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Abstract: Distributed parallel algorithms for mining frequent balanced itemsets aims to load by equally dividing data among a collection of 
computing nodes. Over the history, frequent itemsetsbased parallel algorithm methods have been illustrated in the literature. In this comparative 
study aims to present a study of Frequent pattern mining techniques deviations among in Hadoop MapReduce concepttunder the data mining 
techniques that are in use in large database transactions broadcasted among computing nodes. Number of comparative studies has been 
performed to assess the performance of  MapReduce cases and the outcome discloses that Spark Framework with advanced load balancing 
strategy  having better performance than other predictive methods like Apriori, Randomized algorithms. 
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1. INTRODUCTION 
 

Data mining is the extraction of unknown predictive 
information from huge databases, is a controlling new 
technology with great prospective to help corporations as 
well as research hub on the majority significant information 
in their data warehouses. Data mining tools forecast future 
developments and behaviors, allowing businesses to make 
practical, knowledge-driven judgments. Mining frequent 
itemset in distributed environment is a distributed problem 
and must be performed using a distributed algorithm that 
does not need raw data exchange between participating sites 
[1]. 

Distributed data mining is the operation of data mining in 
distributed data sets. According to [2], two dominant 
architectures exist in the distributed environments which are 
listed as distributed and shared memory architectures. In 
distributed memory each processor has a private DB or 
memory and has access to it. In this architecture, access to 
other local DB is possible only via message exchange. This 
architecture offers a simple programming method, where 
limited bandwidth may reduce the scalability. In distributed 
memory each processor has a private DB or memory and has 
access to it. In this architecture, access to other local DB is 
possible only via message exchange.. 

A basic necessity for mining association rules is mining 
frequent itemsets. Numerous algorithms exist for frequent 
itemset mining. Apriori and FP-Growth are the traditional 
method. Apriori is an algorithm for frequent item set mining 
and association rule learning over transactional databases. It 
proceeds by recognizing the frequent individual items in the 
database and widening them to larger item sets providing 
those item sets appear adequately often in the database. It 
works with Candidate Generation and Test Approach.FP-
Growth is used to overcome the problem of candidate 
generation. FP-growth is a program to find frequent item sets 
with the FP-growth algorithm, which corresponds to the 
transaction database as a prefix tree which is enhanced with 
links that organize the nodes into lists referring to the same 

item. The search is carried out by prognostic the prefix tree, 
working recursively on the result, and trimming the original 
tree. The implementation also supports shifting for closed 
and maximal item sets with conditional item set repositories, 
although the approach used in the program differs in as far as 
it used top-down prefix trees rather than FP-trees. FP-growth 
condense a large database into a compact, Frequent-Pattern 
tree (FP-tree) structure with highly reduced, but complete for 
frequent pattern mining and avoid costly database scans. It 
develops an efficient, FP-tree-based frequent pattern mining 
method with a divide-and-conquer methodology which 
decomposes mining tasks into smaller ones and avoids 
candidate generation. The disadvantage of this algorithm 
consists in the TID_set being too long, taking considerable 
memory space as well as computation time for intersecting 
the long sets. This algorithm does not hold incremental data 
mining. FrequentItemsets Mining (FIM) is a center issue in 
association rule mining (ARM), grouping mining, and so 
forth. 

 
In this paper, we explore strategies for parallel Frequent 

Itemset Mining techniques based on distributed Hadoop 
Clusters. Such representations have been usually used to 
partition the input domain of the system being tested, which 
in turn is used to choose and create clusters so as to attain 
certain strategies for partition coverage. Such models are 
widely applied for distributed database applications and are 
therefore a natural and a practical choice in our context. 

 
2. RELATED WORK 
 

S. Sakr, A. Liu, and A. G. Fayoumi [3] discussed 
theconstant increase of computational power has created a 
great flow of data which has called for a model shift in the 
computing architecture and large dimensional data 
processing systems. MapReduce is easy and controlling 
programming model that permits simple development of 
scalable parallel submissions to process vast amounts of data 
on large clusters of commodity machines. It separates the 
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submission from the details of running a distributed program 
such as issues on data distribution, allocation and liability 
tolerance. However, the innovative implementation of the 
MapReduce structure had some restrictions that have been 
attempted by many research efforts in more than a fewfollow 
up works after its introduction. This article presented a 
comprehensive survey for a group of advances and 
mechanisms of large scale data processing mechanisms that 
have been implemented based on the unique idea of the 
MapReduce structure and are currently gaining a lot of 
momentum in both research and manufacturing communities. 
They also cover a set of introduced schemes that have been 
implemented to present declarative programming interfaces 
on peak of the MapReduce framework.  

 
M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh[4] proposed to 

improve the presentation of the Apriori-like frequent itemset 
mining algorithms.It is differentiated by mutually map and 
reduce functions, MapReduce has appeared and excels in the 
mining of datasets of terabyte scale or larger in moreover 
homogeneous or heterogeneous clusters. Reducing the 
allocation overhead of every map-reduce phase and 
maximizing the deployment of nodes in every phase are keys 
to flourishing MapReduce implementations. In this paper, 
authors presented three kind of algorithms, named SPC, FPC, 
and DPC to examinesuccessfulexecution of the Apriori 
algorithm in the MapReduce framework. In the DPC 
attributes in dynamically merging candidates of different 
lengths and outperforms together the straight-forward 
algorithm SPC and the predetermined passes joint counting 
algorithm FPC. 

 
X. Lin [5] proposed aconventional Association Rules 

algorithm has calculating power shortage in dealing with 
huge datasets. In order to conquer these difficulties a 
distributed association rules algorithm based on MapReduce 
programming model named MR-Apriori is proposed. In this 
paper, authors introduced the MapReduce programming 
framework of Hadoop platform and Apriori algorithm of data 
mining proposed the detailed process of MR-Apriori 
algorithm. Theoretical and experimental outcomes 
demonstrated MR-Apriori algorithm create a sharp enhance 
in efficiency. 

 
A. Arcuri and L. Briand[6] discussed a frequent itemset 

mining (FIM) plays an necessary function in mining 
associations, connections and many other significant data 
mining tasks. Unfortunately, as the amount of dataset gets 
bigger day by day, most of the FIM algorithms in literature 
become unsuccessful suitable to also too huge resource 
constraints or too much communication cost. The authors 
proposed a balanced parallel FP-Growth algorithm BPFP, 
based on the PFP algorithm, which parallelizes FP-Growth in 
the MapReduce approach. BPFP appends into PFP load 
balance feature, which advances parallelization and thereby 
get better performance. Through empirical study, BPFP 
outperformed the PFP which uses some simple grouping 
approach. 

 
M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal 

[7] presented an optimal randomized parallel technique for 
mining Frequent Itemsets and Association Rules. The authors 
presentedmining algorithm, PARMA, attains near-linear 

accelerate while avoiding costly duplication of data. PARMA 
does this by generating multiple tiny random samples of the 
transactional dataset and running a mining algorithm on the 
samples separately and in parallel. The resultant collections 
of Frequent Itemsets or Association Rules from every sample 
are combined and filtered to present a single collection in 
output. Since PARMA mines random subsets of the dataset, 
the ending result is a rough calculation of the precise 
solution. The concluding probabilistic analysis showed that 
PARMA provided fixed guarantees on the excellence of the 
approximation. The end user identifies accuracy and 
confidence parameters and PARMA calculates an 
approximation of the group of interest that assures these 
parameters. The authors planned and implemented the 
algorithm in the MapReduce parallel computation 
framework. 

 
S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng[8] 

discussed the era of “Big Data” there is a capable need to 
enlargement enormous data set using huge cluster structure. 
Anyway, lacking the right approaches to hold the data, it is 
demanding to gain a good presentation from the system. In 
this paper authors discussed many Input/output and 
implementation scheduling strategies for parallel data mining 
submission has been investigated. The objective is to 
determine strategies that balance the data processing load and 
enhanced operate a multi-core cluster system for data mining 
application. Problems that impact the performance have been 
explored. The experimental results demonstrate that a 
significant performance improvement can be obtained 
particularly with a multi-core cluster system when a proper 
Input/output and job execution progression scheduling has 
been employed. 

 
Y. Xun, J. Zhang, and X. Qin[9] designed a parallel 

frequent itemsets mining algorithm called FiDoopwith 
MapReduce programming model. To achieve compressed 
storage space and avoid building provisional pattern bases, 
FiDoopintegrates the frequent items ultra metric tree, quite 
than conventional FP trees. In FiDoop, three MapReduce 
jobs are executed to finish the mining job. In the vital third 
MapReduce job, the mappers separately decompose itemsets, 
the reducers execute combination operations by building 
asmall ultra metric trees, and the concrete mining of these 
trees independently. To implement FiDoop on in-house 
Hadoop cluster. They demonstrated that FiDoop on the 
cluster is responsive to data distribution and sizes, because 
itemsets with dissimilar lengths have different decomposition 
and building costs. To improve FiDoop's performance, to 
expand a workload balance metric to compute load balance 
across the cluster's computing nodes. 

 
Yue Liu, Kang Wang, Wang Wei, Bofeng Zhang, 

HailinZhong [10] discussed a k nearest neighbor join (kNN 
join), considered to searchk nearest neighbors from a dataset 
S for every object in an additional dataset R, is 
aancientprocessextensively adopted by many data mining 
applications. As a grouping of the k nearest neighbor query 
and the joint operation, kNN join is an expensive operation. 
Given the increasing volume of data, it is difficult to perform 
a kNN join on a centralized machine efficiently. In this 
paper, authors investigated how to executekNN join using 
MapReduce which is a well-accepted structure for data-
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intensive applications over clusters of computers. In brief, 
the mappers cluster objects into groups; the reducers execute 
the kNNconnect on all collection of objects separately. To 
intend an effective mapping methods that exploits pruning 
rules for distance filtering, and hence reduces both the 
shuffling and computational costs. To reduce the shuffling 
cost, authors proposed two approximate algorithms to 
minimize the number of replicas. Extensive experiments on 
our in-house cluster demonstrate that our proposed methods 
are efficient, robust and scalable. 

 
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, 

and I. Stoica[11] discussed MapReduce and its alternatives 
have been highly successful in implementing large-scale 
data-intensive applications on commodity clusters. However, 
most of these systems are building around an acyclic data 
flow model that is not appropriate for other accepted 
applications. This paper focused on one such class of 
applications: those that reuse a working set of data across 
multiple parallel operations. This includes many iterative 
machine learning algorithms, as well as interactive data 
analysis tools. The authors proposed a new framework called 
Spark that supports these applications while retaining the 

scalability and fault tolerance of MapReduce. To achieve 
these goals, Spark introduces an abstraction called resilient 
distributed datasets (RDDs). An RDD is a read-only 
collection of objects partitioned across a set of machines that 
can be rebuilt if a partition is lost. Spark can outperform 
Hadoop by 10x in iterative machine learning jobs, and can be 
used to interactively query a 39 GB dataset with sub-second 
response time. 

 
3. COMPARISON ANALYSIS 
 

This paper aims to collect and consider papers that deal 
with Data Partitioning in Frequent Itemset Mining on 
Hadoop Clusters techniques. Our objective is not to 
undertake a logical review, but quite to provide a broad state-
of-the-art view on these related fields. Many different 
approaches have been projected to assist FrequentItemset 
Mining, which has mentioned in a body of literature that is 
spread over a wide variety of fields and periodical locations. 
The majority of comparison study has been available in Big 
data domain, and particularly in the in Frequent Itemset 
Mining on Hadoop clusters maintenance literature. 

 
Table 1: SUMMARY  TABLE FOR COMPARISON OF DATA PARTITIONING IN FREQUENT ITEMSET MINING 

ON HADOOP MAPREDUCE CLUSTERS TECHNIQUES 
 

Title Algorithm Key-Idea Techniques Results Performance 
Apriori-based 
frequent itemset 
mining algorithms 
on mapreduce [4] 

Apriori based 
DPC 

DPC: Dynamic 
Passes Combined-
counting a balance 
between reducing 
the number of 
map-reduce 
phases.  

Frequent 
Item Mining 

Dynamically 
collects candidates 
of variable lengths 
for counting by 
mappers according 
to the number of 
candidates and the 
Execution time. 

To identify 
execution time 
performs 89 % 
better. 

MR-Apriori: 
Association Rules 
Algorithm Based on 
MapReduce [5] 

Distributed 
association rules 
algorithm 

Computing power 
shortage in dealing 
with massive 
datasets. 

Data mining; 
MapReduce; 
Hadoop 

MR-Apriori 
algorithm has 
better performance 
on mining frequent 
itemsets from the 
mass data. 

Execution time in 
larger nodes is 
45%. 

Balanced parallel 
FP-growth with 
mapreduce [6] 

Balanced 
Parallel FP-
Growth 

Parallelizes FP-
Growth in the 
MapReduce 
approach 

Distributed 
computing 
and 
MapReduce 

Improves 
performance of the 
original PFP 
algorithm by 
balancing load of 
the parallel FP-
Growth phase. 

FP-Growth has a 
great influence on 
50% performance 
of the algorithm. 

Parma: A parallel 
randomized 
algorithm for 
approximate 
association rules 
mining in 
MapReduce [7] 

Frequent 
Itemsets and 
Association 
Rules Mining 
(FIM) 

Minimizing data 
replication and 
Communication 
cost 

Random 
Sampling 
Approach 

The presence 
makes the 
distribution more 
robust to outliers 

30-55% runtime 
improvement over 
Parallel FP-Growth 
(PFP). 

FiDoop: Parallel 
mining of frequent 
itemsets using 
MapReduce [9] 

Parallel frequent 
itemsets mining 
algorithm (PFM) 

Automatic 
parallelization, 
data distribution, 
and fault tolerance 
on large clusters. 

Hadoop 
cluster, load 
balance, 
MapReduce 

To improve the 
performance of 
FiDoop by 
balancing I/O load 
across data nodes 
of a cluster 

Increases 
communication 
overhead between 
mappers and 
reducers. 

Spark: Cluster Spark Retaining the Logistic To (re)construct the Useful in 



Jitha Janardhanan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,853-856 

© 2015-19, IJARCS All Rights Reserved       856 

Computing with 
Working Sets [11] 

Framework with 
resilient 
distributed 
datasets 

scalability and 
fault tolerance of 
MapReduce 

Regression dataset from data 
available in reliable 
storage. 

developing other 
abstractions for 
programming 
clusters. 

 

 
Figure.1: Comparison of Method and its efficiency 

 
4. CONCLUSION 
 

This paper presents acomparative study  of the various 
Frequent Mining Algorithm in MapReduce techniques 
deviations for Parallel distributed data(Big Data) discussed 
with the different categories in which algorithms can be 
classified (i.e., Apriori, Balanced Parallel FP-Growth, 
Frequent Itemsets and Association Rules Mining (FIM), 
Parallel frequent itemsets mining algorithm (PFM) and Spark 
Framework).The discussionis concludedon MapReduce 
Clusters algorithms with PFMby a comparative study with 
Spark Framework category. The concept of Hadoop clusters 
which proves to be the most important criteria for Utility 
mining is also been discussed here. 

The further work enhanced andexpanded for the 
automation of Enhanced FM deviations for Spark framework 
using Distributed advanced load balancing algorithm.  
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