

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

CONNECTED MAJORITY DOMINATION ON PRODUCT GRAPHS

J. Joseline Manora PG & Research Dept. of Mathematics, T.B.M.L College, Porayar - 609 307, India. T. Muthukani Vairavel Dept. of Mathematics, Sir Issac Newton College, Nagapattinam – 611 102, India

Abstract: This paper contributes a connected majority dominating set of a product graph G. A connected majority domination number $\gamma_{CM}(G)$ is determined for some product graphs such as Grid, Cylinder and Torus. Next we study connected majority dominating sets for generalized Petersen graphs and bounds of $\gamma_{CM}(G)$ are also established.

Keywords: Dominating set, Majority dominating set, Connected majority dominating set

I. INTRODUCTION

Definition 1.1 [2] Let G be a finite and simple graph with a vertex set V(G) and an edge set E(G). Then |V(G)| = p and |E(G)| = q. A subset S of V(G) is said to be a *dominating set* of G if every vertex in (V-S) is adjacent to at least one vertex in S. A dominating set is called *minimal dominating set* if no proper subset of S is a dominating set. The minimum cardinality of the minimal dominating set of G is called the *domination number* of G, denoted by $\mathbf{y}(G)$.

Definition 1.2 [1] A dominating set S is said to be a *connected dominating set* if the subgraph (5) induced by 5 is connected in G. A connected dominating set S is minimal if no proper subset of S is a connected dominating set. The minimum cardinality of the minimal connected dominating set of G is called the *connected domination number*, denoted by $\gamma_{C}(G)$.

Definition 1.3 [5] A subset S of V(G) is said to be a *Majority Dominating Set* (MDS) if at least half of the vertices of V(G) are either in S or adjacent to elements of S. A majority dominating set S is minimal if no proper subset of S is a majority dominating set. The minimum cardinality of a minimal majority dominating set is called *majority domination number*, denoted by $\gamma_M(G)$.

Definition 1.4 [6] A vertex v is called *majority dominating vertex* if the degree of v, $d(v) \ge {p \choose 2} - 1$. For $S \subseteq V(G)$, a vertex $v \in S$ is called an *enclave* of S if $N[v] \subseteq S$ and $v \in S$ is an *isolate* of S if $N(v) \subseteq V - S$.

Definition 1.5 [4] A subset $S \subseteq V(G)$ is a *Connected Majority Dominating set* (CMDS) if

(i) S is a majority dominating set and

(*ii*) the subgraph (S) induced by S is connected in G.

The connected majority dominating set S is minimal if no proper subset of S is a connected majority dominating set. The minimum cardinality of a minimal connected majority domination number and is denoted by $\gamma_{CM}(G)$. The maximum cardinality of a minimal connected majority dominating set of G is called upper connected majority domination number of G, denoted by $\Gamma_{CM}(G)$.

Theorem 1.6 [4] Let S be a Connected Majority Dominating (CMD) set of a graph G. Then S is minimal if and only if for every vertex $\mathbf{v} \in S$, either the condition (i) or the condition (ii) holds.

- (i) $|N[S]| = \left\lceil \frac{p}{2} \right\rceil$, then either v is an enclave of S or $pn[v,S] \cap (V-S) \neq \varphi$ and $\langle S \rangle$ is connected. (ii) $|N[S]| > \left\lceil \frac{p}{2} \right\rceil$, then $|pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$
 - (1) $|N[S]| > |\frac{p}{2}|$, then $|pn[v,S]| > |N[S]| |\frac{p}{2}|$ and $\langle S \rangle$ is connected.

II. CMD NUMBER FOR GRID GRAPHS

Definition 2.1 [7] Let G and H be any two connected graphs with the vertex set $(u_1, u_2, ..., u_n)$ and $(v_1, v_2, ..., v_n)$ respectively. The (*Cartesian*) **product graph** K = G X H has V(K) = V(G) X V(H) and vertices (u_1, v_1) and (u_2, v_2) in V(K) are adjacent if and only if either $u_1 = u_2$ and $v_1 v_2$ in E(H) or $v_1 = v_2$ and $u_1 u_2$ in E(G). The *grid* is $P_i X P_j$; the *cylinder* is $C_i X P_j$, for $i \ge 3$ and $j \ge 3$; and the *torus* $C_i X C_j$, for $i \ge 3$ and $j \ge 3$.

Theorem 2.2

For a grid
$$G = P_2 X P_j$$
, $j \ge 3$,
 $\gamma_{CM}(G) = \begin{cases} \left\lfloor \frac{p}{4} \right\rfloor$, if j is odd
 $\left\lfloor \frac{p-1}{4} \right\rfloor$, if j is even

Proof: Consider the grid graph $G = P_2 X P_j$ (ladder graph) with vertex sets $\{v_{11}, v_{12}, \dots, v_{1j}\}$ in the first row and $\{v_{21}, v_{22}, \dots, v_{2j}\}$ in the second row respectively.

©ijarcs.info, 2015-19, all rights reserved

CONFERENCE PAPER National Conference dated 27-28 July 2017 on Recent Advances in Graph Theory and its Applications (NCRAGTA2017) Organized by Dept of Applied Mathematics Sri Padmawati Mahila Vishvavidyalayam (Women's University) Tirupati, A.P., India Case (i): Let j be odd. Consider the subset S of V(G) as $S = \{v_{12}, v_{13}, \dots, v_{1t}\}$ with $|S| = \left|\frac{p}{s}\right|$ follows = t. $|N[S]| = \sum_{i=1}^{\lfloor \frac{p}{2} \rfloor} d(v_{1i}) - (|S| - 2) = \frac{p}{2} + 2 > \lfloor \frac{p}{2} \rfloor. \implies S \text{ is a}$ MD set of G. Since every vertex of S is of distance one, the induced subgraph (S) of S is connected. Hence, S is a CMD set of G.

$$\therefore \gamma_{CM}(G) \le |S| = \left\lfloor \frac{p}{4} \right\rfloor$$
(1)

Let $S' = S - \{v\}$ with $|S'| = \frac{p}{2} - 1$. Then $|N[S']| = \sum_{i=1}^{\lfloor \frac{p}{4} \rfloor - 1} d(v_{1i}) - (|S'| - 1) = \frac{p}{2} - 1 < \lfloor \frac{p}{2} \rfloor \implies S'$ would not be a MD set of G. $\therefore \gamma_{CM}(G) > |S'| = \left| \frac{\mathbb{P}}{4} \right| - 1$. Then

$$\gamma_{GM}(G) \ge \left\lfloor \frac{p}{4} \right\rfloor$$
 (2)

From (1) and (2), we get $\gamma_{CM}(G) = \begin{vmatrix} p \\ a \end{vmatrix}$, if j is odd

Case (ii): Let j be even. Choose first row vertices from V(G) and form the subset as $S = \{v_{12}, v_{13}, \dots, v_{1t}\}$ with the size $|S| = \left\lfloor \frac{p-1}{4} \right\rfloor$

Now,
$$|N[S]| = \sum_{i=1}^{\left\lfloor \frac{p-1}{4} \right\rfloor} d(v_{1i}) - (|S|-2) = 2 \left\lfloor \frac{p-1}{4} \right\rfloor + 2 > \left\lfloor \frac{p}{2} \right\rfloor.$$

 \Rightarrow S is a MD set of G. Since every vertex of S is of distance one, the induced subgraph (S) of S is connected. Hence, S is a CMD set of G.

$$\therefore \gamma_{CM}(G) \le |S| = \left\lfloor \frac{p-1}{4} \right\rfloor \tag{3}$$

Applying the same argument as in case (i) we get, $\gamma_{CM}(G) \geq \left|\frac{p-1}{r}\right|$ (4)

From (3) and (4), we get $\gamma_{CM}(G) = \begin{bmatrix} \frac{p-1}{4} \end{bmatrix}$ if j is even.

Theorem 2.3

For a grid $G = P_3 X P_j$, $j \ge 3$, $\gamma_{CM}(G) = \left| \frac{p}{c} \right|$ **Proof:** Consider the grid graph $G = P_a X P_j$, $j \ge 3$. Let $V(G) = \{v_{11}, v_{12}, \dots, v_{1j}, v_{21}, \dots, v_{2j}, v_{31}, \dots v_{3j}\}$ and it forms I row, II row and III row respectively for G. Form a subset of V(G) as $S = \{v_{22}, v_{23}, \dots, v_{2t}\}$ with $|S| = \left\lfloor \frac{p}{6} \right\rfloor$. Since each vertex of S covers 3 vertices vertically, but the first and last vertices of S cover 4 vertices.

 $\therefore |N[S]| = 3|S| + 2 \ge \left|\frac{p}{2}\right|$. Hence, S is a MD set. Since every vertex of S is of distance one, the induced subgraph (S) of S is connected. \Rightarrow S is a CMD set of G.

Now.

$$\gamma_{CM}(G) \le |S| = \left\lfloor \frac{p}{6} \right\rfloor \tag{1}$$

Let $S' = S - \{v\}$ with $|S'| = \left|\frac{p}{\epsilon}\right| - 1$.

Now $|\mathbb{N}[S']| = 3|S'|-3+2 = \frac{p}{2} - 1 < \left[\frac{p}{2}\right] \Rightarrow S'$ would not be a MD set of G.

$$\therefore \gamma_{CM}(G) > |S'| = \left\lfloor \frac{p}{6} \right\rfloor - 1$$

$$\Rightarrow \gamma_{CM}(G) \ge \left\lfloor \frac{p}{6} \right\rfloor$$
(2)

From (1) and (2), we obtain $\gamma_{CM}(G) = \left| \frac{P}{c} \right|$.

Corollary 2.4

For a grid
$$G = P_4 X P_j$$
, $j \ge 4$, $\gamma_{CM}(G) = \frac{p}{\epsilon}$

Theorem 2.5

For a grid
$$G = P_5 X P_j$$
, $j \ge 5$,
 $\gamma_{CM}(G) = \begin{cases} \frac{p}{6} , & \text{if } j \equiv 0 \pmod{6} \\ \left[\frac{p}{6}\right] , & \text{if } j \equiv 1 \pmod{6} \\ \left[\frac{p}{6}\right] , & \text{if } j \equiv 2,3,4,5 \pmod{6} \end{cases}$

Proof: Consider the grid graph $G = P_5 X P_i$, $j \ge 5$, with $V(G) = \{v_{11}, \dots, v_{1j}, v_{21}, \dots, v_{2j}, v_{31}, \dots, v_{3j}, v_{41}, \dots, v_{4j}, v_{51}, \dots, v_{5j}\}$ and it contains 5 rows.

Case (i): Let $j \equiv 0 \pmod{6}$. Consider the set $|S| = \frac{p}{\epsilon}$ $S = \{v_{21}, v_{22}, ...\}$ with . Now, $|N[S]| = 3|S| + 2 = \frac{p}{2} + 2 \ge \left\lfloor \frac{p}{2} \right\rfloor$. $\therefore S$ is a majority dominating set of G. Since every vertex of S is of distance one, the induced subgraph (5) of S is connected. # 5 is a connected majority dominating set of G. Then $\gamma_{CM}(G) \le |S| = \frac{p}{6}$ (1)Suppose, let $S' = S - \{v\}$ with $|S'| = \frac{p}{\epsilon} - 1$.

Then $|N[S']| = 3|S'| - 3 = \frac{p}{2} - 6 < \left[\frac{p}{2}\right] \Longrightarrow S'$ would not be a MD set of G and $\therefore \gamma_{CM}(G) > |S'| = \frac{p}{6} - 1$. Hence

$$\gamma_{CM}(G) \ge \frac{p}{6}$$
⁽²⁾

From (1) and (2) $\gamma_{GM}(G) = \frac{p}{6}$, if $j \equiv 0 \pmod{6}$. we get,

Case (ii): Let $i \equiv 1 \pmod{6}$. Consider the set $S = \{v_{22}, v_{23}, ...\}$ with $|S| = \left|\frac{p}{6}\right|$ Now, $|N[S]| = 3|S| + 2 = 3\left[\frac{p}{6}\right] + 2 = \frac{p}{2} + 2 \ge \left[\frac{p}{2}\right] \implies S \text{ is a MD}$ set of G. Since every vertex of S is of distance one, S is a CMD set of G. Then

$$\gamma_{\rm CM}(G) < |S| = \left|\frac{p}{6}\right| \tag{3}$$

Suppose $S' = S - \{v\}$ with $|S'| = \left|\frac{p}{s}\right| - 1$. Applying the same argument as in case (i), we get 5' would not be a MD set of G.

$$\therefore \gamma_{GM}(G) > |S'| = \left|\frac{p}{6}\right| - 1 \tag{4}$$

From (3) and (4) we get, $\gamma_{CM}(G) = \left[\frac{p}{6}\right]$, if $j \equiv 1 \pmod{6}$

Case(iii): Let $j \equiv 2,3,4,5 \pmod{6}$. Consider the set with $|S| = \frac{P}{C}$ $S = \{v_{22}, v_{23}, ...\}$.Now $|N[S]| = 3 |S| + 2 = \frac{p}{2} + 2 > \left[\frac{p}{2}\right] \implies S \text{ is a MD set of } G.$ Since every vertex of S is of distance one, S is a CMD set of G.

$$\therefore \gamma_{GM}(G) \le |S| = \left\lfloor \frac{p}{6} \right\rfloor$$
(5)

©ijarcs.info, 2015-19, all rights reserved

CONFERENCE PAPER National Conference dated 27-28 July 2017 on Recent Advances in Graph Theory and its Applications (NCRAGTA2017) **Organized by Dept of Applied Mathematics** Sri Padmawati Mahila Vishvavidyalayam (Women's University) Tirupati, A.P.,

India

Applying the same argument as in case (i), we get
$$\gamma_{CM}(G) \ge \left| \frac{P}{6} \right|$$
 (6)

From (5) and (6) we get,

$$\gamma_{CM}(G) = \begin{vmatrix} p \\ c \end{vmatrix}$$
, if $j \equiv 2,3,4,5 \pmod{6}$.

Corollary 2.6

For a grid $G = P_6 X P_i$, $j \ge 6$,

$$\gamma_{CM}(G) = \begin{cases} \frac{p}{6} , & \text{if } j \equiv 0 \pmod{6} \\ \left[\frac{p}{6}\right] , & \text{if } j \equiv 1,5 \pmod{6} \\ \left[\frac{p}{6}\right] , & \text{if } j \equiv 2,3,4 \pmod{6} \end{cases}$$

III. CMD NUMBER FOR CYLINDER AND TORUS GRAPHS

Proposition 3.1

- 1. For a Cylinder $G = C_3 X P_j$, $\gamma_{CM} (C_3 X P_j) = \left\lfloor \frac{p}{6} \right\rfloor$ for $j \ge 2$.
- 2. For a Torus $G = C_3 X C_j$, $\gamma_{CM}(C_3 X C_j) = \begin{bmatrix} p \\ 6 \end{bmatrix}$ for $j \ge 3$

Proof:

1. Let $G = C_3 X P_j$, $j \ge 2$. Let $V(G) = \{v_{11}, v_{12}, \dots, v_{1j}, v_{21}, \dots, v_{2j}, v_{21}, \dots, v_{3j}\}$. Consider a subset S of V(G) such that $S = \{v_{12}, v_{12}, \dots, v_{1t}\}$ with $|S| = \left\lfloor \frac{p}{6} \right\rfloor$. Then $|N[S]| = \sum_{j=1}^{t} d(v_{1j}) - |S| + 2 = 3 \left\lfloor \frac{p}{6} \right\rfloor + 2 > \left\lfloor \frac{p}{2} \right\rfloor$. \Rightarrow S is a MD set of G. Since every vertex of S is of distance one, S is a CMD set of G. Then applying the same argument as in Theorem 2.3, we get $\gamma_{CM}(G) = \left\lfloor \frac{p}{6} \right\rfloor$.

2. Let $G = C_3 X C_j$, $j \ge 3$ be the 4-regular graph. Let $V(G) = \{v_{11}, v_{12}, \dots, v_{1j}, v_{21}, \dots, v_{2j}, v_{31}, \dots, v_{3j}\}$. Consider the set $S \subseteq V(G)$ as $S = \{v_{12}, v_{13}, \dots, v_{1t}\}$ with $|S| = \left\lfloor \frac{p}{6} \right\rfloor$. Then $|N[S]| = \sum_{j=1}^{t} d(v_{1j}) - |S| + 2 = 3 \left\lfloor \frac{p}{6} \right\rfloor + 2 > \left\lfloor \frac{p}{2} \right\rfloor$. Applying the same argument as in Theorem 2.3, we get $\gamma_{CM}(G) = \left\lfloor \frac{p}{6} \right\rfloor$.

Example 3.2 Consider the graph $G = C_3 X P_5$. Here |V(G)| = p = 15, $S = \{v_{12}, v_{13}\}$ is a CMD set of G. Hence, $\therefore \gamma_{CM}(G) = 2 = \lfloor \frac{15}{6} \rfloor$

Example 3.3 Consider the graph $G = C_3 X C_5$. Here |V(G)| = p = 15, $S = \{v_{11}, v_{12}\}$ is a CMD set of G. Hence,

Corollary 3.4

- 1. For a cylinder $G = C_4 X P_j$, $\gamma_{CM}(C_4 X P_j) = \left|\frac{p}{6}\right|$ for $j \ge 2$.
- 2. For a Torus $G = C_4 X C_j$, $\gamma_{CM}(C_4 X C_j) = \begin{bmatrix} p \\ 6 \end{bmatrix}$ for $j \ge 3$.

Proposition 3.5

1. For a cylinder
$$G = C_5 X P_j$$
, $j \ge 5$,

$$\gamma_{GM}(G) = \begin{cases} \frac{p}{6} & , if j \equiv 0 \pmod{6} \\ \left\lceil \frac{p}{6} \right\rceil & , if j \equiv 1 \pmod{6} \\ \left\lceil \frac{p}{6} \right\rceil & , if j \equiv 2,3,4,5 \pmod{6} \end{cases}$$

2. For a Torus
$$G = C_5 X C_j$$
, $j \ge 5$,

$$\gamma_{CM}(G) = \begin{cases} \frac{p}{6} & \text{, if } j \equiv 0 \pmod{6} \\ \left[\frac{p}{6}\right] & \text{, if } j \equiv 1 \pmod{6} \\ \left|\frac{p}{6}\right| & \text{, if } j \equiv 2,3,4,5 \pmod{6} \end{cases}$$

IV. CMD NUMBER FOR GENERALIZED PETERSEN GRAPH

Result 4.1 For a Petersen graph with p = 10, q = 15, $\therefore \gamma_{CM}(G) = 2 = \left\lfloor \frac{p-1}{4} \right\rfloor$.

Definition 4.2 For each $n \ge 3$ and 0 < k < n, P(n, k) denotes the Generalized Petersen graph with vertex set $V(G) = \{u_1, u_2 \dots u_n, v_1, v_2, \dots v_n\}$ and the edge set $E(G) = \{u_i u_{i+1(mod n)}, u_i v_i, v_{i+k(mod n)}\}$, $1 \le i \le n$.

Theorem 4.3 For a generalized Petersen graph G = P(n, 1), $\gamma_{CM}(G) = \left[\frac{n}{2}\right] - 1$.

©ijarcs.info, 2015-19, all rights reserved

Proof: Let us consider the vertices of the generalized Petersen graph $\mathbf{G} = \mathbf{P}(\mathbf{n}, \mathbf{1})$ can be partitioned into two sets V_1 and V_2 such that $V = V_1 \cup V_2$ where the inner polygon has the vertex set as $V_1 = \{v_1, v_2, ..., v_n\}$ and the outer polygon has the vertex set as $V_2 = \{u_1, u_2, ..., u_n\}$.

Let
$$|V(G)| = p = 2n$$
. Consider the set $S \subseteq V$ such that
 $S = \{v_1, v_2, \dots, v_{\left\lceil \frac{n}{2} \right\rceil - 1}\}$ with $|S| = \left\lceil \frac{n}{2} \right\rceil - 1$ or $|S| = \left\lfloor \frac{p-1}{4} \right\rfloor$.
Now, let $|N[S]| = \sum_{i=1}^{\left\lceil \frac{n}{2} \right\rceil - 1} d(v_i) - (|S| - 2)$
 $= 2\left(\left\lceil \frac{n}{2} \right\rceil - 1\right) + 2 = \lceil n \rceil \ge \left\lceil \frac{p}{2} \right\rceil$

∴ S is a MD set of G.

Since every vertex of S are of distance one, S is a CMD set of G.

$$\gamma_{CM}(G) \le |S| = \left\lceil \frac{n}{2} \right\rceil - 1 \tag{1}$$

Now, let $S' = S - \{v\}$ with $|S'| = \left(\left\lceil \frac{n}{2} \right\rceil - 1\right) - 1$. Then,

$$|N[S']| = \sum_{i=1}^{\lfloor 2 \rfloor^{-2}} d(v_i) - (|S| - 2) = 2\left(\left\lfloor\frac{n}{2}\right\rfloor - 2\right) + 2 = n - 2 < \left\lfloor\frac{p}{2}\right\rfloor.$$

 \therefore **S'** would not be a MD set of G.

$$\Rightarrow \gamma_{CM}(G) > |S'| = \left\lceil \frac{n}{2} \right\rceil - 2 \tag{2}$$

From (1) and (2) we get,

 $\gamma_{CM}(G) = \left\lfloor \frac{n}{2} \right\rfloor - 1 \text{ or } \gamma_{CM}(G) = \left\lfloor \frac{p-1}{4} \right\rfloor.$

Corollary 4.4 For a generalized Petersen graph G = P(n, 2), $\gamma_{CM}(G) = \left| \frac{p-1}{4} \right|$.

Corollary 4.5 For a generalized Petersen graph G = P(n, 3), $\gamma_{CM}(G) = \left| \frac{p-1}{4} \right|$.

Corollary 4.6 For cubic graphs Grinberge and Tutte graph with p = 46, the CMD number for these graphs are $\gamma_{CM}(G) = 11 = \left| \frac{p-1}{4} \right|$.

Corollary 4.7 For all cubic graphs the CMD number $\gamma_{CM}(G) = \left\lfloor \frac{p-1}{4} \right\rfloor$

V. BOUNDS FOR $\gamma_{CM}(G)$

Proposition 5.1 Let H be a connected spanning subgraph of a graph G. Then $\gamma_{CM}(G) \leq \gamma_{CM}(H)$.

Proposition 5.2 For any tree G with $p \ge 3$ vertices, $\left[\frac{p}{2}\right] - e \le \gamma_{CM}(G) \le p - e$.

Proof Let G be a tree of order $p \ge 3$ with e^{t} end vertices. Case(i): If the graph G has the end vertices $e < \left[\frac{p}{2}\right]$, then $\gamma_{CM}(G) = \left[\frac{p}{2}\right] - e$.

Case(ii): If the graph G has the end vertices $e \ge \left|\frac{p}{2}\right|$, then $\gamma_{CM}(G) \le p - e$.

The bounds are sharp. For example, let $G = S(K_{1,10})$. Then $\gamma_{CM}(G) = 1 = \left\lfloor \frac{p}{2} \right\rfloor - e$.

And let $= K_{1,10}$. Then $\gamma_{CM}(G) = 1 = p - e$.

Corollary 5.3 For a product graph, the lower and upper bounds are $\begin{bmatrix} \underline{p} \\ \underline{s} \end{bmatrix} \le \gamma_{GN}(G) \le \begin{bmatrix} \underline{p} \\ \underline{s} \end{bmatrix}$. These bounds are sharp. For example, 1. Let $G = P_2 X P_{13}$. Then $\gamma_{GN}(G) = 6 = \begin{bmatrix} \underline{p} \\ \underline{s} \end{bmatrix}$.

2. Let
$$G = C_4 X P_7$$
. Then $\gamma_{GM}(G) = 4 = \left\lfloor \frac{p}{6} \right\rfloor$.

Proposition 5.4 For any graph G, $\gamma_M(G) \le \gamma_{CM}(G) \le \gamma_C(G)$. For example, 1. let $G = K_p$, a Complete graph of $p \ge 2$. Then $\gamma_M(G) = \gamma_{CM}(G) = \gamma_C(G)$.

2. For a Caterpillar G, with p = 22, $\gamma_M(G) = 3$, $\gamma_{CM}(G) = 5$ and $\gamma_C(G) = 11$. Hence we get the inequality as $\gamma_M(G) < \gamma_{CM}(G) < \gamma_C(G)$.

VI. CONCLUSION

In this article, researcher thus introduced and discussed a new type of Domination parameter of a graph G. Connected Majority Domination number $\gamma_{CM}(G)$ is defined and it is determined for some classes of product graphs. Then bounds of $\gamma_{CM}(G)$ and Connected Majority Domination number for generalized Petersen graph are also established.

VII. REFERENCES

- E. Sampathkumar and H.B. Walikar, "The connected domination number of a graph", Jour, Math, Phy, Sci. Vol.13 No.6, pp. 607-613 (1979)
- [2] E.J. Cockayane and S.T. Hedetniemi, "Towards a theory of domination in graphs", Networks. 7, pp. 247-261, (1977).

©ijarcs.info, 2015-19, all rights reserved

- [3] Frank Harary, *Graph theory*, Addision-Wesley, Reading, Mass., (1972).
- [4] J. Joseline Manora and T. Muthukani Vairavel, "Connected Majority Dominating Set of a Graph", Global Journal of Pure and Applied Mathematics Volume 13, Number 2, pp. 534-543 (2017)
- [5] J. Joseline Manora and V. Swaminathan, "Majority Dominating sets", J A R J; Vol.3, No.2, pp.75-82, (2006)
- [6] J. Joseline Manora and V. Swaminathan, "Results on Majority Dominating sets", Scientia Magna, Northwest University, Xitan, P.R China, Vol. 7, No. 3, pp. 53-58, (2011)
- [7] T.W Haynes, S.T Hedetniemi and P.J Slater, Fundamentals of domination in graphs, Marces Dekker. Inc, New york, (1998).