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Abstract: Let  be a 2 and 3-torsion free non-commutative prime ring and  be a nonzero ideal of . Suppose there exist a symmetric reverse 
bi-derivations  and   such that , for all , where  and  are 
the traces of  and  respectively. In this case either  or   and    be a 2-torsion free semiprime ring and  be a nonzero 
ideal of . Let  be a symmetric reverse bi-derivation such that . If  is a trace of  such that 

, for all , then  on . 
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I. INTRODUCTION  

The concept of a symmetric bi-derivation was introduced by 
Gy.Maksa[2, 3]. It was shown in [3] and [6] the symmetric bi-
derivations are related to general solution of some functional 
equations. Some results in symmetric bi-derivations in prime 
and Semiprime rings can be found in [4, 5, 7]. The notation of 
additive commuting mappings are closely connected with the 
notation of bi-derivations. Every commuting bi-additive 
mapping  givesrise to a bi-derivation on . Asma 
Ali, V. De Filippis and Faiza Shujat [1] has studied some 
results concerning symmetric generalized bi-derivations of 
prime and semiprime rings. In this paper, we proved some 
results concerning on ideals with symmetric reverse bi-
derivations on prime and Semiprime rings. 

Throughout this paper  will be associative. We shall 
denote by  the center of a ring . Recall that a ring  is 
prime if  implies that either  or  and it 
is a semiprime if  implies .  

We shall write for  and use the 
identities . An 
additive map  is called derivation if 

,  for all . A mapping 
 is said to be symmetric if , 

for all . A mapping  defined 
by , where  is a symmetric 
mapping, is called a trace of B. It is obvious that, in case 

 is symmetric mapping which is also bi-
additive (i. e. additive in both arguments) the trace of  
satisfies the relation , for 
all . We shall use the fact that the trace of a symmetric 
bi-additive mapping is an even function. A symmetric bi-
additive mapping  is called a symmetric bi-
derivation if , for all . 
Obviously, in this case also the 
relation , for all . A 
symmetric bi-additive mapping  is called a 

symmetric reverse bi-derivation if 
, for all . Obviously, in 

this case also the relation , for 
all . A mapping  is said to be commuting on 

 if , for all . A mapping  is said to 
be centralizing on  if , for all . A ring  
is said to be n-torsion free if whenever , with , 
then , where  is nonzero integer. 
Lemma 1:[5, Lemma 1] Let  be a derivation, where  
is a prime ring. Suppose that either (i) , for all  
or (ii) , for all  holds. In both the cases we have 

 or . 
Lemma 2: Let  be a 2-torsion free non-commutative prime 
ring and  be a nonzero ideal of . If  be a 
symmetric reverse bi-derivation and  be a trace of  such that 

, for all  then .  
Proof: We have , for all .          
                                                            
(1) 
We replace  by  in (1), we get  

  
  

By using (1) in the above equation we get  
Since  is 2-torsion free, which implies that,  

, for all .           
                                              
(2) 
We replace  by  in (2), we get  

  
  

By using (2) in the above equation we get  
, for all  and .    

                                              
(3) 
We replace  by  in (3), we get 
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By using (3) in the above equation we get  
, for all  and . 

, for all  and . 
Since  is prime and non commutative ring, which implies  

, for all .   
Theorem 1: Let  be a 2 and 3-torsion free prime ring. 
Suppose there exist a symmetric reverse bi-derivations 

 and   such that 
, for all , where  and  are the traces of 

 and  respectively. In this case either  or .  
Proof: We have , for all .                                                                                                              
                                                                                                       
(4) 
We replace  by  in (4), we get  

  
  

  
By using (4) in the above equation we get  

 , for all .                                                                          (5) 
We replace  by  in (5), we get  

  

, for all .                                                                          (6)     
By adding (5) and (6) we get 

, for all 
.                                                                                       (7) 

By subtracting (6) from (5) we get  

, for all .                                                                          (8) 
We replace  by  in (8), we get  

  

  

, for all .                                                                           (9) 
By subtracting (8) from (9), we get  

  
, for all .                                                                                  

                                                                                                     (10) 
 

,for all .                 (11) 
We replace  by  in (10), we get    

  

  

  
By using (11) in the above equation we get  

   

   
   

, for all .                                               
                                                                                                  (12) 
We replace in particular  in (12), we get  

  
, for all .                                                                                      

                                                                                                    (13) 
Let us assume that  and  both different from zero. In this case 
there exist  such that ; otherwise  would be 
zero by theorem 4 in [4]. Since , it follows from 
(13) and Lemma 1 that  (Note that  is an 
inner derivation). That is  

  
, for all .                                                                                                 

                                                                                                         (14) 
Now left multiplication of (4) by  gives us  

  
By using (14) in the above equation we get  

, for all .                                                                                                                
                                                                                                         (15) 
From (15) it follows that either  or  by the 
primeness of . But   cannot be zero since ; 
hence we have  . 
Now we replace  by  in (10), we get  

  
, for all .                                                                                                

                                                                                                         (16) 
From (16) and Lemma 1 we conclude that , for all 

, since  (recall that  is a derivation).  
Now we replace  by  in (7), we get  

  
, for all .                                                                                                    

                                                                                                         (17) 
We replace  by  in (17), we get 

  
  

By using (17) in the above equation we get  
  

, for all , which implies  according 
to Lemma 1, since . But  is contrary to our 
assumption. This contradiction completes the proof.  
Theorem 2: Let  be a 2 and 3-torsion free semiprime ring. Suppose 
there exist a symmetric reverse bi-derivation  such 
that , for all , where  is the trace of . In this 
case .  
Proof: We have , for all .                                         
                                                            (18) 
We replace  by  in (18), we get  

  
  

  
By using (18) in the above equation, we get  

, for all .                                                            
                                                                                                        (19) 
We replace  by  in (19), we get  
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, for all .                                                           
                                                                                                       (20)     
By adding (19) and (20), we get 

, for all .                                
                                                                                        (21) 
By subtracting (20) from (19), we get  

, for 
all .                                                                            (22) 
We replace  by  in (22), we get  

  

  
, 

for all .                                                                           (23) 
By subtracting (22) from (23), we get  

  
, for all .                                                           

                                                                                    (24) 
 and ,  

for all .                                                                           (25) 
We replace  by  in (24), we get    

  
  

  
By using (25) in the above equation, we get  

   

   
   

, for all .                                                    
                                                                                                 (26) 
We replace in particular  in (26), we get  

  
, for all .                                                                                  

                                                                                                 (27) 
Let us assume that  different from zero. In this case there exist 

 such that . Since , it follows 
from (27) and Lemma 1,  

, for all .                                                          
                                                   (28) 
We replace  by  in (24), we get  

  
  

, for 
all .   
By using (18) and (25) in the above equation, we get  

  
, for all .   

By using (28) in the above equation, we get  
, for all . 

Since  is semiprime, which implies that , for all .                     
                                                                 (29)       
We replace  by  in (29), we get   

  
, for all .  

By using (29) in the above equation, we get  
, for all .   

Theorem 3: Let  be a 2-torsion free non-commutative prime ring 
and  be a nonzero ideal of . Suppose there exist a symmetric 
reverse bi-derivations  and   
such that , for all  holds, where  and  are 
the traces of  and  respectively. In this case either  or  

.  
Proof: We have from (13) of Theorem 1, 

, for all .           
We replace  by  in above equation, we get  

  
  

By using (13) in the above equation, we get  
, for all . This implies that 

, for all . Primeness of  
yields that either   or , for all 

. If , for all , then conclusion follows 
from by theorem 4 in [4]. Now consider the case when 

, for all . Primeness of  yields that 
, for all .     

                                                         (30) 
We replace  by  in (30), we get  

  
  

  
By using (30) in the above equation, we get  

, for all .   
, for all .                             

                                                           (31) 
We replace  by  in (31), we get 

  
  

  

  
By using (31) in the above equation, we get  

, for all .   
                                                          (32) 
We replace  by  in (32), we get  

  
, for all .          

                                           (33) 
We replace  by  in (33), we get  

  
  

By using (33) in the above equation, we get   
, for all . Since  is noncommutative 

prime ring, which implies that , for all . 
Application of Lemma 2 gives that .  
Theorem 4: Let  be a 2-torsion free semiprime ring and  be a 
nonzero ideal of . Let  be a symmetric reverse bi-
derivation such that . If  is a trace of  such that 

, for all , then  on . 
Proof: We have , for all .               
                                                          (34) 
We replace  by  in (34), we get  

  
  

 
By using (34) in the above equation, we get 

, 
for all .                                                                               (35) 
We replace  by  in (35), we get 

  



C.Jaya Subba Reddy, et al, International Journal of Advanced Research in Computer Science, 8 (6), July 2017 (Special Issue III),130-133 

©ijarcs.info, 2015-19, all rights reserved   133 

 CONFERENCE PAPER  
National Conference dated 27-28 July 2017 on 

Recent Advances in Graph Theory and its Applications (NCRAGTA2017) 
Organized by Dept of Applied Mathematics 

Sri Padmawati Mahila Vishvavidyalayam (Women’s University) Tirupati, A.P., 
India 

 

 , for all .                                                                            (36) 
By adding (35) and (36), we get  

  
, for all .                    

                                                          (37) 
We replace  by  in (37), we get 

  
  

  

  

, for all .                      
                                       (38) 
We multiply (37) by  on left hand side, we get 

, for all .                                                              
                                                                                                   (39) 
Subtract (39) from (38), we get 

, for all .                                                                     (40) 
We replace  by  in (37), we get 

, for all .                    
                                                       (41) 
By multiplying (41) by on right hand side, we get 

, for all .              
                                                       (42) 
Subtract (42) from (40), we get  

, for all 
.                                                                                  (43) 

We replace  by  and  by  in (43), we get 

, for all 
.                                                                                  (44) 

By adding (43) and (44), we get  
  

Since  is 2-torsion free, we have   
, for all .                                                          

                                                                                                   (45) 
We replace  by  and  by  in (45), we get 

  
  

  
, for all .  

Hence theorem 2 completes the proof.      
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