
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4499

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

SURVEY PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 853

ISSN No. 0976-5697

A COMPARATIVE STUDY OF DATA PARTITIONING IN FREQUENT ITEMSET
MINING ON HADOOP MAPREDUCE CLUSTERS

Dr .E.Mary Shyla

Assistant Professor, Department of Computer Science
Sri Ramakrishna College of Arts and Science

Coimbatore, India

Jitha Janardhanan
MPhil Research Scholar, Department of Computer Science

Sri Ramakrishna college of Arts and Science
Coimbatore, India

Abstract: Distributed parallel algorithms for mining frequent balanced itemsets aims to load by equally dividing data among a collection of
computing nodes. Over the history, frequent itemsetsbased parallel algorithm methods have been illustrated in the literature. In this comparative
study aims to present a study of Frequent pattern mining techniques deviations among in Hadoop MapReduce concepttunder the data mining
techniques that are in use in large database transactions broadcasted among computing nodes. Number of comparative studies has been
performed to assess the performance of MapReduce cases and the outcome discloses that Spark Framework with advanced load balancing
strategy having better performance than other predictive methods like Apriori, Randomized algorithms.

Keywords:Data Mining, Frequent Pattern Mining, Hadoop, Spark.

1. INTRODUCTION

Data mining is the extraction of unknown predictive
information from huge databases, is a controlling new
technology with great prospective to help corporations as
well as research hub on the majority significant information
in their data warehouses. Data mining tools forecast future
developments and behaviors, allowing businesses to make
practical, knowledge-driven judgments. Mining frequent
itemset in distributed environment is a distributed problem
and must be performed using a distributed algorithm that
does not need raw data exchange between participating sites
[1].

Distributed data mining is the operation of data mining in
distributed data sets. According to [2], two dominant
architectures exist in the distributed environments which are
listed as distributed and shared memory architectures. In
distributed memory each processor has a private DB or
memory and has access to it. In this architecture, access to
other local DB is possible only via message exchange. This
architecture offers a simple programming method, where
limited bandwidth may reduce the scalability. In distributed
memory each processor has a private DB or memory and has
access to it. In this architecture, access to other local DB is
possible only via message exchange..

A basic necessity for mining association rules is mining
frequent itemsets. Numerous algorithms exist for frequent
itemset mining. Apriori and FP-Growth are the traditional
method. Apriori is an algorithm for frequent item set mining
and association rule learning over transactional databases. It
proceeds by recognizing the frequent individual items in the
database and widening them to larger item sets providing
those item sets appear adequately often in the database. It
works with Candidate Generation and Test Approach.FP-
Growth is used to overcome the problem of candidate
generation. FP-growth is a program to find frequent item sets
with the FP-growth algorithm, which corresponds to the
transaction database as a prefix tree which is enhanced with
links that organize the nodes into lists referring to the same

item. The search is carried out by prognostic the prefix tree,
working recursively on the result, and trimming the original
tree. The implementation also supports shifting for closed
and maximal item sets with conditional item set repositories,
although the approach used in the program differs in as far as
it used top-down prefix trees rather than FP-trees. FP-growth
condense a large database into a compact, Frequent-Pattern
tree (FP-tree) structure with highly reduced, but complete for
frequent pattern mining and avoid costly database scans. It
develops an efficient, FP-tree-based frequent pattern mining
method with a divide-and-conquer methodology which
decomposes mining tasks into smaller ones and avoids
candidate generation. The disadvantage of this algorithm
consists in the TID_set being too long, taking considerable
memory space as well as computation time for intersecting
the long sets. This algorithm does not hold incremental data
mining. FrequentItemsets Mining (FIM) is a center issue in
association rule mining (ARM), grouping mining, and so
forth.

In this paper, we explore strategies for parallel Frequent

Itemset Mining techniques based on distributed Hadoop
Clusters. Such representations have been usually used to
partition the input domain of the system being tested, which
in turn is used to choose and create clusters so as to attain
certain strategies for partition coverage. Such models are
widely applied for distributed database applications and are
therefore a natural and a practical choice in our context.

2. RELATED WORK

S. Sakr, A. Liu, and A. G. Fayoumi [3] discussed
theconstant increase of computational power has created a
great flow of data which has called for a model shift in the
computing architecture and large dimensional data
processing systems. MapReduce is easy and controlling
programming model that permits simple development of
scalable parallel submissions to process vast amounts of data
on large clusters of commodity machines. It separates the

Jitha Janardhanan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,853-856

© 2015-19, IJARCS All Rights Reserved 854

submission from the details of running a distributed program
such as issues on data distribution, allocation and liability
tolerance. However, the innovative implementation of the
MapReduce structure had some restrictions that have been
attempted by many research efforts in more than a fewfollow
up works after its introduction. This article presented a
comprehensive survey for a group of advances and
mechanisms of large scale data processing mechanisms that
have been implemented based on the unique idea of the
MapReduce structure and are currently gaining a lot of
momentum in both research and manufacturing communities.
They also cover a set of introduced schemes that have been
implemented to present declarative programming interfaces
on peak of the MapReduce framework.

M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh[4] proposed to

improve the presentation of the Apriori-like frequent itemset
mining algorithms.It is differentiated by mutually map and
reduce functions, MapReduce has appeared and excels in the
mining of datasets of terabyte scale or larger in moreover
homogeneous or heterogeneous clusters. Reducing the
allocation overhead of every map-reduce phase and
maximizing the deployment of nodes in every phase are keys
to flourishing MapReduce implementations. In this paper,
authors presented three kind of algorithms, named SPC, FPC,
and DPC to examinesuccessfulexecution of the Apriori
algorithm in the MapReduce framework. In the DPC
attributes in dynamically merging candidates of different
lengths and outperforms together the straight-forward
algorithm SPC and the predetermined passes joint counting
algorithm FPC.

X. Lin [5] proposed aconventional Association Rules

algorithm has calculating power shortage in dealing with
huge datasets. In order to conquer these difficulties a
distributed association rules algorithm based on MapReduce
programming model named MR-Apriori is proposed. In this
paper, authors introduced the MapReduce programming
framework of Hadoop platform and Apriori algorithm of data
mining proposed the detailed process of MR-Apriori
algorithm. Theoretical and experimental outcomes
demonstrated MR-Apriori algorithm create a sharp enhance
in efficiency.

A. Arcuri and L. Briand[6] discussed a frequent itemset

mining (FIM) plays an necessary function in mining
associations, connections and many other significant data
mining tasks. Unfortunately, as the amount of dataset gets
bigger day by day, most of the FIM algorithms in literature
become unsuccessful suitable to also too huge resource
constraints or too much communication cost. The authors
proposed a balanced parallel FP-Growth algorithm BPFP,
based on the PFP algorithm, which parallelizes FP-Growth in
the MapReduce approach. BPFP appends into PFP load
balance feature, which advances parallelization and thereby
get better performance. Through empirical study, BPFP
outperformed the PFP which uses some simple grouping
approach.

M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal

[7] presented an optimal randomized parallel technique for
mining Frequent Itemsets and Association Rules. The authors
presentedmining algorithm, PARMA, attains near-linear

accelerate while avoiding costly duplication of data. PARMA
does this by generating multiple tiny random samples of the
transactional dataset and running a mining algorithm on the
samples separately and in parallel. The resultant collections
of Frequent Itemsets or Association Rules from every sample
are combined and filtered to present a single collection in
output. Since PARMA mines random subsets of the dataset,
the ending result is a rough calculation of the precise
solution. The concluding probabilistic analysis showed that
PARMA provided fixed guarantees on the excellence of the
approximation. The end user identifies accuracy and
confidence parameters and PARMA calculates an
approximation of the group of interest that assures these
parameters. The authors planned and implemented the
algorithm in the MapReduce parallel computation
framework.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng[8]

discussed the era of “Big Data” there is a capable need to
enlargement enormous data set using huge cluster structure.
Anyway, lacking the right approaches to hold the data, it is
demanding to gain a good presentation from the system. In
this paper authors discussed many Input/output and
implementation scheduling strategies for parallel data mining
submission has been investigated. The objective is to
determine strategies that balance the data processing load and
enhanced operate a multi-core cluster system for data mining
application. Problems that impact the performance have been
explored. The experimental results demonstrate that a
significant performance improvement can be obtained
particularly with a multi-core cluster system when a proper
Input/output and job execution progression scheduling has
been employed.

Y. Xun, J. Zhang, and X. Qin[9] designed a parallel

frequent itemsets mining algorithm called FiDoopwith
MapReduce programming model. To achieve compressed
storage space and avoid building provisional pattern bases,
FiDoopintegrates the frequent items ultra metric tree, quite
than conventional FP trees. In FiDoop, three MapReduce
jobs are executed to finish the mining job. In the vital third
MapReduce job, the mappers separately decompose itemsets,
the reducers execute combination operations by building
asmall ultra metric trees, and the concrete mining of these
trees independently. To implement FiDoop on in-house
Hadoop cluster. They demonstrated that FiDoop on the
cluster is responsive to data distribution and sizes, because
itemsets with dissimilar lengths have different decomposition
and building costs. To improve FiDoop's performance, to
expand a workload balance metric to compute load balance
across the cluster's computing nodes.

Yue Liu, Kang Wang, Wang Wei, Bofeng Zhang,

HailinZhong [10] discussed a k nearest neighbor join (kNN
join), considered to searchk nearest neighbors from a dataset
S for every object in an additional dataset R, is
aancientprocessextensively adopted by many data mining
applications. As a grouping of the k nearest neighbor query
and the joint operation, kNN join is an expensive operation.
Given the increasing volume of data, it is difficult to perform
a kNN join on a centralized machine efficiently. In this
paper, authors investigated how to executekNN join using
MapReduce which is a well-accepted structure for data-

Jitha Janardhanan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,853-856

© 2015-19, IJARCS All Rights Reserved 855

intensive applications over clusters of computers. In brief,
the mappers cluster objects into groups; the reducers execute
the kNNconnect on all collection of objects separately. To
intend an effective mapping methods that exploits pruning
rules for distance filtering, and hence reduces both the
shuffling and computational costs. To reduce the shuffling
cost, authors proposed two approximate algorithms to
minimize the number of replicas. Extensive experiments on
our in-house cluster demonstrate that our proposed methods
are efficient, robust and scalable.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,

and I. Stoica[11] discussed MapReduce and its alternatives
have been highly successful in implementing large-scale
data-intensive applications on commodity clusters. However,
most of these systems are building around an acyclic data
flow model that is not appropriate for other accepted
applications. This paper focused on one such class of
applications: those that reuse a working set of data across
multiple parallel operations. This includes many iterative
machine learning algorithms, as well as interactive data
analysis tools. The authors proposed a new framework called
Spark that supports these applications while retaining the

scalability and fault tolerance of MapReduce. To achieve
these goals, Spark introduces an abstraction called resilient
distributed datasets (RDDs). An RDD is a read-only
collection of objects partitioned across a set of machines that
can be rebuilt if a partition is lost. Spark can outperform
Hadoop by 10x in iterative machine learning jobs, and can be
used to interactively query a 39 GB dataset with sub-second
response time.

3. COMPARISON ANALYSIS

This paper aims to collect and consider papers that deal
with Data Partitioning in Frequent Itemset Mining on
Hadoop Clusters techniques. Our objective is not to
undertake a logical review, but quite to provide a broad state-
of-the-art view on these related fields. Many different
approaches have been projected to assist FrequentItemset
Mining, which has mentioned in a body of literature that is
spread over a wide variety of fields and periodical locations.
The majority of comparison study has been available in Big
data domain, and particularly in the in Frequent Itemset
Mining on Hadoop clusters maintenance literature.

Table 1: SUMMARY TABLE FOR COMPARISON OF DATA PARTITIONING IN FREQUENT ITEMSET MINING

ON HADOOP MAPREDUCE CLUSTERS TECHNIQUES

Title Algorithm Key-Idea Techniques Results Performance
Apriori-based
frequent itemset
mining algorithms
on mapreduce [4]

Apriori based
DPC

DPC: Dynamic
Passes Combined-
counting a balance
between reducing
the number of
map-reduce
phases.

Frequent
Item Mining

Dynamically
collects candidates
of variable lengths
for counting by
mappers according
to the number of
candidates and the
Execution time.

To identify
execution time
performs 89 %
better.

MR-Apriori:
Association Rules
Algorithm Based on
MapReduce [5]

Distributed
association rules
algorithm

Computing power
shortage in dealing
with massive
datasets.

Data mining;
MapReduce;
Hadoop

MR-Apriori
algorithm has
better performance
on mining frequent
itemsets from the
mass data.

Execution time in
larger nodes is
45%.

Balanced parallel
FP-growth with
mapreduce [6]

Balanced
Parallel FP-
Growth

Parallelizes FP-
Growth in the
MapReduce
approach

Distributed
computing
and
MapReduce

Improves
performance of the
original PFP
algorithm by
balancing load of
the parallel FP-
Growth phase.

FP-Growth has a
great influence on
50% performance
of the algorithm.

Parma: A parallel
randomized
algorithm for
approximate
association rules
mining in
MapReduce [7]

Frequent
Itemsets and
Association
Rules Mining
(FIM)

Minimizing data
replication and
Communication
cost

Random
Sampling
Approach

The presence
makes the
distribution more
robust to outliers

30-55% runtime
improvement over
Parallel FP-Growth
(PFP).

FiDoop: Parallel
mining of frequent
itemsets using
MapReduce [9]

Parallel frequent
itemsets mining
algorithm (PFM)

Automatic
parallelization,
data distribution,
and fault tolerance
on large clusters.

Hadoop
cluster, load
balance,
MapReduce

To improve the
performance of
FiDoop by
balancing I/O load
across data nodes
of a cluster

Increases
communication
overhead between
mappers and
reducers.

Spark: Cluster Spark Retaining the Logistic To (re)construct the Useful in

Jitha Janardhanan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,853-856

© 2015-19, IJARCS All Rights Reserved 856

Computing with
Working Sets [11]

Framework with
resilient
distributed
datasets

scalability and
fault tolerance of
MapReduce

Regression dataset from data
available in reliable
storage.

developing other
abstractions for
programming
clusters.

Figure.1: Comparison of Method and its efficiency

4. CONCLUSION

This paper presents acomparative study of the various
Frequent Mining Algorithm in MapReduce techniques
deviations for Parallel distributed data(Big Data) discussed
with the different categories in which algorithms can be
classified (i.e., Apriori, Balanced Parallel FP-Growth,
Frequent Itemsets and Association Rules Mining (FIM),
Parallel frequent itemsets mining algorithm (PFM) and Spark
Framework).The discussionis concludedon MapReduce
Clusters algorithms with PFMby a comparative study with
Spark Framework category. The concept of Hadoop clusters
which proves to be the most important criteria for Utility
mining is also been discussed here.

The further work enhanced andexpanded for the
automation of Enhanced FM deviations for Spark framework
using Distributed advanced load balancing algorithm.

5. REFERENCES

[1] E Ansari, M.keshatkaran march 2008,Distributed Trie

Frequent Itemset Mining, IMECS Vol II
[2] Mohammed j zaki Parallel and distributed association mining

:A survey
[3] S. Sakr, A. Liu, and A. G. Fayoumi, “The family of

mapreduce and large-scale data processing systems,” ACM
Comput. Surveys, vol. 46, no. 1, p. 11, 2013.

[4] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based
frequent itemset mining algorithms on mapreduce,” in Proc.
6th Int.Conf. Ubiquitous Inform. Manag. Commun., 2012, pp.
76:1–76:8.

[5] X. Lin, “Mr-apriori: Association rules algorithm based on
mapreduce,” in Proc. IEEE 5th Int. Conf. Softw. Eng. Serv.
Sci., 2014, pp. 141–144.

[6] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng,
“Balanced parallel FP-growth with mapreduce,” in Proc.
IEEEYouth Conf. Inform. Comput. Telecommun., 2010, pp.
243–246.

[7] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal,
“Parma: A parallel randomized algorithm for approximate
association rules mining in mapreduce,” in Proc. 21st ACM
Int. Conf. Informa. Knowl. Manag., 2012, pp. 85–94.

[8] P. Uthayopas and N. Benjamas, “Impact of i/o and execution
scheduling strategies on large scale parallel data mining,” J.
Next Generation Inform. Technol., vol. 5, no. 1, p. 78, 2014.

[9] Y. Xun, J. Zhang, and X. Qin, “Fidoop: Parallel mining of
frequent itemsets using mapreduce,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 46, no. 3, pp. 313–325, Mar. 2016, doi:
10.1109/TSMC.2015.2437327.

[10] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing
of k nearest neighbour joins using mapreduce,” Proc. VLDB
Endowment, vol. 5, no. 10, pp. 1016–1027, 2012.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,” in
Proc. 2nd USENIX Conf. Hot Topics Cloud Comput., 2010,
p. 10.

	1. INTRODUCTION
	2. RELATED WORK
	3. COMPARISON ANALYSIS
	4. CONCLUSION

