

**International Journal of Advanced Research in Computer Science** 

**RESEARCH PAPER** 

Available Online at www.ijarcs.info

## **RINGS WITH ASSOCIATORS IN THE COMMUTATIVE CENTER**

K. Madhu sudhan Reddy

Department Of Mathematics, School of Advanced Scieces, VIT University

Vellore 632014, Tamil Nadu

**Abstract**: Thedy has introduced the subject of rings which satisfy the identity [(R, R, R), R] = 0 and which satisfy one additional identity such as (x, x, x) = 0. By assuming char.  $\neq 2$ , 3 and simplicity, Thedy proved that *R* must be either commutative or associative. Kleinfeld proved that the additional identity assumed by Thedy is not necessary. Using Kleinfeld's method, Suvarna et.al prove that if *R* is a simple ring of char.  $\neq 3$  satisfying [(R, R, R), R] = 0, then (x, x, x) = 0 for all *x* in *R*. From this *R* is either commutative or associative. This paper gives an alter proof of suvarna's method.

*Keywords*: Simple ring, center, char.  $\neq n$ ., nucleus

## **INTRODUCTION**

Throughout this paper R represents a nonassociative ring satisfying the identity[(R, R, R), R] = 0.

(1)

A ring *R* is simple if *A* is an ideal of *R*, then either A = 0 or A = R. A ring is of char.  $\neq n$  if nx = 0 implies x = 0 for every *x* in *R* and *n* a natural number. The nucleus N(R) of a ring *R* is the set of all elements *n* in *R* such that (n, R, R) = (R, n, R) = (R, R, n) = 0. The center *U* of *R* is defined as  $U = \{u \in R/[u, R] = 0\}$ . From (1) it follows that all associators are in the center *U*. In every arbitrary ring the following identities are satisfied: [*xy*, *z*] + [*yz*, *x*] + [*zx*, *y*] = (*x*, *y*, *z*) + (*y*, *z*, *x*) + (*z*, *x*, *y*), (2) (*wx*, *y*, *z*) - (*w*, *xy*, *z*) + (*w*, *x*, *yz*) = *w*(*x*, *y*, *z*) + (*w*, *x*, *y*)*z*, (3) and

[xy, z] = x[y, z] + [x, z]y + (x, y, z) + (z, x, y) - (x, z, y).(4)First we prove the following properties of *R*.

*Lemma 1*: If *R* satisfies [(R, R, R), R] = 0 and  $V = \{v \in U/vR \subset U\}$ , then *V* is an ideal of *R* such that  $(x, y, v) \in V$  and  $(v, y, x) \in V$  for  $v \in U$  and all *x*, *y* in *R*.

**Proof**: Since  $V \subset U$  it is sufficient to show V is a right ideal. Let  $v \in V$ . Then for all  $r, s \in R, vr \in U$  follows from the definition of V. Since (1) implies  $(v, r, s) \in U$  and  $(vr)s = (v, r, s) + v(rs) \in U$ , it follows that  $vr \in V$ . Thus V is a right ideal and hence it is an ideal of R.

From (3) and (1), we get

 $z(x, y, v) = (zx, y, v) - (z, xy, v) + (z, x, yv) - (z, x, y)v \in U.$ Similarly we get

 $z(v, y, x) = (v, y, x)z \in U.$ 

Hence  $(x, y, v) \in V$  and  $(v, y, x) \in V$ .

*Lemma 2* : The canonical homomorphism of R onto R/V maps U into the center of R/V.

**Proof**: Let  $x, y \in R$  and  $v \in U$ . We know that [x, v] = 0,  $(x, y, v) \in V$  and  $(v, y, x) \in V$  from Lemma 1. Therefore from (4), we get

$$(x, v, y) = (x, y, v) + (v, x, y) - [xy, v] + [x, v]y + x[y, v]$$
$$= (x, y, v) + (v, x, y) \in V.$$

*Lemma 3*:  $(x, y, z)^3 \equiv (x, x, x) (y, y, y) (z, z, z) \mod V.$ 

**Proof**: Since U is mapped into the center of R/V, we have modulo V, that

©ijarcs.info, 2015-19, all rights reserved

$$(x, y, z)^{3} \equiv (x, y, z) (x(x, y, z), y, z)$$
  
$$\equiv -(x, y, z) ((x, x, y)z, y, z)$$
  
$$\equiv -(x(x, x, y), y, z) (z, y, z)$$
  
$$\equiv (x, x, x) (y, y, z) (z, y, z).$$

Now

 $(y, y, z) (z, y, z) \equiv (z(y, y, z), y, z) \equiv -((z, y, y)z, y, z)$  $\equiv -(z, (z, y, y)y, z) \equiv (z, z(y, y, y), z)$  $\equiv (y, y, y) (z, z, z).$ 

Therefore  $(x, y, z)^3 = (x, x, x) (y, y, y) (z, z, z) \mod V$ . Now we prove the additional identity (x, x, x) = 0 assumed by Thedy.

**Theorem 1 :** If R is a simple ring of char.  $\neq$  3 satisfying [(R, R, R), R] = 0, then (x, x, x) = 0 for all x in R.

**Proof**: We assume that *R* is not commutative. Hence  $V \neq R$ . Since *R* is simple, then because of the Lemma 1, we are reduced to the case V = 0. By commuting each term in (3) with *r* and using (1), we obtain

[w(x, y, z), r] = -[(w, x, y)z, r] = -[z(w, x, y), r].By permuting (wyzx) cyclically, we obtain [w(x, y, z), r] = -[z(w, x, y), r] = [y(z, w, x), r] = -[x(y, z, w), r].(5) By substituting y = x and z = a in (4), where a is an arbitrary associator and using (1), we get

(x, x, a) + (a, x, x) - (x, a, x) = 0.

Now multiplying the terms with x on left and commuting with z, we obtain

$$[x(x, x, a) + x(a, x, x) - x(x, a, x), z] = 0.$$
 (6)  
Using (5) in (6), we have

- [a(x, x, x), z] - [a(x, x, x), z] - [a(x, x, x), z] = 0,

that is, -3[a(x, x, x), z] = 0. Since *R* is of char.  $\neq 3$ , this implies [a(x, x, x), z] = 0.

Now we replace a with (b, c, d). Then we have

$$[(b, c, d)(x, x, x), z] = 0. \text{ Using (1), we can write it as} [(x, x, x)(b, c, d), z] = 0.$$
(7)

By applying (5) to (7), we obtain

[b(c, d, (x, x, x)), z] = 0 = [c(d, (x, x, x), b), z] = [d((x, x, x), b, c), z].

This and (1) prove that  $(c, d, (x, x, x)) \in V$ ,  $(d, (x, x, x), b) \in V$ and



 $((x, x, x), b, c) \in V$ . Since V = 0, (x, x, x) must be in the nucleus N(R) of R. Now we substitute x = r, y = s and z = (x, x, x) in (2). Using  $(x, x, x) \in N(R)$  and (1), we obtain

[(x, x, x)r, s)] = -[s(x, x, x), r] = [rs, (x, x, x)] = 0.So  $(x, x, x)r \in U$ . That is,  $(x, x, x) \in V$ . Since V = 0, it follows that (x, x, x) = 0.

Now we prove Thedy's result without additional condition.

**Theorem 2:** Let *R* be a simple ring of char.  $\neq$  3 satisfying [(R, R, R), R] = 0. Then *R* is either commutative or associative.

**Proof**: The ideal V of Lemma 1 is contained in the center U of R. Since R is simple either V = R or V = 0. In the first case R is commutative. Next we consider the case V = 0. From Theorem 1 and Lemma 3, we have  $(x, y, z)^3 = 0$ . Thus the associators are in the center and are nilpotent. Therefore R(x, y, z) is a nilpotent ideal of R. Hence R(x, y, z) = 0. This implies that

 $(x, y, z) \in V$ . Since V = 0, it follows that (x, y, z) = 0. Hence *R* is associative. **References:** 

- Kleinfeld, E. "Rings with associators in the commutative center", Proc. Amer. Math. Soc., 104 (1988), 10–12.
- (2) Thedy, A. "On rings satisfying [(*a*, *b*, *c*), *d*] = 0", Proc.Amer. Math. Soc., 29, (1971), 213–218.
- (3) K.Suvarna and K.Madhusudhan Reddy, "Rings with
  - associators in the center", J. Pure & Appl. Phys., Vol. 22, No. 4, Oct – Dec, 2010, pp. 669–670

CONFERENCE PAPER National Conference dated 27-28 July 2017 on Recent Advances in Graph Theory and its Applications (NCRAGTA2017) Organized by Dept of Applied Mathematics Sri Padmawati Mahila Vishvavidyalayam (Women's University) Tirupati, A.P., India