
��������	�
����	�������������

����������������������������������������� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(�������� 

 

© 2010, IJARCS All Rights Reserved   479 
  

ISSN No. 0976-5697 

 Extracting Information from Template Based Web Pages using Attribute Matching 

Patterns and Position Details  
 

B.Venkat Ramana* 
Computer Science Department, MIPGS, HYD 

Research Scholar JNIAS, JNTUH 

 Hyderabad, India 

 venkatbhavanasi@gmail.com 

Prof A. Damodaram 
Department of Computer Science 

JNTUH 

 Hyderabad, India 

damodarama@jntuh.ac.in

 

Abstract: To extract structured data from web sites we recommend a new method for information extraction from web, which effectively uses 

content redundancy on the web. To start with, we extract records from the initial web sites and populate the seed database with the records. For a 

new extracted record, our method will compare it with the already available records in the seed database. We define a new matching technique 

that helps to match records with deferent representations across the sites. This new method finds the matching pattern between the attribute 

values of the two sites and ignores unwanted portions of the attribute. We developed an algorithm to find the attribute position details with 

sufficient matching values across pages. Finally we have done some experimental study with web data to know the effectiveness of our 

extraction approach. 
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I. INTRODAUCTION  

Web pages can be broadly classified as static and 
dynamic pages. The content and style of static pages does not 
change often. Where as the dynamic pages are generated 
when they are requested and change their content very often. 
Now a day’s most pages on the web are generated by loading 
fixed page templates with data from a backend database. 
Previous studies estimate that as high as 45-55% of the 
content on the web is template content [1].  Youtube.com, 
amazon.com, cnn.com are some of the popular template 
based web sites. 

Template based pages contain information about real 
world entities like products (name, price, description, etc.), 
books (title, author, price, publisher, etc.), restaurants (name, 
address, phone, etc.), business (address, phone, contact-
person, etc.). Extracting and integrating such information 
from different web sites and populating seed database with 
this information, so that users can query for required 
information is an interesting and demanding problem in the 
field of web information extraction. Our idea is to extract 
records from all the template based sites that belong to a 
specific group such as restaurants, books, business which 
contains attribute values for a specific real world entity.  

 In this paper we present a new approach to extract 
records from multiple template based websites. Our method 
delivers high accuracy with minimal human intervention. 
One of the properties of template based sites is that multiple 
sites contain pages for the same entity [2]. Further, the values 
of attributes across the various pages for an entity are similar. 
It implies that there is redundant content across websites. We 
use this content redundancy by using extraction form one site 
to identify attribute values in the pages of overlapping 
entities in another site. The other property is that pages with 
in a website have a similar structure conforming to a 
common template. It implies that attribute values occur at 
fixed positions within pages of a site. Once we find the 
attribute value in a few pages, easily we can find the 
positions, and use this to extract values form other pages of 
the site. as well, for math, etc. 

II. EASE OF USE 

A. Our Approach 

From a few initial sites we populate the seed database S 
of records. By using wrapper learning method human editors 
annotate attribute values in a sample page for each site. Since 
the sites are template based, a new site Xi which belongs to 
the group of similar sites, X will have same type of entities 
that are there in the seed database. Now we can scan the new 
site to find values that match attribute values of the records. 
The matching values are used to learn wrappers that are 
subsequently used to extract records from remaining other 
pages. This process is repeated for other new sites. This 
approach is largely un-supervised except for a few initial 
sites. By continuously expanding the seed database it ensures 
that sufficient overlap between the seed database and new 
sites.   

Our extraction approach is based on the two properties 
that are mentioned above. The challenge to follow the first 
property is that, in practical, the entity attribute values can 
vary between sites due to data entry errors, abbreviations, 
deferent representations, etc and during extraction, this can 
lead to attribute vale match going undetected. The second 
challenge is that most of the web pages contain noisy and 
unwanted values that can lead to incorrect attribute value 
matching. These problems can be explained by an example, 
inspired by a real-world data.  

The seed database R in figure-1(a) contains two records 
r1 and r2 with details name and address of the restaurants in 
city Hyderabad. Now the two restaurant pages p1 and p2 
extracted from a new website represents the same 
information that is there in seed database R in almost similar 
way. The record r1 and page p1 refer to the same real world 
entity. The name attributes, “Hotel Holiday In” is spelled as 
“Hotel Holiday Inn” in pages p1 and p2. Similarly in the 
address attribute, the term “Street” is abbreviated to “St” in 
p2. Now if we use Jaccard coefficient [3] to measure the 
similarity between attribute values, where each value is 
treated as a block of words with space as a delimiter. 
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For any given two sets s1 and s2 the Jaccard similarity is 

defined as JC (s1, s2) = (|s1  s2|)/(|s1  s2|)    Due to the 

different conventions for recording the address attribute, the 
Jaccard similarity between the address values in r1 and p1 
belonging to the same entity is only 6 /13, which is less than 
0.5. In contrast, the nearest transit value at the bottom of p1 
has a higher similarity score of 4 /8 with the address value in 
r1. Similarly, the name values in r1 and p1 have a similarity 
score of only 1 /3, while the string “Hotel Holiday In” under 
“Related Hotels:” in p1 has a similarity of 1 with the name 
value in r2. Thus, extraneous values at the bottom of p1 have 
much higher similarity scores with name and address values 
in the seed records which can lead to false positive matches. 

 

 
Figure: 1 (a) Seed Database; (b) Page p1; (c) Page p2. 
 

B.  Our Contibutions 

The above mentioned problems can be overcome by a 
new extraction approach that uses content redundancy over 
the websites and structural similarity among template based 
pages to extract attribute values with high precision and with 
minimum human intervention. 

To cope with different attribute formatting conventions 
across sites, we define a new similarity function. Our new 
function leverages the fact that attribute values in template-
based pages have a templatized structure and uses this to 
improve matching accuracy. Our proposed metric discovers 
repeating patterns among the matching portions of attribute 
value pairs from two sites, and uses this to filter out non-
matching portions when computing the similarity score 
between attribute value pairs. In Figure 1, our similarity 
function detects that the lines beginning with “(between” are 
extraneous across the address values in p1 and p2, and so 
ignores them when matching the values with addresses in the 
seed database. This boosts the similarity scores (Jaccard 
similarity = 3/ 4) between address values in pages p1 and p2, 
and their corresponding values in records r1 and r2, 
respectively, and ensures that they are matched correctly. 
Thus, our new similarity metric is able to match attribute 
values (with diverse representations) belonging to the same 
entity while keeping the number of false positive matches 
low. In order to further filter out noisy matches, we match 
values for multiple attributes and also exploit the fact that 

attribute values occur at fixed positions within the pages of a 
template-based web site. Thus, suppose that for a 
configuration of attribute positions, we define the support as 
the number of pages for which the values at the positions 
match seed record values. Then, we can essentially prune 
configurations with insufficient support. We propose an 
efficient [3] algorithm to systematically enumerate attribute 
position configurations with sufficient support. In Figure 1, 
our algorithm will prune the spurious match between the 
string “Jasmines Restaurant” under “Related Hotels:” in p1 
and the name attribute in r2 since the address value in page 
p1 does not match the address value in record r2 for 
restaurant “Jasmines Restaurant”.  

We conduct an extensive experimental study with real-
life web datasets from different verticals. Our extraction 
approach performs well delivering greater than 96% 
precision and more than 82% recall for extracted records 
from a wide range of web sites. For our similarity model we 
treat each attribute value string as sequence of words 
separated by special characters for example, space, tab, 
comma, hyphen are considered as word delimiters. The 
similarity metric is designed such a way that is robust to 
typographical errors, abbreviations, word re-orderings, and 
word normalization, etc. There are other proposals for 
matching similarity functions have been proposed in the 
research literature. 

The Jaccard coefficient and Cosine similarity metrics [3, 

9], Extractions to use q-grams instead of words [7], and Edit 

distance family of functions [6, 8, 9, 5]. Sim (x, y) is used to 

denote similarity between strings x and y which are values of 

attribute a. The values x and y are weakly similar if sim (x, y) 

 Tw where Tw is the weak similarity threshold. A variant of 

the Cosine similarity over q-grams  similarity function [7] 

can handle both spelling errors as well as word 

rearrangements. 
Our algorithm takes the advantage of similar content 

between the seed database R and the web pages of sites in W 
for structured data extraction. For the DOM tree 
representation of a web page p and a node n in the page p, let 
x be the unique path from the root to n in the DOM tree. The 
path x is the position of node n in page p. Further, p[x] 
denotes the value of the node n at position x in page p. For a 
leaf node, the value is essentially the text string contained in 
it. If n is an internal node, then its value is the concatenated 
sequence of text from the leaves of the subtree rooted at n (in 
the order in which the nodes appear in the DOM tree). For a 

seed record r in R, we denote the value of attribute ai  A in r 

by r[ai]. With each record r, we associate the web site from 
which the record was extracted, denoted by W(r). The 
extraction algorithm scans the pages of a new web site W to 
find node values that match attribute values in the seed 
database R, and uses this to infer the node position for each 
attribute within the pages of W. It then extracts entity records 
from pages of the web site by extracting the attribute values 
at the identified positions. A key challenge here is to find the 
correct node values within a page that match the attribute 
values within a seed record. Even with strong similarity, due 
to noise and extraneous information in web pages, we may 
still have spurious matches within a page. For instance, in 
Figure 1, values like “Jasmines Restaurant” under “Related 
Hotels:” can match name values in seed records. In order to 
compute attribute positions, given a seed database R, web 
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site W, and a minimum support parameter , find a maximal 

set S of (attribute, position) pairs such that sup(S)  .  

Notice that we are looking to find positions for as many 
attributes as possible and not necessarily all attributes – this 
is to accommodate scenarios in which certain attributes are 
missing from site W. In case there are multiple sets S with 
the same number of (attribute, position) pairs and with 
support at least �, then we select the set S with the maximum 
support. In our experiments (see Section 4), we found that 
setting the support parameter � = 10 is effective at filtering 
out the spurious matches. Procedure FINDATTRPOS 
describes an efficient algorithm for computing the maximal 

set S of (attribute, position) pairs with support   for a new 

web site W. Similarity computation between a node value 
and an attribute value in a record serves as a basic building 
block for determining record-level similarity between 
attribute values in a page of W and a seed record from R. We 
keep track of the weakly similar (page, position) and (record, 
attribute) pairs by storing in WS(a, x) the record, page pairs 
(r, p) such that r[a] is weakly similar to p[x]. 

For each (attribute, position) pair (a, x) such that there are 
a sufficient number of pages with weakly similar values in 
position x, we compute strong similarity scores between 
(r[a], p[x]) pairs. We store in SS(a, x) the (record, page) pairs 
(r, p) such that r[a] is strongly similar to p[x]. Note that SS(a, 
x) will contain fewer false positive matches compared to 
WS(a, x). Due to spurious attribute value matches still 
contained in SS(a, x), within each page of W, there may be 
multiple attribute position configurations for which values in 
the page match (portions of) a record in the seed database R. 
Across all the pages of W, the number of these attribute 
position configurations could become really large, even 
though most of them do not have the required support. 

Computing support for each of these configurations to 

determine the maximal configuration with support   can 

turn out to be very inefficient. Instead, we devise an efficient 
algorithm   based on the following observation: for a pair of 

(attribute, position) pairs sets S, S , if S � S  , then sup(S )  

sup(S). Thus, we can use an iterative algorithm that generates 
candidate (attribute, position) pair sets of size k in the kth 
iteration and stores these in Ck. Candidate sets whose 
support is less than � are pruned from Ck since any superset 

of these cannot have support  . The remaining sets in Ck 

(after pruning) are used to generate supersets of size k + 1 
which become candidates for the next iteration. Once we 
have identified the maximal set S of (attribute, position) pairs 

with support  , we extract entity records by extracting 

attribute values at the specified positions in S from the pages 
of web site W. 

III. EXPERIMENTAL EVALUATION 

 In this section, we present experimental results with real-
life web datasets which demonstrate the effectiveness of our 
content matching-based extraction approach. Specifically, we 
show that our strong similarity metric and multi-attribute 
matching technique result in high-precision extractions while 
ensuring adequate web site coverage. Our experimental setup 
includes: Datasets: We use two real-life datasets covering 
two verticals: restaurant and bibliography. Each dataset 
consists of a set of seed records and crawled pages from a set 
of test sites. We use the seed records to extract from the 

single-entity pages belonging to each of the test sites, and 
report the precision and coverage of the extractions. 

We classify attributes into core and non-core. Core 
attributes are present in every page belonging to the test 
dataset, while noncore attributes are optional. The seed data 
for restaurants is obtained from chefmoz.com. Data from 
chefmoz.com is available as structured data in RD F format. 
Extractions are performed on 17 sites. The attributes 
extracted are: 1. restaurant name (core) 2. address (core), 3. 
phone, 4. payment, and 5. cuisine. The seed dataset consists 
of 40000 records randomly selected from chefmoz data. For 
the bibliography dataset, we use data from DBLP as seed 
records. DBLP data is available in XML format. The seed 
dataset consists of 40000 records randomly selected from this 
dump. 7 sites are used as test sites. The following attributes 
are selected from the DBLP dataset: 1. title (core), 2. Author 
(core) and 3. Source.  

Metrics: We use precision and coverage as the primary 
metrics to evaluate the quality of the extractions. Since the 
datasets we use are very large, generating the complete 
ground truth editorially is a daunting task. Hence, we choose 
a random set of 1000 pages from each dataset, and generate 
the ground truth for this set. Precision metrics are reported on 
this random set. We define the coverage for a dataset as the 
fraction of pages in the dataset from which we are able to 
extract core attributes. 

Extraction Schemes: We use the FINDATTRPOS 
procedure described in Section 3 to compute the attribute 
positions (from which values are extracted) for each test site. 
We set the support parameter � for strong similarity 
computation to 0.1, and use � = 10 to prune attribute position 
configurations with inadequate support. We fix the weak 
similarity threshold Tw at 0.5, and vary Ts, the strong 
similarity threshold, between 0.5 and 0.9 in our experiments. 

In order to compare the quality of extractions using weak 
and strong similarity, we consider a variant of 
FINDATTRPOS which we refer to as FINDATTRPOSW. 
FINDATTRPOSW is identical to FINDATTRPOS except 
that it uses weak similarity (instead of strong similarity) to 
determine the matching attribute values between seed records 
and web pages. Thus, in FINDATTRPOSW, for a set S of 
(attribute, position) pairs, sup(S) is the number of distinct 

pages in (a,x) SWS(a, x). We set the minimum support 

parameter  to 10. 

Platform: All the experiments were performed on a 
shared Hadoop 0.20 cluster. The execution times reported are 
based on the number of map/reduce tasks and the average 
time of the map/reduce tasks. 

A. Experimental Results 

In order to gauge the impact of strong similarity, we 
compare the precision and coverage of extractions generated 
by FINDATTRPOS and FINDATTRPOSW. 

 
Table 1: Dataset summary. 

 
Dataset #Seed Records # attributes #Test Sites # Pages 

Restaurant 40000 5 17 984992 

Bibliography 40000 3 7 1299329 

 
Table 2: Precision of Extractions for all attributes. 
 

Restaurant Bibliography 

Attribute Precision Attribute Precision 

Name 78.26 Title 96.14 

Address 99.74 Author 98.12 

Phone 100.00 Source 100.00 
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Payment 100.00  - - 

Cuisine 100.00 - - 

 

 
Figure 2: Precision/coverage of weak and strong similarity based 

extraction of core attributes. 

 
Figure 2 plots these for the 2 datasets as Ts for 

FINDATTRPOS and Tw for FINDATTRPOSW are 
increased from 0.5 to 0.9 (Tw for FINDATTRPOS is fixed at 
0.5). In the plots, we use suffixes SS and WS to qualify the 
precision and coverage metrics of procedures 
FINDATTRPOS and FINDATTRPOSW, respectively. It can 
be seen that the extraction precision increases with the 
similarity threshold for both the techniques. There is a 
significant coverage drop for FINDATTRPOSW at high (> 
0.7) weak similarity threshold values. 

Strong similarity-based matching, on the other hand, 
provides both high precision and high coverage at higher 
strong similarity threshold values (> 0.7). This is because 
strong similarity boosts the similarity scores between diverse 
representations of the value of an attribute for the same entity 
which otherwise have low weak similarity scores. As a 
result, at the higher threshold values, true matches are 
retained (leading to high coverage) and false matches are 
pruned (leading to high precision). In fact, it is interesting to 
observe that FINDATTRPOS consistently has high coverage 
over the entire range of Ts values between 0.5 and 0.9. 

Figure 3 plots the strong and weak similarity scores for 
200 address pairs between the seed database and the test 
sites. All of the address pairs have weak similarity scores 
exceeding 0.5, and are classified by hand into true and false 
matches. It is easy to see that the weak similarity scores of 
both true as well as false matches are distributed between 0.5 
and 0.9. Thus, with weak similarity, there are true matches 
with low scores and false matches with high scores. This 
makes it difficult to find a threshold value that cleanly 
separates the true matches from the false ones. In contrast, 
for several true matches, the strong similarity scores are 
boosted close to 1 even from very low weak similarity 
scores. Thus, with a high enough strong similarity threshold (

 0.9), we can identify the true matches while filtering out 

the false ones. 

 
Figure 3: Scatter plot of strong similarity vs weak similarity scores. True 
matches are shown as green triangles and noisy matches as red squares. 

 
As we look at the precision metrics for the entire core and 

optional attributes for both the datasets (see Table 2). We 
only consider strong similarity for extraction, and set the 
parameter values Ts = 0.9 and Tw = 0.5 in our 
FINDATTRPOS extraction procedure since these settings 
yield the best results across the 2 datasets. As can be seen, 
the precision for most of the attributes is above 95% and the 
coverage of core attributes for both the datasets exceeds 
80%. 

 The precision of the name attribute in the restaurant 
dataset is somewhat low because of the presence of long lists 
of “Nearby Restaurants” in the restaurant pages of the 
website; these results in false matches with the name 
attribute values in seed records. 

In order to quantify the amount of filtering achieved due 
multi-attribute matching in procedure FINDATTRPOS, we 
track the number of attribute positions in the generated 
candidate sets Ck. Let Ck(a) be the set of distinct positions 
(DOM tree paths) for an attribute a in Ck. The decay in the 
number of distinct positions |Ck(a)| as a function of k 
indicates the efficiency of multi-attribute matching. Table 3 
lists the number of distinct paths for the core attributes in 
both the datasets as a function of k. Observe that a majority 
of the attribute positions involved in spurious matches are 
pruned within two iterations. This indicates that considering 
pairs of attributes when matching values can substantially 
improve matching accuracy. 

 
Table 3: Number of Positions for core attributes in multi-attribute 

matching. 

 Restaurant Bibliography 

Name Address Author Title 

K=1 1002 387 254 694 

K-2 113 64 34 39 

 
 
Table 4 shows coverage of strong similarity-based 

extractions at Ts = 0.9 for the restaurant dataset as the 
number of seed records is increased from 2000 to 40000. As 
can be seen, coverage jumps from 53.57% to 90.37% due to 
higher content overlap between seed records and web pages 
at the larger seed set sizes. 

 
Table 4: Coverage of Extraction Vs Seed set size for Restaurant data. 

    
Seed Size 2000 5000 10000 20000 40000 

Coverage(%) 53.57 59.73 61.06 69.40 90.37 
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Table 5: Running Time(Hrs) of the diffirent steps for the two data sets. 

 
Stage Restaruant Bibilography 

Weak Similarity 23987 17488 

Strong Similarity 163 15 

Multi-attribute Matching 22 5 

Extraction 65 26 

Total 24237 17534 

 
Table 5 provides the execution times of different stages. 

It can be seen that weak similarity computation dominates 
the execution time despite the use of prefix filtering [7] in 
our implementation. A complete run involving all the stages 
can be done on a 1000 CPU cluster in 1 day for the restaurant 
dataset and in 0.73 days for the bibliography dataset. Note 
that the execution time for the restaurant dataset is more than 
that for the bibliography dataset. The reason is that pages in 
the restaurant dataset are structurally more complex than 
those in the bibliography dataset: the average number of 
nodes per page for the restaurant dataset is 2.5 times more 
than that for the bibliography dataset. 

IV. RELATED WORK 

In recent years, a number of research papers [16, 20, 9, 
25, 14, 11, and 13] have studied the problem of extracting 
structured data from web pages. Early proposals for 
extracting structured data from the web were based on 
wrapper induction [16, 20]. These require human editors to 
annotate pages from each site and thus have high overhead. 
In recent years, there has been a flurry of research activity on 
extraction techniques that incur little manual effort. [9, 25, 
11] devise methods to detect repeated patterns of tags within 
a web page and use this to extract records from the page. 

In [5, 1], attribute models based on Hidden Markov 
Models (HMMs) are learnt from training data, and these are 
used to segment short text strings like addresses and 
bibliographic entries. Web pages have a more complex 
hierarchical structure, and Zhu et al. [14] propose 
Hierarchical Conditional Random Fields (HCRFs) to label 
attribute values in web pages. An HCRF is a graphical model 
that captures both hierarchical and sibling dependencies in 
the tree corresponding to a web page.   

Markov Logic Networks (MLNs) [21] go a step further 
and allow relationships between arbitrary tree nodes to be 
expressed as first-order formulas. MLNs are used in [13] to 
extract structured data from web forum sites. These models 
rely on structural features of pages (e.g., phone numbers 
follow address values) and content features of attributes (e.g., 
5-digit numbers correspond to zip codes) to label attribute 
values. 

The precision of machine learning models may be poor in 
web environments due to the heterogeneity in web page 
structure and attribute content formats, and noise in web 
pages. Our extraction approach overcomes these problems by 
exploiting content redundancy across sites, and uses the 
actual extracted attribute values to find matching values 
within web pages. Thus, we circumvent the difficult problem 
of building models that can capture the diverse structural and 
content formats prevalent across web sites. 

Finally, there is a body of work on iteratively growing 
seed sets of relation instances and patterns for relation 
extraction. This is done by finding occurrences of the seed 
data in the corpus, discovering patterns, and matching the 
patterns to augment the seed data. The use templatized page 

and content structure in a site distinguishes our approach 
from these techniques.  

Basically our extraction approach depends on being able 
to approximately match the attribute values for an entity 
across multiple sites. Fortunately, a number of approximate 
string matching algorithms have been proposed for detecting 
duplicate records in databases, text searching in the presence 
of spelling errors, etc. Comprehensive surveys of 
approximate string matching techniques can be found in [10, 
15]. Existing similarity functions for string matching take as 
input two strings, and return a similarity score that quantifies 
the match between them. 

A popular measure used to gauge the similarity between 
two strings is the string edits distance. The edit distance 
metric works well for typographical errors but it cannot 
capture word rearrangements, insertions, and deletions. To 
address this, numerous variants of the edit distance metric 
have been proposed in the literature like affine gap distance 
[24] that allows gap mismatches, block edit distance [18] that 
allows word moves, and a fuzzy match similarity function 
that allows words to be inserted/deleted with a cost equal to 
the IDF weight of the word [22]. 

However, most variants either do not handle word 
rearrangements well, or are too expensive from a 
computation perspective. For instance, finding the exact 
block edit distance between two strings is an NP-hard 
problem [18]. TheWHIRL [8] system adopts a different 
approach based on Cosine similarity between IDF-weighted 
words which it borrows from the IR literature. Unfortunately, 
while Cosine similarity can handle word swaps and weighs 
words based on their importance, it is less resilient to word 
misspellings. To alleviate this problem, Gravano et al. [17] 
propose a similarity metric that computes the Cosine 
similarity between IDF-weighted q-grams (instead of words). 
This metric has a number of desirable properties – it is 
capable of handling both word re-orderings as well as 
spelling errors, and is computationally efficient. 

Our notion of weak similarity also employs q-grams and 
is a variant of the similarity function proposed in [17]. 
Further, our strong similarity metric adds a new dimension 
by also taking into account the template structure when 
matching strings. Unlike previous similarity functions, it 
takes as input two sets of string values, and refines similarity 
scores based on the matching pattern between value pairs 
from the two sets. A bulk of the previous work has focused 
on using the above string similarity functions to match 
records with multiple attributes. [4, 23] train classifiers to 
combine the multiple attribute-level similarity scores into a 
single record-level similarity score, while [17, 22] simply 
extend the edit distance and Cosine similarity variants to 
work at the granularity of records as opposed to individual 
attributes. In contrast, in our web extraction scenario, we are 
interested in finding values within unstructured web pages 
that match attribute values within a record. Our problem 
setting is a lot more challenging due to the presence of noise 
in web pages; our proposed solutions filter out the noisy 
attribute value matches by exploiting the template structure 
of attribute content and web pages. 

V. CONCLUSION AND FUTUREWORK 

 
To extract structured data from web sites we recommend 

a new method for information extraction from web, which 
effectively uses content redundancy on the web. To start 
with, we extract records from the initial web sites and 
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populate the seed database with the records. For a new 
extracted record, our method will compare it with the already 
available records in the seed database. We define a new 
matching technique that helps to match records with deferent 
representations across the sites. This new method finds the 
matching pattern between the attribute values of the two sites 
and ignores unwanted portions of the attribute. 

In this paper, we proposed a new approach that exploits 
overlapping content across web sites and the template 
structure of web pages to extract structured data from the 
web. We defined a new similarity metric for matching 
previously extracted attribute values with the content in a 
fresh page. Our new metric takes into account the matching 
pattern between attribute values from two sites to refine 
similarity scores for differently formatted attribute values 
belonging to the same entity. We also developed an Apriori-
style algorithm for efficiently enumerating attribute positions 
with matching values in a sufficient number of pages. In our 
experiments with real-life web data sets, our techniques were 
able to extract records with > 95% precision and > 80% 
recall. An important direction for future work involves 
extending our methods to handle non-text numeric (e.g., 
price) and image (e.g., ratings) attributes. 
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