
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4406

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1069

ISSN No. 0976-5697

STUDY OF MEMORY ORGANIZATION AND MULTIPROCESSOR SYSTEM -
USING THE CONCEPT OF DISTRIBUTED SHARED MEMORY, MEMORY

CONSISTENCY MODEL AND SOFTWARE BASED DSM

 Dhara Kumari Dr. Rajni Sharma
 Mphil Scholar Assistant Professor (Computer Science)
 Himalayan University PT.J.L.N. Govt P.G College
 Arunachal Pradesh (India) Faridabad (India)
 dharaioc@gmail.com crownrajni@yahoo.com

Dr. Sarita Kaushik
HOD (Computer Science)

DAV College
Faridabad (India)

sarita_kaushik24@rediffmail.com

Abstract: In current trend, performance and efficiency is the big issue of the memory organization and multiprocessor system whereas, A
Memory Organization and Multiprocessor uses multiple modalities to capture different types of DSM (Software based, Hardware Based and it
may be combine both Software & Hardware etc) because IT technology is greatly advanced and lot's of information is shared via the internet. To
improve the performance and efficiency of that multiprocessor system and memory organization, we can use different type of techniques that is
based on the concept and implementation of Hardware, Software, and Hybrid DSM. This paper provides an almost exhaustive survey of the
existing problem and solutions in a uniform manner, presenting their memory organization, shared memory, distributed memory, distributed
shared memory, Memory Consistency Model and software based DSM mechanisms and issues of importance for various DSM systems and
approaches.

Keywords: Performance, Efficiency, Memory, DSM, Shared Memory, Software Based DSM, Multiprocessor System. Memory Consistency
Model

I INTRODUCTION

Traditionally, a major progress was recently made in the
research and development of systems with multiple
processors that are capable of delivering high computing
power satisfying the constantly increasing demands of
typical applications. It is more important to optimize the
distributed system features to obtain the maximum possible
performance and efficiency. Systems with multiple
processors are usually classified into different groups,
according to their memory system organization, shared
memory, distributed memory, distributed shared memory,
Memory Consistency Model and software based DSM.

A. Memory Organization
In recent years, power-efficiency has become a major design
factor in systems. This trend is fueled by the ever-growing
use of battery-powered hand-held devices on the one end,
and large-scale data centers on the other end. To ensure high
power-efficiency, all the resources in system (e.g.,
processor, caches, memory) must be used efficiently. So
memory is internal storage areas in the computer system.
The term memory identifies data storage that comes in the
form of chips, and the word storage is used for memory that
exists on tapes or disks. Moreover, the term memory is
usually used as shorthand for physical memory, which refers
to the actual chips capable of holding data. Some computers
also use virtual memory, which expands physical memory

onto a hard disk. Developments in technology and
economies of scale have made possible so-called Very
Large Memory (VLM) computers. [1] Every computer
comes with a certain amount of physical memory, used with
reference to computers generally refers to Random Access
Memory or RAM. You can think of main memory as
an array of boxes, each of which can hold a single byte of
information. A computer that has 1 megabyte of memory,
therefore, can hold about 1 million bytes (or characters) of
information. A typical memory hierarchy for optimal
performance is implemented in different levels with each
level having higher speed, smaller size and lower latency
closer to the processor than lower levels shown in figure
1.

Figure 1: Memory Hierarchy

Dhara Kumari et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1069-1073

© 2015-19, IJARCS All Rights Reserved 1070

This figure show the number of levels in the memory
hierarchy differs for different architectures and how all
goals are achieved at a nominal cost by using multiple levels
of memory. The fastest memories are more expensive per bit
than the slower memories and thus are usually smaller. The
price difference arises because of the difference in the
capacity among different implementations for the same
amount of silicon. But programs typically specified the
location to write memory and what data to put there. This
location was a physical location on the actual memory
hardware. The slow processing of such computers did not
allow for the complex memory management systems used
today. Also, as most such systems were single-task,
sophisticated systems were not required as much. This
approach has its pitfalls. If the location specified is
incorrect, this will cause the computer to write the data to
some other part of the program. The results of an error like
this are unpredictable. In some cases, the incorrect data
might overwrite memory used by the operating system.
Computer crackers can take advantage of this to
create viruses and malware. So, to prevent this type of
situation we can use the concept of Shared Memory System.
B. Shared Memory
Shared Memory is an efficient that means passing data
between programs. One program will create a memory
portion which other processes (if permitted) can access. To
realize a shared memory system, it is necessary to avoid
memory access contention, maintain cache coherency [2, 3],
and realize synchronization between computing nodes or
data to enable collaboration. In multiprocessor environment,
Shared memory systems cover a broad spectrum, from a
system that maintain consistency entirely in hardware to
those that do it entirely in software and makes a global
physical memory equally accessible to all processors. This
system also known as tightly coupled multiprocessor [4] that
enable simple data sharing through a uniform mechanism of
reading and writing shared structures in the common
memory. Figure 2 shows the general structures of Bus-based
shared memory system.

Figure 2: Bus-based shared memory

According to the bus-based shared memory approach
(Figure 2), the interconnect is a shared bus located between
the processor's cache hierarchies and the shared main
memory subsystem This approach has been widely used for
small to medium-scale multiprocessors consisting of up to
20 or 30 processors. This system has advantages of ease of

programming and portability. However, shared-memory
multiprocessors typically suffer from increased contention
and longer latencies in accessing the shared memory, which
degrades peak performance and limits scalability compared
to distributed systems. Memory system design also tends to
be complex. Thus, in 1986, Kai Li proposed a different
scheme in his PhD dissertation entitled, “Shared Virtual
Memory on loosely Coupled Microprocessors”, it opened up
a new area of research that is known as Distributed Shared
Memory (DSM) systems [5] that support in multiple
computer environments.

C. Distributed Shared Memory System
A DSM system logically implements the shared memory
model on a physically distributed-memory system
(distributed memory refers to a multiprocessor computer
system in which each processor has its own
private memory). So we can say that DSM is a model of
inter-process communications in distributed system.
Distributed shared memory (DSM) is also a form of memory
architecture where the (physically separate) memories can
be addressed as one (logically shared) address space
distributed shared memory (DSM) is a form of memory
architecture where the (physically separate) memories can
be addressed as one (logically shared) address space. Figure
3 shows the general structure of distributed shared memory
system.

 Figure 3: distributed shared Memory System

In this figure 3, distributed-memory, is not symmetric. A
scalable interconnect is located between processing nodes or
data, but each node or data has its own local portion of the
global main memory to which it has faster access. During
this step, processes running on separate hosts can access a
shared address space. The underlying DSM system provides
its clients with a shared, coherent memory address space.
Each client can access any memory location in the shared
address space at any time and see the value last written by
any client. So the main advantage of DSM is the simpler
abstraction it provides to the application programmer.

IMPLEMENTATION OF DISTRIBUTED SHARED

MEMORY

DSM can be implemented in hardware DSM as well as
software DSM.

Dhara Kumari et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1069-1073

© 2015-19, IJARCS All Rights Reserved 1071

 According to Hardware implementation, it requires
addition of special network interfaces and cache
coherence circuits to the system to make remote
memory access look like local memory access. So,
Hardware DSM is very expensive.

 According to Software implementation, a software layer
is added between the OS and application layers and
kernel of OS may or may not be modified. Software
DSM is more widely used as it is cheaper and easier to
implement than Hardware DSM.

Design issues of DSM
The distributed shared memory is to present the global view
of the entire address space to a program executing on any
machine [6]. A DSM manager on a particular machine
would capture all the remote data accesses made by any
process running on that machine. An implementation of a
DSM would involve various choices. Some of them are as
below [7].
 DSM Algorithm
 Implementation level of DSM Mechanism
 Semantics for concurrent access
 Semantics (Replication/Partial/ Full/R/W)
 Naming scheme has to be used to access remote data
 Locations for replication (for optimization)
 System consistency model & Granularity of data
 Data is replicated or cached
 Remote access by HW or SW
 Caching/replication controlled by HW or SW
The value of distributed shared memory depends upon the
 performance of Memory Consistency Model. The
consistency model is responsible for managing the state of
shared data for distributed shared memory systems. Lots of
consistency model defined by a wide variety of source
including architecture system, application programmer etc.
D. Memory Consistency Model
Although, shared-memory systems allow multiple
processors to simultaneously read and write the same
memory locations and programmers require a conceptual
model for the semantics of memory operations to allow
them to correctly use the shared memory. This model is
generally referred to as a memory consistency model or
memory model. So we can say that the memory consistency
model for a shared-memory multiprocessor specifies the
behavior of memory with respect to read and write
operations from multiple processors. According to the
system designer’s point of view, the model specifies
acceptable memory behaviors for the system. Thus, the
memory consistency model influences many aspects of
system design, including the design of programming
languages, compilers, and the underlying hardware.
A memory model can be defined at any interface between
the programmer and the system whereas the system consists
of the base hardware and programmers express their
programs in machine-level instructions. There are two type
of interface:
 At the machine code interface, the memory model

specification affects the designer of the machine
hardware and the programmer who writes or reasons
about machine code.

 At the high level language interface, the specification
affects the programmers who use the high level
language and the designers of both the software that

converts high-level language code into machine code
and the hardware that executes this code.

The computer researcher proposed different memory models
to enhance distributed shared memory systems (like
sequential consistency model, processor consistency model,
weak consistency model, release consistency model etc.).
These models, to increase the memory access latency, the
bandwidth requirements, and simplify the programming. It
also provides better performance, at the expense of a higher
involvement of the programmer in synchronizing the
accesses to shared data.
E. Software Based DSM
A distributed shared memory is a simple yet powerful
paradigm for structuring multiprocessor systems. It can be
designed using hardware and/or software methodologies
based on various considerations of data being shared in
multiprocessor environments but it is better to design DSM
in software because sharing data becomes a problem which
has to be easily tackled in software and not in hardware as in
multiprocessor systems. The memory organization of a
software DSM system determines the way shared virtual
memory is organized on top of the isolated memory address
space. There are various advantages of programming
distributed shared memory for multiprocessor environment
as stated below:
 Sharing data becomes a problem which has to be

tackled in the software and not in hardware as in
multiprocessor systems.

 Shared memory programs are usually shorter and easier
to understand.

 Large or complex data structures may easily be
communicated.

 Programming with shared memory is a well-understood
problem.

 Shared memory gives transparent process-to-process
communication.

 Compact design and easy implementation and
expansion.

Software based DSM provide many advantages in design of
multiprocessor systems. A distributed shared memory
mechanism allowing user’s multiple processors to access
shared data efficiently. A DSM having no memory access
bottleneck and large virtual memory space can
accommodate more no of processors. Its programs are
portable as they use common DSM programming interface,
but still having some disadvantages like programmers need
to understand consistency models, to write correct programs.
So, this study is very useful to build new shared memory
system against designing constraints and other languages.
Software implementations of the DSM concept are usually
built as a separate layer on the top of message passing
model.
According to the implementation level, several types of
software-oriented DSM approaches can be recognized in
Figure 4.

Dhara Kumari et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1069-1073

© 2015-19, IJARCS All Rights Reserved 1072

 Figure 4: software-oriented DSM approaches

During the implementation of software based DSM, these
approaches provide many advantages in design of
multiprocessor systems. As DSM system increase the
bandwidth and performance are the important criteria for
design. A DSM various implementation helps to design
various kinds of system using hardware and/or software
approaches for multiprocessor environments as logically
shared, local physically distributed, paged-based, shared
variable based and object based architectures.
Problem of Software Based DSM
During the analysis of Research paper, we found two types
of problem:

1. Poor application programming interfaces for
solving complicated synchronization problems.

2. Inefficiencies in multiple writer protocol.

II OBJECTIVE

The main objective of software DSM not only depends on
performance, but also on Persistence, Interoperability,
Security, Resource Management, Scalability, and Fault
Tolerance” that are presented in our proposed work for
improving access control application in design of
multiprocessor systems. During the review of paper, we
identify two weaknesses of contemporary software
distributed shared memory systems: poor application
programming interfaces for programmers who need to solve
complicated synchronization problems and inefficiencies in
the traditional multiple writer protocols. in future work,
these two type of problem can be solve by using different
type of methodology and implementation that to provide a
strong guarantee of Performance, Persistence,
Interoperability, Security, Resource Management,
Scalability, and Fault Tolerance during the read and write
operation onto memory organization and multiprocessor
system.

III LITERATURE SURVEY

Literature Survey is vital part of the any research area for
gathering a new type of information during the analysis that
produce new technology, application and other beneficial
information. In this paper, it includes a review of different
techniques and algorithms of Software Based Distributed
Shared Memory System.

 Review of consistency models

A consistency model is used to express the semantics of
memory as observed by the programs sharing it.
Traditionally, only computer architects designing
multiprocessor systems were interested in memory
consistency. However, the study of memory consistency
became increasingly popular in recent years and many
publications about theoretical aspects appear in the
literature. For example, Adve and Hill [8] and Sindhu et al.
[9] introduce formal specifications of consistency models.
Also, Raynal and Schiper [10] propose a set of formal
definitions for several consistency models. The specification
of a consistency model provides answers to such questions
as: (1) what behavior is expected by the system (i.e., what is
the value returned by every read operation performed by a
user)? (2) How does the system adhere to the expected
consistency of shared data? and (3) what are the constraints
imposed on the ordering of shared data accesses performed
by two or more processors?

 Review of software implementations
During the past decade, several prototypes have been built
that provide a DSM abstraction at the system level. System
level implementations usually integrate the DSM as a region
of virtual address space in the participating programs using
the virtual memory management system of the underlying
operating system. Li’s shared virtual memory [11] provides
users with an interface similar to the memory address space
on a multiprocessor architecture. Later, he expanded this
idea to other architectures and developed a prototype called
Shiva on a hypercube [12].
Munin [13] is a runtime system and a server mechanism to
allow programs written for shared memory multiprocessors
to be executed efficiently in a distributed memory
environment. The runtime system handles faults, threads,
and synchronization mechanisms and provides support for
multiple consistency protocols [14], while the server
mechanism handles the correct mapping of shared segments
into local memories.
 Review of performance evaluation and analysis
Performance evaluation of distributed shared memory
systems (both hardware and software approaches) is not an
easy task. Keleher et al. [15] evaluate three implementations
of software-based release consistent protocols.. Levelt et al.
[16] compare a language based DSM with a IVY–like
system level implementation. Sun and Zhu [17] propose
“generalized speedup” as a new performance metric. Also,
some work was done measuring the performance of parallel
applications that run on distributed shared memory systems
[18].
TreadMarks [19] provides a virtual shared address space
like IVY and Munin. TreadMarks implement lazy release
consistency. A program with a data race condition might get
results which programmers do not expect. However, a
program without a data race condition runs as if in a
sequentially consistent memory model. Unlike Munin,
TreadMarks does not have different types of shared
variables. All of shared memory follows lazy release
consistency. TreadMarks supports two synchronization
primitives, locks and barriers.

IV CONCLUSIONS AND FUTURE WORK

In this paper according to analysis, we found that modern
software distributed shared memory systems have some

DSM Approaches

Single Writer Protocol

Multiple Writer
Protocol

Diff Creation

Synchronization
Primitives

Dhara Kumari et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,1069-1073

© 2015-19, IJARCS All Rights Reserved 1073

weaknesses that do not increase performance and efficiency
during the implementation of software based distributed
shared memory system. These weaknesses are:

 There are no high level synchronization primitives
provided. In this case, Programmers have to use
basic synchronization primitives for example,
barriers and locks, to solve synchronization
problems.

 If many writers write to the page and read the page
then current multiple writer protocols suffer from
the high cost of making a stale page current.

Thus in future work, these two type of weaknesses can be
solve by using different type of methodology and
implementation that to provide a strong guarantee of
Performance, Persistence, Interoperability, Security,
Resource Management, Scalability, and Fault Tolerance
during the read and write operation onto memory
organization and multiprocessor system.

V REFERENCES

[1] Stanek, William R. (2009). Windows Server 2008 Inside
Out. O'Reilly Media, Inc. p. 1520. ISBN 978-07356-3806-8.
Retrieved 2012-08-20. [...] Windows Server Enterprise
supports clustering with up to eight-node clusters and very
large memory (VLM) configurations of up to 32 GB on 32-
bit systems and 2 TB on 64-bit systems.

[2] H. Amano, Parallel Computer. Shoukoudou, June 1996
[3] N. Suzuki, S. Shimizu, and N. Yamanouchi, An

Implemantation of a Shared Memory Multiprocessor.
Koronasha, Mar. 1993.

[4] M. J. Flynn, Computer Architecture: Pipelined and Parallel
Processor Design, Jones and Barlett, Boston, 1995.

[5] Kai Li, “Shared Virtual Memory on Loosely Coupled
Microprocessors” PhD Thesis, Yale University, September
1986.

[6] Song Li, Yu Lin, and Michael Walker, “Region-based
Software Distributed Shared Memory,” CS 656 Operating
Systems, May 5, 2000.

[7] Ajay Kshemkalyani and Mukesh Singhal, Ch12: Distributed
Computing: Principles, Algorithms, and Systems, Cambridge
University Press, CUP 2008.

[8] S. V. Adve and M. D. Hill. A Unified Formalization of Four
Shared-Memory Models. IEEE Trans. on Paralleland
Distributed Systems, 4(6):613–624, June 1993.

[9] P. S. Sindhu, J-M. Frailong, and M. Cekleov. Formal
Specification of Memory Models. In M. Dubois and S. S.
Thakkar, editors, Scalable Shared Memory Multiprocessors,
pages 25–41. Kluwer Academic Publishers, 1992.

[10] M. Raynal and A. Schiper. A Suite of Formal Definitions for
Consistency Criteria in Shared Memories. In Proc. of the 9th
Int’l Conf. on Parallel and Distributed Computing Systems
(PDCS’96), pages 125–131, September 1996.

 [11] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321– 359, November 1989.

[12] K. Li and R. Schaefer. Shiva: An Operating System
Transforming A Hypercube into a Shared-Memory Machine.
Technical Report CS-TR-217-89, Dept. of Computer
Science,Princeton University, April 1989.

[13] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques
for reducing consistency-related communication in
distributed shared memory systems. ACM Transactions on
Computer Systems, 13(3):205–243, August 1995.

[14] J. B. Carter. Design of the Munin distributed shared memory
system. Journal of Parallel and Distributed Computing on
Distributed Shared Memory, 1995.

[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
An Evaluation of Software-Based Release Consistent
Protocols. Journal of Parallel and Distributed Computing,
29(2):126–141, September 1995.

 [16] W. G. Levelt, M. F. Kaashoek, H. E. Bal, and A. S.
Tanenbaum. A Comparison of Two Paradigms for
Distributed Shared Memory. Software—Practice and
Experience, 22(11):985–1010, November 1992. Also
available as Free University of the Netherlands, Computer
Science Department technical report IR-221.

[17] X-H. Sun and J. Zhu. Performance Considerations of Shared
Virtual Memory Machines. IEEE Trans. OnParallel and
Distributed Systems, 6(11):1185–1194, November 1995.

[18] R. G. Minnich and D. V. Pryor. A Radiative Heat Transfer
Simulation on a SPARCStation Farm. In Proc. of the First
IEEE Int’l Symp. on High Performance Distributed
Computing (HPDC-1), pages 124–132, September 1992.

[19] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed shared memory on standard
workstations and operating systems. In the 1994 Winter
USENIX Conference, 1994.

https://en.wikipedia.org/wiki/International_Standard_Book_Number�

