
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(���������

© 2010, IJARCS All Rights Reserved 496

ISSN No. 0976-5697

Introduction of Component Based Testing

Vikas Verma*

Department of Computer Science & Engineering

University Institute of Engineering &Technology

Kurukshetra University, Kurukshetra

Haryana, India

vik.ver86@gmail.com

Dr.Sona Malhotra

Department of Computer Science & Engineering

University Institute of Engineering &Technology

Kurukshetra University, Kurukshetra

Haryana, India

Gurbaj Singh
Department of Computer Science & Engineering

University Institute of Engineering &Technology

Kurukshetra University, Kurukshetra

Haryana, India

gurbajsingh86@gmail.com

Divyendu Kumar Mishra
Department of Computer Science & Engineering

University Institute of Engineering &Technology

Kurukshetra University, Kurukshetra

Haryana, India

ratan01mishra@gmail.com

Abstract: One of the most common reasons for adopting component-based approaches is reuse. This means to build software from existing

components by assembling and replacing interoperable parts. This reduces development time and improved product quality makes this approach

very attractive. This Report introduces basics of Component Based Testing, fundamental technical skills and the supporting skills needed by

successful software tester. Software development styles have changed a lot of times over the past few decades catering to the needs of the era,

which they represented. With increasing pressures on time and money, the concept of component based software development originated. In this

method, the software project is outsourced to other development organizations and finally, the third party components are integrated to form a

software system.

Keywords: Component, Reusability, Test components, Component Based Testing

I. INTRODUCTION (COMPONENT BASED

SOFTWARE ENGINEERING)

Component Based Software Engineering (CBSE)

emphasizes the separation of concerns in respect of the wide-

ranging functionality available throughout given software

system. Software component can be deployed independently

and subject to composition by third parties.

Some of the component characteristics which are relevant

during their testing-

A. Component Observability: The ease with which a

component can be observed in terms of its operational

behaviours, input parameters and outputs. The design and

definition of a component interface thus plays a major role

in determining the component’s observability.

B. Component Traceability: It is the capacity of the

component to track the status of its attributes and

behaviour. The former is called behaviour traceability

where the component facilitates the tracking of its internal

and external behaviours and the latter is called Trace

controllability which is the ability of the component to

facilitate the customization of its tracking functions.

C. Component Controllability: This shows the controlling

ease on a component’s inputs/outputs, operations and

behaviours.

D. Component Understandability: This shows how much

component information is provided and how well it is

presented.[1][2][7]

II. TESTING SOFTWARE COMPONENTS

When to test a component: One of the first issues in

testing software components is whether all that effort is

required in the first place or not. When is it ideal to test a

component in a system? If it is seen that the results of the

component not working is greater than the efforts to test it,

then plans should be made to test such a malfunctioning

component.

A. Which components to test: When risk classification of the

use cases is mapped onto components, we find that not all

components need to be tested to the same coverage level.

B. Reusable components: Components that are used for reuse

should be tested over a wider range of values.

C. Domain components: Components represents significant

domain concepts should be tested for correctness and for

the faithfulness of the representation.

D. Commercial components: Components sold as individual

products should be tested for reusable components and for

potential sources of liability.[3][4][9]

III. PROBLEMS IN SOFTWARE TESTING

COMPONENTS

The focus now shifts to the most important problem of

component software technology i.e. the problem of coming up

with efficiently testing strategies for component integrated

software systems.

A. Building reusable component tests: Current software

development teams use an ad-hoc approach to create

Vikas Verma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 496-497

© 2010, IJARCS All Rights Reserved 497

component test suites. Also it is difficult to come up with

a uniform and consistent test suite technology to cater to

the different requirements like different information

formats, repository technologies, database schema and test

access interfaces of the test tools for testing such diverse

software components. With increasing use of software

components, the tests used for these components should

also be reused. Development of systematic tools and

methods are required to set up these reusable test suites

and to organize, manage and store various component test

resources like test data and test scripts.

B. Constructing testable components: The definition of an

ideal software component says that the component is not

only executable and deployable, but it is also testable

using a standard set of component test facilities.

Designing such components becomes difficult because

such components should have specialized and well

defined test architecture model and built-in test interfaces

to support their interactions to the component test suites

and test-beds.

C. Building a generic and reusable test bed: There is a lot of

difficulty of developing a testing tool or a test bed

technology that is capable to test the system, which has

components that use more than one implementation

languages and technologies.[5][6][10]

Component Based Testing is a new approach to Software

Testing based on the idea of creating Test Cases/Scripts from

highly reusable Test Components. The main concept

underlying this approach is to design new Test Cases for the

particular Application-Under-Testing by assembling and

configuring pre-existing application-independent Test

Components.

[a] A Test Component is a reusable and compose test unit,

providing test services through its contract-based interfaces.

[b] Test Components are cohesive, building blocks which

encapsulate and offer Test services. A Test Service is a

compound of test functions (i.e. atomic test cases) to

accomplish a well-defined test goal.

[c] Test Components are context-independent and highly-

configurable, so that they can be reused in multiple test

projects within multiple, also heterogeneous, applications

and scenarios.

By this approach we can create a new Test Case/Script by

selecting and gluing together the Test Components that,

through their offered Test Services, concur to satisfy the test

case's goal for the specific Application-Under-Testing. Once

assembled, Test Components must be only configured with the

specific application and test data, in order to move from an

application-independent context to the "application-

dependant" one. [7][8][3]

IV. MAIN LEVELS IN COMPONENT BASED TESTING

A. Unit testing.

B. Integration testing.

C. System testing.

V. COMPONENT BASED TESTING METHODS

A. Acceptance Testing.

B. Regression Testing.

C. White Box Testing.

D. Black Box Testing.

E. Grey Box Testing.

Testing Software Components-

[a] Involves

[i] Testing individual components.

[ii] Testing interaction among components.

[b] Necessity

[i] Inconsistent infrastructure and environment

[ii] Inconsistent interaction model

[c] Challenges

[i] Lack of source code availability

[ii] Test Adequacy criteria[9][10]

VI. CONCLUSION

Efficient testing strategies need to be made for testing
domain specific component software and developed tests can
be stored to be reused later. If metadata is considered to be a
potential solution to the problem of component testing then
Metadata standard creation will need a lot of cooperation and
coordination among the various third party component
producers around. Reliability of components can be improved
by improving the languages used to implement them. Apart
from automation of test cases, there is a need for sequencing
and prioritization of test cases.

VII. REFERENCES

[1] Szyperski Clemens, Pree Wolfgang, Pomberger Gustav,
Broy Manfred and Deimel Anton, What characterizes a
(software) component? (1998), www.citeulike.org.

[2] Ghosh Sudipto and Mathur Aditya, Issues in testing
Distributed Component based Systems, Software
Engineering Research Centre, Department of Purdue
University, March22,1999, portal.acm.org/citation.

[3] Szyperski, Component Software, ACM Press, Addison-
Wesley (1999).

[4] Bhor Adrita, Software Component Srategies, June 2001,
www.ajevans.com.

[5] Brucker D. Achim and Wolff Burkhart, Testing
Disributed Component Based Systems using UML/OCl,
www.brucker.ch.

[6] Gao Jerry Zeyu, Tsao H.-S.Jacob and Wu Ye, Testing and
quality assurance for component based Software,
books.google.co.in

[7] Jalote Pankaj, An Integrated Approach to Software
Engineering.Narosa press, New Delhi (2004)page no.144.

[8] Patton Ron, Software testing.Sams press, Pearson
Education (2004)page no. 71-86.

[9] Pressman Roger S., Software Engineering. A
Practitioner’s Approach, McGraw Hill Higher Education
(2001)page no. 721-742.

[10] Von Vorgelegt, Tracing Crosscutting Requirements for
Component-Based Systems, 22. June 2005, Berlin 2005,
deposit.ddb.de/cgi-bin.

