
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 488

ISSN No. 0976-5697

A Combination of GA and PSO for Automatic Test Data Generation using Data Flow

Coverage

Sanjay Singla*
Ph D Scholar

Suresh Gyan Vihar University

Jaipur,India

san_jay23@yahoo.com

H M Rai
Electronics & Communication,

NC College of Engineering

Panipat,India

hmrai1943@gmail.com

Priti Singla
Ph D Scholar

Suresh Gyan Vihar University

Jaipur,India

pritisingla04@gmail.com

Abstract:. Software testing plays an important role for software’s quality and reducing the cost. In this paper we introduce a new algorithm that

combine the power of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) called Genetic-Particle Swarm Combined Algorithm

(GPSCA) which is used to generate automatic test data that satisfy data-flow coverage criteria. Finally, the paper presents the results of the

experiments that have been carried out to evaluate the effectiveness of the proposed GPSCA with new fitness function compared to the Genetic

Algorithm and PSO algorithms.

Keywords: Genetic Algorithms, Automatic test data generation, data flow testing, Particle Swarm Optimization.

I. INTRODUCTION

In software testing, Automatic test data generation plays a

very vital role important role as it significantly reduce the time

and cost of software. Software Testing is the process of

exercising the software product in pre-defined ways to check if

the behavior is the same as expected behavior [2]. The main

objectives of testing are to provide quality products to

customers. There are many methods propose by many

researchers from time to time [4]-[7], [9] -[12].

Recently, the use of genetic algorithms (GAs) in test data

generation became the focus of several research studies.

Girgis[13] has proposed a technique that uses GA which is

guided by the data flow dependencies in the program, to

search for test data to fulfill data flow path selection criteria

namely the all-uses criterion.

However, GA has started getting competition from other

heuristic search techniques, such as the particle swarm

optimization. Various works [16]-[20] show that particle

swarm optimization is equally well suited or even better than

genetic algorithms for solving a number of test problems [21].

This paper presents a new algorithm that combine the

power of Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) called Genetic-Particle Swarm Combined

Algorithm (GPSCA) which is used to generate automatic test

data that satisfy data-flow flow dependencies in the program,

to search for test data to fulfill one of the most demanding in

the family of data flow path selection criteria, developed by

Rapps and Weyuker [14], namely the all-uses criterion In this

paper. Further, this paper show the effectiveness of the

proposed GPSCA with new fitness function compared to the

Genetic Algorithm and PSO algorithms.

II. BACKGROUND

We introduce here some basic concepts that are used

throughout this work.

A. The control flow graph

The control flow graph (CFG) of a program can be

represented by a directed graph G = V, E with a set of nodes

(V) and a set of edges (E). Each node represents a group of

consecutive statements, which together constitute a basic

block. The edges of the graph are then possible transfers of

control flow between the nodes. figure. 2. shows the control

flow graph G of the example program, which is shown in

figure. 1.

B. Data flow analysis technique

Each variable is classified as either a definition occurrence

or a use occurrence. A definition occurrence of a variable is

where a value is associated with the variable. A use occurrence

of a variable is where the value of the variable is referred.

Each use occurrence is further classified as a computational

use (c-use) or a predicate use (p-use). If the value of the

variable is used to decide whether a predicate is true for

selecting execution paths, the occurrence is called a predicate

use. Otherwise, the occurrence is called a computational use.

Their criteria require that test data be included which cause the

traversal of sub-paths from a variable definition to either some

or all of the p-uses, c-uses, or their combination. However,

empirical evidences show that the all-uses criterion is the most

effective criterion compared to the other data flow criteria.

All-uses criterion requires that test data be included which

causes the traversal of at least one sub-path from each variable

definition to every p-use and every c-use of that definition.

The all-uses criterion requires a def-clear path from each def

Sanjay Singla, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 488-491

© 2010, IJARCS All Rights Reserved 489

of a variable to each use (c-use and p-use) of that variable to

be traversed. A def-clear path is a path from definition node u

to use node v or edge (v, t) where variable is not redefined

[27].

III. PROPOSED WORK

we introduce a new algorithm that combine the power of

Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO) called Genetic-Particle Swarm Combined Algorithm

(GPSCA) which is used to generate automatic test data that

satisfy data-flow coverage criteria.

Figure. 1 Program 1

Figure. 2 Control Flow Graph

Table 1. List of the dcu-paths of the example program given in figure 1

DCU-Path No. Variable Def Node C-use node

1 I 1 4

2 J 1 5

3 I 1 7

4 I 4 7

5 J 5 7

6 J 1 7

A. GPSCA

The combination of GA and PSO always performs better

than GA or PSO alone [29-30]. The proposed GPSCA

consists of three major operators: enhancement, crossover, and

mutation.
Table 2. List of the dpu-paths of the example program given in figure 1

DPU-Path No. Variable Def Node P-use node

1 K 1 2-3

2 K 1 2-7

3 K 1 3-4

4 K 1 3-5

5 K 6 2-7

6 K 6 2-3

7 K 6 3-4

8 K 6 3-5

Enhancement: In each generation, after the fitness values

of all the individuals in the same population are calculated, the

top-half best-performing ones are marked. These individuals

are regarded as elites. Instead of reproducing the elites directly

to the next generation as elite GAs do, we first enhance the

elites. The enhancement operation tries to mimic the maturing

phenomenon in nature, where individuals will become more

suitable to the environment after acquiring knowledge from

the society. Furthermore, by using these enhanced elites as

parents, the generated off-springs will achieve better

performance than those bred by original elites. PSO is used to

enhance individuals of the same generation. Here, the group

constituted by the elites may be regarded as a swarm, and each

elite corresponds to a particle in it. In PSO, individuals of the

same generation enhance themselves based on their own

private cognition and social interactions with each other. In

GPSCA, we adopt and regard this technique as the maturing

phenomenon.

Crossover: To produce well-performing individuals, in the

crossover operation parents are selected from the enhanced

elites only. To select parents for the crossover operation, the

roulette wheel selection scheme is used. Two off-springs are

created by performing crossover on the selected parents. In

this study, we used single point crossover.

Mutation: Mutation is an operator whereby the allele of a

gene is altered randomly so that new genetic materials can be

introduced into the population. Mutation probability Pm = 0.1

is used by us.

B. Fitness function

We have a new evaluation function to find optimum set of test

cases. The fitness function takes into account not only the

number of the covered DU-Paths, but also how effective is a

chromosome compared to the rest of the chromosomes in the

current population and with respect to the set of paths at hand

[22]. The fitness function used is mathematically expressed as

no. of def use paths covered by vi No. of newly covered path

()

total no of def – use paths Path not yet covered

(1)Eval vi

−

= +

0 1 program test;

1 1 var I, j, k : integer ;

2 1 begin

3 1 i := 0 ;

4 1 j := 0 ;

5 1 read(k) ;

6 2 while (k <> 0) do

7 2 begin

8 3 if (k mod 2) = 0

9 4 then i := i + 1

10 5 else

11 5 j := j +1 ;

12 6 read(k)

13 6 end ;

14 7 write(i , j);

 15 7 end .

Sanjay Singla, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 488-491

© 2010, IJARCS All Rights Reserved 490

Figure. 3 GPSCA

The number returned from the first part of eq.(1) is the most

common in literature and shows the percentage of coverage for

the gene considering the total number of paths that have to be

covered according to the selected criterion. Therefore, we

resort to using additional parts in eq.(1). The second parts of

the fitness function may be considered a kind of reward to the

chromosome. These are introduced based on the observation

that a chromosome which only covers already covered paths

(in a former or the current generation) is not really a step

towards optimization.

The second part of the fitness function gives the true

contribution of the chromosome in terms of covering the

targeted paths. The percentage of the paths covered for the

first time by the chromosome under investigation is more

important than the total number of paths covered.

IV. EXPERIMENTAL RESULTS

MATLAB programming is used for implementing

algorithms for experimentation purpose. The main goal of

research is to combine the power of two algorithms (GA and

PSO) and prove its power and effectiveness towards solving

the testing problems. The effectiveness of the proposed

GPSCAO is compared with GA and PSO. We perform our

new technique GPSCA on set of programs and compare it with

the GA and PSO on the same set of programs to demonstrate

its effectiveness in achieving the test cover ration in less

number of generations.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

No of Generation

GA

PSO

GPSCA

Figure.4 Comparison of number of Generations by GPSCA, GA and PSO

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12

Coverage Ratio %

GA PSO GPSCA

Figure .5 Comparison of number of coverage ratio % by GPSCA, GA and

PSO

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

No of Test cases

GA PSO GPSCA

Figure.7 Comparison of number of test cases generated by GPSCA, GA and

PSO

V. CONCLUSION AND FUTURE WORK

The results of our new approach GPSCA is better than GA

and PSO as in some cases it has higher coverage ratio % than

the PSO and GA. Also test case requirement by GPSCA is less

than both two techniques (GA and PSO). Our experiment also

demonstrates the effectiveness of our proposed approach in

case of number of generations, as GPSCA require less

generation than PSO and GA.

 Our future work will be to study the test case generation

using hybrid GA and ACO (Ant colony optimization) and

compare its effectiveness with our GPSCA approach for data

flow testing using dominance concept.

VI. REFERENCES

[1] B. Beizer, “Software Testing Techniques”, Second

Sanjay Singla, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 488-491

© 2010, IJARCS All Rights Reserved 491

Edition, Van Nostrand Reinhold, NewYork, 1990.

[2] R. A. DeMillo, and A. J. Offlut, “Constraint-based
automatic test data generation”, IEEE Transactions on
Software Engineering, Vol. 17, No. 9, pp. 900-910, 1991.

[3] S. Desikan, G. Ramesh, “Software testing principles &
practices”, Pearson Education.

[4] R. Boyer, B. Elspas, and K. Levitt, “Select-a formal
system for testing and debugging programs by symbolic
execution”, SIGPLAN Otices, Vol. 10, No. 6, pp. 234-
245, June 1975.

[5] L. Clarke, “A system to generate test data and
symbolically execute programs”, IEEE Transaction on
Software Eng., Vol. SE-2, No. 3, pp. 215- 222, Sept.
1976.

[6] C. Ramamoorthy, S. Ho, and W. Chen, “On the automated
generation of program test data”, IEEE Trans. Software
Eng., vol. SE-2, no. 4. pp. 293-300, Dec. 1976.

[7] W. Howden, “Symbolic testing and the DISSECT
symbolic evaluation system”, IEEE Trans. Software Eng.,
Vol. SE-4, No. 4, pp. 266- 278, 1977.

[8] J. H. Holland, “Adaptation in natural and artificial system,
Ann Arbor”, The University of Michigan Press, 1975.

[9] D. Ince, “The automatic generation of test data”,
Computer Journal, Vol. 30, No. 1, pp. 63-69, 1987.

[10] W. Miller and D. Spooner, “Automatic generation of
floating-point test data”, IEEE Trans. Software Eng., Vol.
SE-2, No. 3, pp. 223-226, Sept. 1976.

[11] J. Offutt, Z. Jin, and J. Pan, “The Dynamic domain
reduction procedure for test data generation”, Software
Practice and Experience, Vol. 29, No. 2, pp. 167–193,
January 1997.

[12] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated test
data generation using an iterative relaxation method”, In
ACM SIGSOFT Sixth International Symposium on
Foundations of Software Engineering (FSE-6) Orlando,
Florida, pp 231–244, November 1998.

[13] M. R. Girgis, “Automatic test data generation for data
flow testing using genetic algorithm”, Journal of
Universal Computer Science, Vol. 11, No. 6, pp. 898–915,
2005.

[14] S. Rapps and E. J. Weyuker, “Selecting software test data
using data flow information”, IEEE Transactions on
Software Engineering, Vol. 11, No. 4, pp. 367-375, 1985.

[15] F. E. Allen and J. Cocke, “A program data flow analysis
procedure”, Communication of the ACM, Vol. 19, No. 3,
pp. 137–147, 1976.

[16] J. Kennedy and R. Eberhart, ”Particle swarm
optimization”, IEEE International Conference on Neural
Networks, IEEE Press, pp. 1942–1948, 1995.

[17] A. Windisch, S. Wappler and J. Wegener, “Applying
paricle swarm optimization to software testing”, ACM,
GECCO, London, England, United Kingdom, New York,
pp. 1121-1128, 2007.

[18] K. Agrawal and G. Srivastava, “Towards software test
data generation using discrete quantum particle swarm
optimization”, ISEC, Mysore, India, pp. 65-68, February
2010.

[19] A. Li and Y. Zhang, “Automatic generating all-path test
data of a program based on pso”, World Congress on
Software Engineering. IEEE, Los Alamitos, pp. 189-193,
2009.

[20] R. C. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory”, 6th International Symposium on
Micromachine Human Science, pp. 39–43, 1995.

[21] N. Narmada and D. P. Mohapatra, “Automatic Test Data
Generation for data flow testing using Particle Swarm
Optimization”, Communications in Computer and
Information Science , Vol. 95, No. 1, pp. 1-12, 2010.

[22] A. S. Andreou, K. A. Economides and A. A. Sofokleous,
“An automatic software test-data generation scheme based
on data flow criteria and genetic algorithms”, 7th IEEE
International Conference on Computer and Information
Technology, pp. 867-872, 2007.

[23] R. P. Pargas, M. J. Harrold and R. R. Peck, “Test Data
Generation using Genetic Algorithms”, Software Testing
Verification and Reliability, Vol 9, pp. 263-282, 1999.

[24] C. C. Michael, G. E. McGraw and M. A. Schatz,
”Generating software test data by evolution”, IEEE
Transactions on Software Engineering, vol. 27, no.12, pp.
1085-1110, 2001.

[25] A. S. Ghiduk, M. J. Harrold and M. R. Girgis, “Using
Genetic Algorithms to Aid Test-Data Generation for Data-
Flow Coverage”, 14th Asia-Pacific Software Engineering
Conference, 2007.

[26] J. T. Alander, T. Mantere, and P Turunen, “Genetic
Algorithm Based Software Testing”, In Proceedings of
International Conference (ICANNGA97), Wien, Austria,
pp. 325-328, April 1998.

[27] A. Khamis, R. Bahgat and R Abdelaziz, “Automatic test
data generation using data flow information”, Dogus
University Journal, 2, pp. 140-153, 2000.

[28] A. S. Ghiduk and M. R. Girgis, “Using Genetic
Algorithms and dominance concepts for generating
reduced test data”, informatics, 34, pp. 377-385, 2010.

[29] K. H. Chang, J. H. Cross, W. H. Carlisle and D. B. Brown
“ A framework for intelligent test data generation”,
journal of intelligent and robotic systems- theory and
application, Vo. 5, No. 2, pp. 147-165, 1992.

