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Abstract: Thedy has introduced the subject of rings which satisfy the identity [(R, R, R), R] = 0 and which satisfy one additional identity such as 
(x, x, x) = 0. By assuming char. ≠ 2, 3 and simplicity, Thedy proved that R must be either commutative or associative. Kleinfeld proved that the 
additional identity assumed by Thedy is not necessary. Using Kleinfeld’s method, Suvarna et.al prove that if R is a simple ring of char. ≠ 3 
satisfying [(R, R, R), R] = 0, then   (x, x, x) = 0 for all x in R. From this  R is either commutative or associative. This paper gives an alter proof of 
suvarna’s method. 
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INTRODUCTION 
Throughout this paper R represents a nonassociative ring 
satisfying the identity[(R, R, R), R] = 0.                                   
(1)        
A ring R is simple if A is an ideal of R, then either A = 0 or A 
= R. A ring is of char. ≠ n if nx = 0 implies x = 0 for every x in 
R and n a natural number. The nucleus N(R) of a ring R is the 
set of all elements n in R such that  (n, R, R) = (R, n, R) = (R, 
R, n) = 0. The center U of R is defined as  U = {u ∈ R/[u, R] = 
0}. From (1) it follows that all associators are in the center U. 
In every arbitrary ring the following identities are satisfied: 
[xy, z] + [yz, x] + [zx, y] = (x, y, z) + (y, z, x) + (z, x, y),   (2) 
(wx, y, z) – (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z, (3) 
    and  
[xy, z] =  x[y, z] + [x, z]y + (x, y, z) + (z, x, y) – (x, z, y).   
(4)First we prove the following properties of R. 
Lemma 1 :   If R satisfies [(R, R, R), R] = 0 and V = {v ∈ U/vR 
⊂ U}, then V is an ideal of R such that (x, y, v) ∈ V and (v, y, 
x) ∈ V for v ∈ U and all x, y in R. 
Proof :  Since V ⊂ U it is sufficient to show V is a right ideal. 
Let v ∈ V. Then for all r, s ∈ R, vr ∈ U follows from the 
definition of V. Since (1) implies (v, r, s) ∈ U and (vr)s = (v, r, 
s) + v(rs) ∈ U, it follows that vr ∈ V. Thus V is a right ideal 
and hence it is an ideal of R. 
From (3) and (1), we get 
z(x, y, v) = (zx, y, v) – (z, xy, v) + (z, x, yv) – (z, x, y)v ∈ U. 
Similarly we get  
 z(v, y, x) = (v, y, x)z ∈ U. 

Hence (x, y, v) ∈ V and (v, y, x) ∈ V. 
Lemma 2 :  The canonical homomorphism of R onto R/V 

maps U into the center of R/V. 

Proof :  Let x, y ∈ R and v ∈ U. We know that [x, v] = 0,  
(x, y, v) ∈ V and (v, y, x) ∈ V from Lemma 1. Therefore from 
(4), we get  
   (x, v, y) = (x, y, v) + (v, x, y) – [xy, v] + [x, v]y + x[y, v] 
                = (x, y, v) + (v, x, y) ∈ V.                                                  

Lemma 3 : (x, y, z)3 ≡ (x, x, x) (y, y, y) (z, z, z) mod V. 

Proof :  Since U is mapped into the center of R/V, we have 
modulo V, that 

 (x, y, z)3 ≡ (x, y, z) (x(x, y, z), y, z) 
     ≡ – (x, y, z) ((x, x, y)z, y, z) 
     ≡ – (x(x, x, y), y, z) (z, y, z) 
     ≡ (x, x, x) (y, y, z) (z, y, z). 
Now 
(y, y, z) (z, y, z) ≡    (z(y, y, z), y, z)   ≡ – ((z, y, y)z, y, z)  
                          ≡ – (z, (z, y, y)y, z)  ≡    (z, z(y, y, y), z) 
                                                         ≡  (y, y, y) (z, z, z). 
Therefore  (x, y, z)3 = (x, x, x) (y, y, y) (z, z, z) mod V. 
 Now we prove the additional identity (x, x, x) = 0 
assumed by Thedy. 
Theorem 1 : If R is a simple ring of char. ≠ 3 satisfying 
 [(R, R, R), R] = 0, then (x, x, x) = 0 for all x in R. 

Proof : We assume that R is not commutative. Hence V ≠ R. 
Since R is simple, then because of the Lemma 1, we are 
reduced to the case V = 0. By commuting each term in (3) with 
r and using (1), we obtain 
 [w(x, y, z), r] =  – [(w, x, y)z, r] = – [z(w, x, y), r]. 
By permuting (wyzx) cyclically, we obtain 
[w(x, y, z), r] =  – [z(w, x, y), r] =  [y(z, w, x), r]  =  – [x(y, z, 
w), r].                                         ( 5) 
By substituting y = x and z = a in (4), where a is an arbitrary 
associator and using (1), we get  
 (x, x, a) + (a, x, x) – (x, a, x) = 0. 
Now multiplying the terms with x on left and commuting with 
z, we obtain 
 [x(x, x, a) + x(a, x, x) – x(x, a, x), z] = 0.                 (6) 
 Using (5) in (6), we have 

–  [a(x, x, x), z] –  [a(x, x, x), z] – [a(x, x, x), z] = 0, 
that is, –3[a(x, x, x), z] = 0. Since R is of char. ≠ 3, this implies  
 [a(x, x, x), z] = 0. 
Now we replace a with (b, c, d). Then we have 
 [(b, c, d)(x, x, x), z] = 0. Using (1), we can write it as 
 [(x, x, x)(b, c, d), z] = 0.                                     (7)  
By applying (5) to (7), we obtain 
[b(c, d, (x, x, x)), z] = 0 = [c(d, (x, x, x), b), z] =  [d((x, x, x), b, 
c), z]. 
This and (1) prove that (c, d, (x, x, x)) ∈ V, (d, (x, x, x), b) ∈ V  
and 
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((x, x, x), b, c) ∈ V. Since V = 0, (x, x, x) must be in the nucleus 
N(R) of R. Now we substitute x = r, y = s and z = (x, x, x) in 
(2). Using (x, x, x) ∈ N(R) and (1), we obtain 
 [(x, x, x)r, s)] = – [s(x, x, x), r] = [rs, (x, x, x)] = 0. 
So (x, x, x)r ∈ U. That is, (x, x, x) ∈ V. Since V = 0, it follows 
that      (x, x, x) = 0.     
Now we prove Thedy’s result without additional condition. 
 
Theorem 2: Let R be a simple ring of char. ≠ 3 satisfying   
[(R, R, R), R] = 0.   Then R is either commutative or associative. 

Proof : The ideal V of Lemma 1 is contained in the center U of 
R. Since R is simple either V = R or V = 0. In the first case R is 
commutative. Next we consider the case V = 0. From Theorem 
1 and Lemma 3, we have (x, y, z)3 = 0. Thus the associators are 
in the center and are nilpotent. Therefore R(x, y, z) is a 
nilpotent ideal of R. Hence R(x, y, z) = 0. This implies that 

 (x, y, z) ∈ V. Since V = 0, it follows that (x, y, z) = 0. 
Hence R is associative.  
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