v_{2 j}, v_{31}, \ldots v_{3 j}, v_{41}, \ldots v_{4 j}, v_{51}, \ldots v_{5 j}\right\}$ and it contains 5 rows.

Case (i): Let $j \equiv 0(\bmod 6)$. Consider the set $\mathrm{S}=\left\{\mathrm{v}_{21}, \mathrm{v}_{22}, \ldots\right\} \quad$ with $\quad|S|=\frac{p}{6}$
Now, $|\mathrm{N}[\mathrm{S}]|=3|\mathrm{~S}|+2=\frac{\mathrm{p}}{2}+2 \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil . \quad \therefore S$ is a majority dominating set of G. Since every vertex of S is of distance one, the induced subgraph $\langle S\rangle$ of S is connected. $\therefore S$ is a connected majority dominating set of G. Then $\gamma_{C M}(\mathrm{G}) \leq|S|=\frac{\mathrm{p}}{6}$
Suppose, let $S^{s}=S-\{v\}$ with $\left\|S^{s}\right\|=\frac{p}{6}-1$.
Then $\left|N\left[S^{t}\right]\right|=3\left|S^{t}\right|-3=\frac{p}{2}-6<\left[\frac{p}{2}\right] \Rightarrow S^{t}$ would not be a MD set of G and $\therefore \gamma_{C M}(G)>\left|S^{t}\right|=\frac{p}{6}-1$. Hence $Y_{C M}(G) \geq \frac{p}{6}$
From (1) and (2) we get, $\gamma_{C M}(G)=\frac{p}{6} \quad$, if $j \equiv 0(\bmod 6)$.
Case (ii): Let $j \equiv 1(\bmod 6)$. Consider the set $S=\left\{v_{22}, v_{23}, \ldots\right\} \quad$ with $\quad|S|=\left[\frac{p}{6}\right] \quad$. Now, $\| N[S]|=3| S \left\lvert\,+2=3\left[\frac{p}{6}\right]+2=\frac{p}{2}+2 \geq\left[\frac{p}{2}\right] . \Rightarrow S\right.$ is a MD set of G. Since every vertex of S is of distance one, S is a CMD set of G. Then
$\gamma_{C M}(\mathrm{G})<|\mathrm{S}|=\left\lceil\frac{\mathrm{p}}{6}\right\rceil$
Suppose $S^{v}=S-\{v\}$ with $\left|S^{s}\right|=\left[\frac{p}{6}\right]-1$. Applying the same argument as in case (i), we get S^{s} would not be a MD set of G.

$$
\begin{equation*}
\therefore \gamma_{C M}(G)>\left|S^{t}\right|=\left[\frac{p}{6}\right]-1 \tag{4}
\end{equation*}
$$

From (3) and (4) we get,
$Y_{C M}(G)=\left[\frac{p}{6}\right] \quad$, if $j \equiv 1(\bmod 6)$.

Case(iii): Let $j \equiv 2,3,4,5$ (mod 6) . Consider the set $S=\left\{v_{22}, v_{23}, \ldots\right\} \quad$ with $\quad|S|=\left\lfloor\frac{p}{6}\right\rfloor \quad$.Now $\| \mathrm{N}[\mathrm{S}]|=3| \mathrm{S} \left\lvert\,+2=\frac{\mathrm{P}}{2}+2>\left\lceil\frac{\mathrm{P}}{2}\right\rceil . \Rightarrow \mathrm{S}\right.$ is a MD set of G . Since every vertex of S is of distance one, S is a CMD set of G.

$$
\begin{equation*}
\therefore \gamma_{C M}(G) \leq|S|=\left\lfloor\frac{p}{6}\right\rfloor \tag{5}
\end{equation*}
$$

Applying the same argument as in case (i), we get, $\gamma_{C M}(\mathrm{G}) \geq\left\lfloor\frac{\mathrm{p}}{6}\right\rfloor$

From (5) and (6) we get, $\gamma_{C M}(G)=\left\lfloor\frac{p}{6}\right\rfloor$, if $j \equiv 2,3,4,5(\bmod 6)$.

Corollary 2.6

For a grid $G=P_{6} X P_{j}, j \geq 6$,
$\gamma_{C M}(G)=\left\{\begin{array}{lc}\frac{p}{6}, & \text { if } j \equiv 0(\bmod 6) \\ {\left[\frac{p}{6}\right\rceil,} & \text { if } j \equiv 1,5(\bmod 6) \\ \left\lfloor\frac{p}{6}\right\rfloor, & \text { if } j \equiv 2,3,4(\bmod 6)\end{array}\right.$

III. CMD NUMBER FOR CYLINDER AND TORUS GRAPHS

Proposition 3.1

1. For a Cylinder $G=C_{3} X P_{j}$.

$$
\gamma_{\mathrm{CM}}\left(c_{\mathrm{a}} X P_{j}\right)=\left\lfloor\frac{p}{6}\right\rfloor \quad \text { for } j \geq 2
$$

2. For a Torus $G=c_{3} X C_{j}, \gamma_{C M}\left(c_{3} X c_{j}\right)=\left[\frac{p}{6}\right] \quad$ for $j \geq 3$

Proof:

1. Let $G=C_{a} X P_{j}, j \geq 2$. Let $V(G)=\left\{v_{11}, v_{12}, \ldots, v_{1 j}, v_{21}, \ldots, v_{2 j}, v_{11}, \ldots v_{2 j}\right\}$. Consider a subset S of $\mathrm{V}(\mathrm{G})$ such that $S=\left\{v_{12}, v_{13}, \ldots, v_{1 t}\right\}$ with $|S|=\left[\left.\frac{p}{6} \right\rvert\,\right.$. Then $|N[S]|=\sum_{j=1}^{\mathrm{t}} d\left(v_{1 j}\right)-|S|+2=3\left[\frac{p}{6}\right]+2>\left[\frac{p}{2}\right]$. $\Rightarrow S$ is a MD set of G. Since every vertex of S is of distance one, S is a CMD set of G . Then applying the same argument as in Theorem 2.3, we get $\gamma_{C M}(G)=\left\lfloor\left.\frac{p}{6} \right\rvert\,\right.$.
2. Let $G=C_{3} X C_{j}, j \geq 3$ be the 4-regular graph. Let $V(G)=\left\{v_{11}, v_{12}, \ldots, v_{1 j}, v_{21}, \ldots, v_{2 j}, v_{31}, \ldots v_{a j}\right\}$. Consider the set $S \subseteq V(G)$ as $S=\left\{v_{12}, v_{13}, \ldots, v_{1 t}\right\}$ with $|S|=\left\lfloor\frac{p}{6}\right\rfloor$. Then $|N[S]|=\sum_{j=1}^{\mathrm{t}} d\left(v_{1 j}\right)-|S|+2=3\left[\frac{p}{6}\right]+2>\left[\frac{p}{2}\right]$. Applying the same argument as in Theorem 2.3, we get $\gamma_{C M}(G)=\left\lfloor\frac{p}{6}\right\rfloor$.

Example 3.2 Consider the graph $G=\mathrm{C}_{3} \mathrm{X}_{5}$. Here $|V(G)|=p=15, S=\left\{v_{12}, V_{13}\right\}$ is a CMD set of G. Hence, $\therefore \gamma_{C M}(G)=2=\left\lfloor\frac{15}{6}\right\rfloor$

Example 3.3 Consider the graph $\mathrm{G}=\mathrm{C}_{3} \mathrm{X} \mathrm{C}_{5}$. Here $|V(G)|=p=15, S=\left\{v_{11}, v_{12}\right\}$ is a CMD set of G. Hence, $\therefore \gamma_{C M}(G)=2=\left\lfloor\frac{15}{6}\right\rfloor$

Corollary 3.4

1. For a cylinder $G=C_{4} X P_{j}$.

$$
\gamma_{\mathrm{CM}}\left(c_{4} X P_{j}\right)=\left\lfloor\frac{p}{6}\right\rfloor \text { for } j \geq 2
$$

2. For a Torus $G=C_{4} X C_{j}$,

$$
\gamma_{C M}\left(c_{4} X c_{j}\right)=\left\lfloor\frac{p}{6}\right\rfloor \text { for } j \geq 3
$$

Proposition 3.5

1. For a cylinder $G=C_{5} X P_{j}, j \geq 5$.

$$
\gamma_{C M}(G)=\left\{\begin{array}{cc}
\frac{p}{6} & \text {, if } j \equiv 0(\bmod 6) \\
{\left[\frac{p}{6}\right\rceil} & , \text { if } j \equiv 1(\bmod 6) \\
\left\lfloor\frac{p}{6}\right\rfloor & , \text { if } j \equiv 2,3,4,5(\bmod 6)
\end{array}\right.
$$

2. For a Torus $G=C_{5} X C_{j}, j \geq 5$.

$$
\gamma_{C M}(G)=\left\{\begin{array}{cc}
\frac{p}{6} & , \text { if } j \equiv 0(\bmod 6) \\
{\left[\frac{p}{6}\right\rceil} & , \text { if } j \equiv 1(\bmod 6) \\
\left\lfloor\frac{p}{6}\right\rfloor & , \text { if } j \equiv 2,3,4,5(\bmod 6)
\end{array}\right.
$$

IV. CMD NUMBER FOR GENERALIZED PETERSEN GRAPH

Result 4.1 For a Petersen graph with $p=10, q=15$, $\therefore \gamma_{C M}(G)=2=\left\lfloor\frac{p-1}{4}\right\rfloor$.

Definition 4.2 For each $n \geq 3$ and $0<k<n, P(n, k)$ denotes the Generalized Petersen graph with vertex set $V(G)=\left\{u_{1}, u_{2} \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}\right\}$ and the edge set $E(G)=\left\{u_{i} u_{i+1(\bmod n)}, u_{i} v_{i}, v_{i+k(\bmod n)}\right\}$
$1 \leq i \leq n$.

Theorem 4.3 For a generalized Petersen graph $G=P(n, 1)$, $\gamma_{C M}(G)=\left\lceil\frac{n}{2}\right\rceil-1$.

Proof: Let us consider the vertices of the generalized Petersen graph $\mathrm{G}=\mathrm{P}(\mathrm{n}, 1)$ can be partitioned into two sets V_{1} and V_{2} such that $V=V_{1} \cup V_{2}$ where the inner polygon has the vertex set as $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the outer polygon has the vertex set as $V_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

Let $|\mathrm{V}(\mathrm{G})|=\mathrm{p}=2 \mathrm{n}$. Consider the set $S \subseteq V$ such that $S=\left\{v_{1}, v_{2}, \ldots, v_{\left[\left.\frac{n}{2} \right\rvert\,-1\right.}\right\}$ with $\quad|S|=\left[\frac{n}{2}\right\rceil-1 \quad$ or $\quad|S|=\left[\frac{p-1}{4}\right]$. Now, let $|N[S]|=\sum_{i=1}^{\left[\frac{n}{2}\right]-1} d\left(v_{i}\right)-(|S|-2)$ $=2\left(\left\lceil\frac{\mathrm{n}}{2}\right\rceil-1\right)+2=\lceil\mathrm{n}\rceil \geq\left\lceil\frac{\mathrm{p}}{2}\right\rceil$
$\therefore \quad S$ is a MD set of G.
Since every vertex of S are of distance one, S is a CMD set of G.
$\gamma_{C M}(G) \leq|S|=\left\lceil\frac{n}{2}\right\rceil-1$
Now, let $S^{\prime}=S-\{v\}$ with $\left|S^{\prime}\right|=\left(\left[\frac{n}{2}\right\rceil-1\right)-1$. Then,
$\| N\left[S^{\prime}\right] \left\lvert\,=\sum_{i=1}^{\left[\left.\frac{n}{2} \right\rvert\,-2\right.} d\left(v_{i}\right)-(|S|-2)=2\left(\left\lceil\frac{n}{2}\right\rceil-2\right)+2=n-2<\left\lceil\frac{p}{2}\right\rceil\right.$.
$\therefore \quad S^{\prime}$ would not be a MD set of G.
$\Rightarrow \gamma_{\mathrm{CM}}(\mathrm{G})>\left|\mathrm{S}^{\prime}\right|=\left[\frac{n}{2}\right]-2$
From (1) and (2) we get,

$$
\gamma_{C M}(G)=\left[\frac{n}{2}\right]-1 \text { or } \gamma_{C M}(G)=\left[\frac{p-1}{4}\right] .
$$

Corollary 4.4 For a generalized Petersen graph $G=P(n, 2)$,
$\gamma_{C M}(G)=\left\lfloor\frac{p-1}{4}\right\rfloor$.
Corollary 4.5 For a generalized Petersen graph $G=P(n, 3)$, $\gamma_{C M}(G)=\left[\frac{p-1}{4}\right]$.

Figure 4.

$$
G=P(16,3)
$$

Corollary 4.6 For cubic graphs Grinberge and Tutte graph with $\mathrm{p}=46$, the CMD number for these graphs are $\gamma_{C M}(G)=11=\left\lfloor\frac{p-1}{4}\right\rfloor$.
Corollary 4.7 For all cubic graphs the CMD number $\gamma_{C M}(G)=\left\lfloor\frac{p-1}{4}\right\rfloor$.

V. BOUNDS FOR $\boldsymbol{Y}_{C M}(G)$

Proposition 5.1 Let H be a connected spanning subgraph of a graph G. Then $\gamma_{\mathrm{CM}}(G) \leq \gamma_{\mathrm{CM}}(H)$.

Proposition 5.2 For any tree G with $p \geq 3$ vertices, $\left\lceil\frac{p}{2}\right\rceil-e \leq \gamma_{C M}(G) \leq p-e$.
Proof Let G be a tree of order $p \geq 3$ with ' e ' end vertices.
Case(i): If the graph G has the end vertices $e<\left\lceil\frac{p}{2}\right\rceil$, then $\gamma_{\mathrm{CM}}(G)=\left\lceil\frac{p}{2}\right\rceil-e$.
Case(ii): If the graph G has the end vertices $e \geq\left\lceil\frac{p}{2}\right\rceil$, then $\gamma_{C M}(G) \leq p-e$.
The bounds are sharp. For example, let $G=S\left(K_{1,10}\right)$. Then $\gamma_{C M}(G)=1=\left\lceil\frac{p}{2}\right]-e$.
And let $=K_{1,10}$. Then $\gamma_{C M}(G)=1=p-e$.
Corollary 5.3 For a product graph, the lower and upper bounds are $\left\lfloor\frac{p}{6}\right\rfloor \leq \gamma_{C M}(G) \leq\left\lfloor\frac{p}{4}\right\rfloor$. These bounds are sharp.
For example, 1. Let $G=\mathrm{P}_{2} \times \mathrm{P}_{13}$. Then $\gamma_{C M}(G)=6=\left\lfloor\frac{p}{4}\right\rfloor$.
2. Let $\mathrm{G}=\mathrm{C}_{4} \mathrm{X} \mathrm{P}_{7}$. Then $\gamma_{C M}(G)=4=\left\lfloor\frac{p}{6}\right\rfloor$.

Proposition 5.4 For any graph G, $\gamma_{M}(G) \leq \gamma_{C M}(G) \leq \gamma_{C}(G)$. For example, 1. let $G=K_{p}$, a Complete graph of $p \geq 2$. Then $\quad \gamma_{M}(G)=\gamma_{C M}(G)=\gamma_{C}(G)$.
2. For a Caterpillar G, with $p=22$, $\gamma_{M}(G)=3, \gamma_{C M}(G)=5$ and $\gamma_{C}(G)=11$. Hence we get the inequality as $\gamma_{M}(G)<\gamma_{C M}(G)<\gamma_{C}(G)$.

VI. CONCLUSION

In this article, researcher thus introduced and discussed a new type of Domination parameter of a graph G. Connected Majority Domination number $\gamma_{C M}(G)$ is defined and it is determined for some classes of product graphs. Then bounds of $\gamma_{C M}(G)$ and Connected Majority Domination number for generalized Petersen graph are also established.

VII. REFERENCES

[1] E. Sampathkumar and H.B. Walikar, "The connected domination number of a graph", Jour, Math, Phy, Sci. Vol. 13 No.6, pp. 607-613 (1979)
[2] E.J. Cockayane and S.T. Hedetniemi, "Towards a theory of domination in graphs", Networks. 7, pp. 247-261, (1977).
[3] Frank Harary, Graph theory, Addision-Wesley, Reading, Mass., (1972).
[4] J. Joseline Manora and T. Muthukani Vairavel, "Connected Majority Dominating Set of a Graph", Global Journal of Pure and Applied Mathematics Volume 13, Number 2, pp. 534-543 (2017)
[5] J. Joseline Manora and V. Swaminathan, "Majority Dominating sets", J A R J; Vol.3, No.2, pp.75-82, (2006)
[6] J. Joseline Manora and V. Swaminathan, "Results on Majority Dominating sets", Scientia Magna, Northwest University, Xitan, P.R China, Vol. 7, No. 3, pp. 53-58, (2011)
[7] T.W Haynes, S.T Hedetniemi and P.J Slater, Fundamentals of domination in graphs, Marces Dekker. Inc, New york, (1998).

