
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 479

ISSN No. 0976-5697

 Extracting Information from Template Based Web Pages using Attribute Matching

Patterns and Position Details

B.Venkat Ramana*
Computer Science Department, MIPGS, HYD

Research Scholar JNIAS, JNTUH

 Hyderabad, India

 venkatbhavanasi@gmail.com

Prof A. Damodaram
Department of Computer Science

JNTUH

 Hyderabad, India

damodarama@jntuh.ac.in

Abstract: To extract structured data from web sites we recommend a new method for information extraction from web, which effectively uses

content redundancy on the web. To start with, we extract records from the initial web sites and populate the seed database with the records. For a

new extracted record, our method will compare it with the already available records in the seed database. We define a new matching technique

that helps to match records with deferent representations across the sites. This new method finds the matching pattern between the attribute

values of the two sites and ignores unwanted portions of the attribute. We developed an algorithm to find the attribute position details with

sufficient matching values across pages. Finally we have done some experimental study with web data to know the effectiveness of our

extraction approach.

Keywords: Information Extraction; Template WebPages; Pattern Matching; Data Position; Content Matching.

I. INTRODAUCTION

Web pages can be broadly classified as static and
dynamic pages. The content and style of static pages does not
change often. Where as the dynamic pages are generated
when they are requested and change their content very often.
Now a day’s most pages on the web are generated by loading
fixed page templates with data from a backend database.
Previous studies estimate that as high as 45-55% of the
content on the web is template content [1]. Youtube.com,
amazon.com, cnn.com are some of the popular template
based web sites.

Template based pages contain information about real
world entities like products (name, price, description, etc.),
books (title, author, price, publisher, etc.), restaurants (name,
address, phone, etc.), business (address, phone, contact-
person, etc.). Extracting and integrating such information
from different web sites and populating seed database with
this information, so that users can query for required
information is an interesting and demanding problem in the
field of web information extraction. Our idea is to extract
records from all the template based sites that belong to a
specific group such as restaurants, books, business which
contains attribute values for a specific real world entity.

 In this paper we present a new approach to extract
records from multiple template based websites. Our method
delivers high accuracy with minimal human intervention.
One of the properties of template based sites is that multiple
sites contain pages for the same entity [2]. Further, the values
of attributes across the various pages for an entity are similar.
It implies that there is redundant content across websites. We
use this content redundancy by using extraction form one site
to identify attribute values in the pages of overlapping
entities in another site. The other property is that pages with
in a website have a similar structure conforming to a
common template. It implies that attribute values occur at
fixed positions within pages of a site. Once we find the
attribute value in a few pages, easily we can find the
positions, and use this to extract values form other pages of
the site. as well, for math, etc.

II. EASE OF USE

A. Our Approach

From a few initial sites we populate the seed database S
of records. By using wrapper learning method human editors
annotate attribute values in a sample page for each site. Since
the sites are template based, a new site Xi which belongs to
the group of similar sites, X will have same type of entities
that are there in the seed database. Now we can scan the new
site to find values that match attribute values of the records.
The matching values are used to learn wrappers that are
subsequently used to extract records from remaining other
pages. This process is repeated for other new sites. This
approach is largely un-supervised except for a few initial
sites. By continuously expanding the seed database it ensures
that sufficient overlap between the seed database and new
sites.

Our extraction approach is based on the two properties
that are mentioned above. The challenge to follow the first
property is that, in practical, the entity attribute values can
vary between sites due to data entry errors, abbreviations,
deferent representations, etc and during extraction, this can
lead to attribute vale match going undetected. The second
challenge is that most of the web pages contain noisy and
unwanted values that can lead to incorrect attribute value
matching. These problems can be explained by an example,
inspired by a real-world data.

The seed database R in figure-1(a) contains two records
r1 and r2 with details name and address of the restaurants in
city Hyderabad. Now the two restaurant pages p1 and p2
extracted from a new website represents the same
information that is there in seed database R in almost similar
way. The record r1 and page p1 refer to the same real world
entity. The name attributes, “Hotel Holiday In” is spelled as
“Hotel Holiday Inn” in pages p1 and p2. Similarly in the
address attribute, the term “Street” is abbreviated to “St” in
p2. Now if we use Jaccard coefficient [3] to measure the
similarity between attribute values, where each value is
treated as a block of words with space as a delimiter.

B.Venkat Ramana, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 479-484

© 2010, IJARCS All Rights Reserved 480

For any given two sets s1 and s2 the Jaccard similarity is

defined as JC (s1, s2) = (|s1 s2|)/(|s1 s2|) Due to the

different conventions for recording the address attribute, the
Jaccard similarity between the address values in r1 and p1
belonging to the same entity is only 6 /13, which is less than
0.5. In contrast, the nearest transit value at the bottom of p1
has a higher similarity score of 4 /8 with the address value in
r1. Similarly, the name values in r1 and p1 have a similarity
score of only 1 /3, while the string “Hotel Holiday In” under
“Related Hotels:” in p1 has a similarity of 1 with the name
value in r2. Thus, extraneous values at the bottom of p1 have
much higher similarity scores with name and address values
in the seed records which can lead to false positive matches.

Figure: 1 (a) Seed Database; (b) Page p1; (c) Page p2.

B. Our Contibutions

The above mentioned problems can be overcome by a
new extraction approach that uses content redundancy over
the websites and structural similarity among template based
pages to extract attribute values with high precision and with
minimum human intervention.

To cope with different attribute formatting conventions
across sites, we define a new similarity function. Our new
function leverages the fact that attribute values in template-
based pages have a templatized structure and uses this to
improve matching accuracy. Our proposed metric discovers
repeating patterns among the matching portions of attribute
value pairs from two sites, and uses this to filter out non-
matching portions when computing the similarity score
between attribute value pairs. In Figure 1, our similarity
function detects that the lines beginning with “(between” are
extraneous across the address values in p1 and p2, and so
ignores them when matching the values with addresses in the
seed database. This boosts the similarity scores (Jaccard
similarity = 3/ 4) between address values in pages p1 and p2,
and their corresponding values in records r1 and r2,
respectively, and ensures that they are matched correctly.
Thus, our new similarity metric is able to match attribute
values (with diverse representations) belonging to the same
entity while keeping the number of false positive matches
low. In order to further filter out noisy matches, we match
values for multiple attributes and also exploit the fact that

attribute values occur at fixed positions within the pages of a
template-based web site. Thus, suppose that for a
configuration of attribute positions, we define the support as
the number of pages for which the values at the positions
match seed record values. Then, we can essentially prune
configurations with insufficient support. We propose an
efficient [3] algorithm to systematically enumerate attribute
position configurations with sufficient support. In Figure 1,
our algorithm will prune the spurious match between the
string “Jasmines Restaurant” under “Related Hotels:” in p1
and the name attribute in r2 since the address value in page
p1 does not match the address value in record r2 for
restaurant “Jasmines Restaurant”.

We conduct an extensive experimental study with real-
life web datasets from different verticals. Our extraction
approach performs well delivering greater than 96%
precision and more than 82% recall for extracted records
from a wide range of web sites. For our similarity model we
treat each attribute value string as sequence of words
separated by special characters for example, space, tab,
comma, hyphen are considered as word delimiters. The
similarity metric is designed such a way that is robust to
typographical errors, abbreviations, word re-orderings, and
word normalization, etc. There are other proposals for
matching similarity functions have been proposed in the
research literature.

The Jaccard coefficient and Cosine similarity metrics [3,

9], Extractions to use q-grams instead of words [7], and Edit

distance family of functions [6, 8, 9, 5]. Sim (x, y) is used to

denote similarity between strings x and y which are values of

attribute a. The values x and y are weakly similar if sim (x, y)

 Tw where Tw is the weak similarity threshold. A variant of

the Cosine similarity over q-grams similarity function [7]

can handle both spelling errors as well as word

rearrangements.
Our algorithm takes the advantage of similar content

between the seed database R and the web pages of sites in W
for structured data extraction. For the DOM tree
representation of a web page p and a node n in the page p, let
x be the unique path from the root to n in the DOM tree. The
path x is the position of node n in page p. Further, p[x]
denotes the value of the node n at position x in page p. For a
leaf node, the value is essentially the text string contained in
it. If n is an internal node, then its value is the concatenated
sequence of text from the leaves of the subtree rooted at n (in
the order in which the nodes appear in the DOM tree). For a

seed record r in R, we denote the value of attribute ai A in r

by r[ai]. With each record r, we associate the web site from
which the record was extracted, denoted by W(r). The
extraction algorithm scans the pages of a new web site W to
find node values that match attribute values in the seed
database R, and uses this to infer the node position for each
attribute within the pages of W. It then extracts entity records
from pages of the web site by extracting the attribute values
at the identified positions. A key challenge here is to find the
correct node values within a page that match the attribute
values within a seed record. Even with strong similarity, due
to noise and extraneous information in web pages, we may
still have spurious matches within a page. For instance, in
Figure 1, values like “Jasmines Restaurant” under “Related
Hotels:” can match name values in seed records. In order to
compute attribute positions, given a seed database R, web

B.Venkat Ramana, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 479-484

© 2010, IJARCS All Rights Reserved 481

site W, and a minimum support parameter , find a maximal

set S of (attribute, position) pairs such that sup(S) .

Notice that we are looking to find positions for as many
attributes as possible and not necessarily all attributes – this
is to accommodate scenarios in which certain attributes are
missing from site W. In case there are multiple sets S with
the same number of (attribute, position) pairs and with
support at least �, then we select the set S with the maximum
support. In our experiments (see Section 4), we found that
setting the support parameter � = 10 is effective at filtering
out the spurious matches. Procedure FINDATTRPOS
describes an efficient algorithm for computing the maximal

set S of (attribute, position) pairs with support for a new

web site W. Similarity computation between a node value
and an attribute value in a record serves as a basic building
block for determining record-level similarity between
attribute values in a page of W and a seed record from R. We
keep track of the weakly similar (page, position) and (record,
attribute) pairs by storing in WS(a, x) the record, page pairs
(r, p) such that r[a] is weakly similar to p[x].

For each (attribute, position) pair (a, x) such that there are
a sufficient number of pages with weakly similar values in
position x, we compute strong similarity scores between
(r[a], p[x]) pairs. We store in SS(a, x) the (record, page) pairs
(r, p) such that r[a] is strongly similar to p[x]. Note that SS(a,
x) will contain fewer false positive matches compared to
WS(a, x). Due to spurious attribute value matches still
contained in SS(a, x), within each page of W, there may be
multiple attribute position configurations for which values in
the page match (portions of) a record in the seed database R.
Across all the pages of W, the number of these attribute
position configurations could become really large, even
though most of them do not have the required support.

Computing support for each of these configurations to

determine the maximal configuration with support can

turn out to be very inefficient. Instead, we devise an efficient
algorithm based on the following observation: for a pair of

(attribute, position) pairs sets S, S , if S � S , then sup(S)

sup(S). Thus, we can use an iterative algorithm that generates
candidate (attribute, position) pair sets of size k in the kth
iteration and stores these in Ck. Candidate sets whose
support is less than � are pruned from Ck since any superset

of these cannot have support . The remaining sets in Ck

(after pruning) are used to generate supersets of size k + 1
which become candidates for the next iteration. Once we
have identified the maximal set S of (attribute, position) pairs

with support , we extract entity records by extracting

attribute values at the specified positions in S from the pages
of web site W.

III. EXPERIMENTAL EVALUATION

 In this section, we present experimental results with real-
life web datasets which demonstrate the effectiveness of our
content matching-based extraction approach. Specifically, we
show that our strong similarity metric and multi-attribute
matching technique result in high-precision extractions while
ensuring adequate web site coverage. Our experimental setup
includes: Datasets: We use two real-life datasets covering
two verticals: restaurant and bibliography. Each dataset
consists of a set of seed records and crawled pages from a set
of test sites. We use the seed records to extract from the

single-entity pages belonging to each of the test sites, and
report the precision and coverage of the extractions.

We classify attributes into core and non-core. Core
attributes are present in every page belonging to the test
dataset, while noncore attributes are optional. The seed data
for restaurants is obtained from chefmoz.com. Data from
chefmoz.com is available as structured data in RD F format.
Extractions are performed on 17 sites. The attributes
extracted are: 1. restaurant name (core) 2. address (core), 3.
phone, 4. payment, and 5. cuisine. The seed dataset consists
of 40000 records randomly selected from chefmoz data. For
the bibliography dataset, we use data from DBLP as seed
records. DBLP data is available in XML format. The seed
dataset consists of 40000 records randomly selected from this
dump. 7 sites are used as test sites. The following attributes
are selected from the DBLP dataset: 1. title (core), 2. Author
(core) and 3. Source.

Metrics: We use precision and coverage as the primary
metrics to evaluate the quality of the extractions. Since the
datasets we use are very large, generating the complete
ground truth editorially is a daunting task. Hence, we choose
a random set of 1000 pages from each dataset, and generate
the ground truth for this set. Precision metrics are reported on
this random set. We define the coverage for a dataset as the
fraction of pages in the dataset from which we are able to
extract core attributes.

Extraction Schemes: We use the FINDATTRPOS
procedure described in Section 3 to compute the attribute
positions (from which values are extracted) for each test site.
We set the support parameter � for strong similarity
computation to 0.1, and use � = 10 to prune attribute position
configurations with inadequate support. We fix the weak
similarity threshold Tw at 0.5, and vary Ts, the strong
similarity threshold, between 0.5 and 0.9 in our experiments.

In order to compare the quality of extractions using weak
and strong similarity, we consider a variant of
FINDATTRPOS which we refer to as FINDATTRPOSW.
FINDATTRPOSW is identical to FINDATTRPOS except
that it uses weak similarity (instead of strong similarity) to
determine the matching attribute values between seed records
and web pages. Thus, in FINDATTRPOSW, for a set S of
(attribute, position) pairs, sup(S) is the number of distinct

pages in (a,x) SWS(a, x). We set the minimum support

parameter to 10.

Platform: All the experiments were performed on a
shared Hadoop 0.20 cluster. The execution times reported are
based on the number of map/reduce tasks and the average
time of the map/reduce tasks.

A. Experimental Results

In order to gauge the impact of strong similarity, we
compare the precision and coverage of extractions generated
by FINDATTRPOS and FINDATTRPOSW.

Table 1: Dataset summary.

Dataset #Seed Records # attributes #Test Sites # Pages

Restaurant 40000 5 17 984992

Bibliography 40000 3 7 1299329

Table 2: Precision of Extractions for all attributes.

Restaurant Bibliography

Attribute Precision Attribute Precision

Name 78.26 Title 96.14

Address 99.74 Author 98.12

Phone 100.00 Source 100.00

B.Venkat Ramana, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 479-484

© 2010, IJARCS All Rights Reserved 482

Payment 100.00 - -

Cuisine 100.00 - -

Figure 2: Precision/coverage of weak and strong similarity based

extraction of core attributes.

Figure 2 plots these for the 2 datasets as Ts for

FINDATTRPOS and Tw for FINDATTRPOSW are
increased from 0.5 to 0.9 (Tw for FINDATTRPOS is fixed at
0.5). In the plots, we use suffixes SS and WS to qualify the
precision and coverage metrics of procedures
FINDATTRPOS and FINDATTRPOSW, respectively. It can
be seen that the extraction precision increases with the
similarity threshold for both the techniques. There is a
significant coverage drop for FINDATTRPOSW at high (>
0.7) weak similarity threshold values.

Strong similarity-based matching, on the other hand,
provides both high precision and high coverage at higher
strong similarity threshold values (> 0.7). This is because
strong similarity boosts the similarity scores between diverse
representations of the value of an attribute for the same entity
which otherwise have low weak similarity scores. As a
result, at the higher threshold values, true matches are
retained (leading to high coverage) and false matches are
pruned (leading to high precision). In fact, it is interesting to
observe that FINDATTRPOS consistently has high coverage
over the entire range of Ts values between 0.5 and 0.9.

Figure 3 plots the strong and weak similarity scores for
200 address pairs between the seed database and the test
sites. All of the address pairs have weak similarity scores
exceeding 0.5, and are classified by hand into true and false
matches. It is easy to see that the weak similarity scores of
both true as well as false matches are distributed between 0.5
and 0.9. Thus, with weak similarity, there are true matches
with low scores and false matches with high scores. This
makes it difficult to find a threshold value that cleanly
separates the true matches from the false ones. In contrast,
for several true matches, the strong similarity scores are
boosted close to 1 even from very low weak similarity
scores. Thus, with a high enough strong similarity threshold (

 0.9), we can identify the true matches while filtering out

the false ones.

Figure 3: Scatter plot of strong similarity vs weak similarity scores. True
matches are shown as green triangles and noisy matches as red squares.

As we look at the precision metrics for the entire core and

optional attributes for both the datasets (see Table 2). We
only consider strong similarity for extraction, and set the
parameter values Ts = 0.9 and Tw = 0.5 in our
FINDATTRPOS extraction procedure since these settings
yield the best results across the 2 datasets. As can be seen,
the precision for most of the attributes is above 95% and the
coverage of core attributes for both the datasets exceeds
80%.

 The precision of the name attribute in the restaurant
dataset is somewhat low because of the presence of long lists
of “Nearby Restaurants” in the restaurant pages of the
website; these results in false matches with the name
attribute values in seed records.

In order to quantify the amount of filtering achieved due
multi-attribute matching in procedure FINDATTRPOS, we
track the number of attribute positions in the generated
candidate sets Ck. Let Ck(a) be the set of distinct positions
(DOM tree paths) for an attribute a in Ck. The decay in the
number of distinct positions |Ck(a)| as a function of k
indicates the efficiency of multi-attribute matching. Table 3
lists the number of distinct paths for the core attributes in
both the datasets as a function of k. Observe that a majority
of the attribute positions involved in spurious matches are
pruned within two iterations. This indicates that considering
pairs of attributes when matching values can substantially
improve matching accuracy.

Table 3: Number of Positions for core attributes in multi-attribute

matching.

 Restaurant Bibliography

Name Address Author Title

K=1 1002 387 254 694

K-2 113 64 34 39

Table 4 shows coverage of strong similarity-based

extractions at Ts = 0.9 for the restaurant dataset as the
number of seed records is increased from 2000 to 40000. As
can be seen, coverage jumps from 53.57% to 90.37% due to
higher content overlap between seed records and web pages
at the larger seed set sizes.

Table 4: Coverage of Extraction Vs Seed set size for Restaurant data.

Seed Size 2000 5000 10000 20000 40000

Coverage(%) 53.57 59.73 61.06 69.40 90.37

B.Venkat Ramana, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 479-484

© 2010, IJARCS All Rights Reserved 483

Table 5: Running Time(Hrs) of the diffirent steps for the two data sets.

Stage Restaruant Bibilography

Weak Similarity 23987 17488

Strong Similarity 163 15

Multi-attribute Matching 22 5

Extraction 65 26

Total 24237 17534

Table 5 provides the execution times of different stages.

It can be seen that weak similarity computation dominates
the execution time despite the use of prefix filtering [7] in
our implementation. A complete run involving all the stages
can be done on a 1000 CPU cluster in 1 day for the restaurant
dataset and in 0.73 days for the bibliography dataset. Note
that the execution time for the restaurant dataset is more than
that for the bibliography dataset. The reason is that pages in
the restaurant dataset are structurally more complex than
those in the bibliography dataset: the average number of
nodes per page for the restaurant dataset is 2.5 times more
than that for the bibliography dataset.

IV. RELATED WORK

In recent years, a number of research papers [16, 20, 9,
25, 14, 11, and 13] have studied the problem of extracting
structured data from web pages. Early proposals for
extracting structured data from the web were based on
wrapper induction [16, 20]. These require human editors to
annotate pages from each site and thus have high overhead.
In recent years, there has been a flurry of research activity on
extraction techniques that incur little manual effort. [9, 25,
11] devise methods to detect repeated patterns of tags within
a web page and use this to extract records from the page.

In [5, 1], attribute models based on Hidden Markov
Models (HMMs) are learnt from training data, and these are
used to segment short text strings like addresses and
bibliographic entries. Web pages have a more complex
hierarchical structure, and Zhu et al. [14] propose
Hierarchical Conditional Random Fields (HCRFs) to label
attribute values in web pages. An HCRF is a graphical model
that captures both hierarchical and sibling dependencies in
the tree corresponding to a web page.

Markov Logic Networks (MLNs) [21] go a step further
and allow relationships between arbitrary tree nodes to be
expressed as first-order formulas. MLNs are used in [13] to
extract structured data from web forum sites. These models
rely on structural features of pages (e.g., phone numbers
follow address values) and content features of attributes (e.g.,
5-digit numbers correspond to zip codes) to label attribute
values.

The precision of machine learning models may be poor in
web environments due to the heterogeneity in web page
structure and attribute content formats, and noise in web
pages. Our extraction approach overcomes these problems by
exploiting content redundancy across sites, and uses the
actual extracted attribute values to find matching values
within web pages. Thus, we circumvent the difficult problem
of building models that can capture the diverse structural and
content formats prevalent across web sites.

Finally, there is a body of work on iteratively growing
seed sets of relation instances and patterns for relation
extraction. This is done by finding occurrences of the seed
data in the corpus, discovering patterns, and matching the
patterns to augment the seed data. The use templatized page

and content structure in a site distinguishes our approach
from these techniques.

Basically our extraction approach depends on being able
to approximately match the attribute values for an entity
across multiple sites. Fortunately, a number of approximate
string matching algorithms have been proposed for detecting
duplicate records in databases, text searching in the presence
of spelling errors, etc. Comprehensive surveys of
approximate string matching techniques can be found in [10,
15]. Existing similarity functions for string matching take as
input two strings, and return a similarity score that quantifies
the match between them.

A popular measure used to gauge the similarity between
two strings is the string edits distance. The edit distance
metric works well for typographical errors but it cannot
capture word rearrangements, insertions, and deletions. To
address this, numerous variants of the edit distance metric
have been proposed in the literature like affine gap distance
[24] that allows gap mismatches, block edit distance [18] that
allows word moves, and a fuzzy match similarity function
that allows words to be inserted/deleted with a cost equal to
the IDF weight of the word [22].

However, most variants either do not handle word
rearrangements well, or are too expensive from a
computation perspective. For instance, finding the exact
block edit distance between two strings is an NP-hard
problem [18]. TheWHIRL [8] system adopts a different
approach based on Cosine similarity between IDF-weighted
words which it borrows from the IR literature. Unfortunately,
while Cosine similarity can handle word swaps and weighs
words based on their importance, it is less resilient to word
misspellings. To alleviate this problem, Gravano et al. [17]
propose a similarity metric that computes the Cosine
similarity between IDF-weighted q-grams (instead of words).
This metric has a number of desirable properties – it is
capable of handling both word re-orderings as well as
spelling errors, and is computationally efficient.

Our notion of weak similarity also employs q-grams and
is a variant of the similarity function proposed in [17].
Further, our strong similarity metric adds a new dimension
by also taking into account the template structure when
matching strings. Unlike previous similarity functions, it
takes as input two sets of string values, and refines similarity
scores based on the matching pattern between value pairs
from the two sets. A bulk of the previous work has focused
on using the above string similarity functions to match
records with multiple attributes. [4, 23] train classifiers to
combine the multiple attribute-level similarity scores into a
single record-level similarity score, while [17, 22] simply
extend the edit distance and Cosine similarity variants to
work at the granularity of records as opposed to individual
attributes. In contrast, in our web extraction scenario, we are
interested in finding values within unstructured web pages
that match attribute values within a record. Our problem
setting is a lot more challenging due to the presence of noise
in web pages; our proposed solutions filter out the noisy
attribute value matches by exploiting the template structure
of attribute content and web pages.

V. CONCLUSION AND FUTUREWORK

To extract structured data from web sites we recommend

a new method for information extraction from web, which
effectively uses content redundancy on the web. To start
with, we extract records from the initial web sites and

B.Venkat Ramana, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 479-484

© 2010, IJARCS All Rights Reserved 484

populate the seed database with the records. For a new
extracted record, our method will compare it with the already
available records in the seed database. We define a new
matching technique that helps to match records with deferent
representations across the sites. This new method finds the
matching pattern between the attribute values of the two sites
and ignores unwanted portions of the attribute.

In this paper, we proposed a new approach that exploits
overlapping content across web sites and the template
structure of web pages to extract structured data from the
web. We defined a new similarity metric for matching
previously extracted attribute values with the content in a
fresh page. Our new metric takes into account the matching
pattern between attribute values from two sites to refine
similarity scores for differently formatted attribute values
belonging to the same entity. We also developed an Apriori-
style algorithm for efficiently enumerating attribute positions
with matching values in a sufficient number of pages. In our
experiments with real-life web data sets, our techniques were
able to extract records with > 95% precision and > 80%
recall. An important direction for future work involves
extending our methods to handle non-text numeric (e.g.,
price) and image (e.g., ratings) attributes.

VI. REFERENCES

[1] E. Agichtein and V. Ganti. “Mining reference tables for
automatic text segmentation”. In Procedingd of
SIGKDD, v.20 n.1, p.152-187 ; 2004.

[2] E. Agichtein and L. Gravano. “Snowball: extracting
relations from large plain-text collections.” In ACM
DL, In Proceedings of the 5th ACM International
Conference on Digital Libraries (ACM DL), pages 85–
94 ; 2000.

[3] R. Agrawal and R. Srikant. “Fast algorithms for mining
association rules.” In Procedings of SIGMOD-VLDB
1994, pages 487–499;1994.

[4] M. Bilenko and R. Mooney. “Adaptive duplicate
detection using learnable string similarity measures.” In
Procedings of SIGKDD, pages 39-48 ;2003.

[5] V. Borkar, K. Deshmukh, and S. Sarawagi. “Automatic
segmentationof text into structured records.” In
SIGMOD, In Proceedings of the. ACM-SIGMOD
International Conference on Management of Data,
pages 175–186;2001.

[6] S. Brin. “Extracting Patterns and Relations from the
World Wide Web”.In WebDB, 172-183. 7, Electronic
Edition ; 1998.

[7] S. Chaudhuri, V. Ganti, and R. Kaushik. “A primitive
operator for similarity joins in data cleaning”. In ICDE,
In Proceedings of. ICDE ;2006.

[8] W. Cohen. “Integration of heterogeneous databases
without common domains using queries based on
textual similarity”. In SIGMOD, ACM SIGMOD
Record, v.27 n.2, p.558-560; June 1998.

[9] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
“Towards automatic data extraction from large web
sites”. In VLDB, v.14 n.4, p.197-214, December ;2001.

[10] A. Elmagarmid, P. Ipeirotis, and V. Verykios.
“Duplicate record detection: A survey”. IEEE TKDE,
no. 1, pp. 1-16, Jan. 2007, doi:10.1109/TKDE;2007.

[11] G. Miao et al. “Extracting data records from the web
using tag path clusterting”. In Procedings of WWW,
2009.

[12] D. Gibson, K. Punera, and A. Tomkins. “The volume
and evolution of web page templates”. In WWW,
Procedings of the 14th International Conference on
World Wide Web, pages 830-839, New York, NY,
USA; 2005.

[13] J. Yang et al. “incorporating site-level knowledge to
extract structured data from web forums”. In Procedings
of WWW, 2009.

[14] J. Zhu et al. “Simultaneous record detection and
attribute labeling in web data extraction”. In SIGKDD,
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge pages:494-503;2006.

[15] N. Koudas, S. Sarawagi, and D. Srivastava. “Record
linkage: Similarity measures and algorithms”. In
SIGMOD (Tutorial), ISSN : 0975-3397 Vol. 3 No. 3
Mar 2011,pages 802-803; 2006.

[16] N. Kushmerick, D. S. Weld, and R. Doorenbos.
“Wrapper induction for information extraction”. In
IJCAI, IJCAI-97, Pg:729-735;1997.

[17] L. Gravano et al. “Text joins in an RDBMS for web
data integration”.In WWW, pages 729–731; 2003.

[18] D. Lopresti and A. Tomkins. “Block edit models for
approximate string matching”. Theoretical Computer
Science, 181(1), Theoretical Computer Science, v.181
n.1, p.159-179, July 15, 1997 Proceeding of the
18th ACM conference on Information and
knowledge;1997.

[19] C. Manning, P. Raghavan, and H. Schutze.
“Introduction to Information Retrieval”. Cambridge
University Press, First IEEE International Conference
on Semantic Computing , pages 19–26;2008.

[20] I. Muslea, S. Minton, and C. Knoblock. “Hierarchical
wrapper induction for semistructured information
sources”. Autonomous Agents and Multi-Agent
Systems, 1(2), International Journal of Cooperative
Information Systems 10(1-2):145-169 ;2001.

[21] M. Richardson and P. Domingos. “Markov logic
networks”. Journal of Machine Learning,62(1), 62:107–
136 ;2006.

[22] S. Chaudhuri et al. “Robust and efficient fuzzy match
for online data cleaning”. In SIGMOD, Proceedings of
the ACM SIGMOD;2003.

[23] S.Sarawagi and A. Bhamidipaty. “Interactive
deduplication using active learning”. In SIGKDD,
EDBT 2009: 450-461 SIGKDD Explorations 6(2):
61-66 (2004);2002.

[24] M. Waterman, T. Smith, and W. Beyer. “Some
biological sequence metrics”. Advances in Math., 20(4),
vol. 20, no. 4, pp. 367-387;1976.

[25] Y. Zhai and B. Liu. “Web data extraction based on
partial tree assignment”. In procedings of WWW
conference, vol. 20(4), no. 4, pp. 467-478;2005.

[26] Pankaj Gulhane Rajeev Rastogi Srinivasan H
Sengamedu Ashwin Tengli- Yahoo! Labs, Bangalore
Microsoft IDC, Bangalore.- “Exploiting Content
Redundancy for Web Information Extraction”. The 36th
International Conference on Very Large Data Bases,
September 13-17,2010, Singapore; Proceedings of the
VLDB Endowment,Vol.3,No. 1, Pg:578-587;2010-
VLDB,21508097/10/09- 2010.

