
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4352

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 547

ISSN No. 0976-5697

AN EFFICIENT APPROACH OF REGRESSION TESTING USING
HIERARCHICAL DECOMPOSITION SLICING

Surbhi Bansal

Research Scholar
HCTM Technical Campus, Kaithal

Dr. Mukesh Kumar Rana
Assistant Professor

HCTM Technical Campus, Kaithal

Abstract: The purpose of regression testing is to ensure that bug fixes and new functionality introduced in a new version of a software do not
adversely affect the correct functionality inherited from the previous version. I have proposed a new slicing method to decompose a Java
program into affected packages, classes, methods and statements identified with respect to the modification made in the program.Because java
program has hierarchical characteristics(Package/Class/Method), this decomposition is based on this characteristic. I also have proposed an
intermediate representation for Java programs that shows Package Level, Class Level, and Method Level Dependency. I have named this
intermediate representation as Program Dependency Tree(PDT). This PDT is used to identify the program parts that are possibly affected by the
change made to the program. With the help of PDT, we can obtain program slices. The packages, classes, methods, and statements thus affected
are identified by traversing the Program Dependency Tree. The proposed approach maps the decomposed slice (comprising of the affected
program parts) with the coverage information of the existing test suite to select the appropriate test cases for regression testing.

1. REGRESSION TESTING

Regression testing is the process of validating modified
software to provide confidence that the changed parts of the
software behave as intended and that the unchanged parts of
the software have not been adversely affected by the
modifications. Modifications in the user requirements and
growing expectations of the clients have forced the software
to evolve at regular intervals of time. As the complexity of
software increases, the cost and effort to maintain such
complex software also increase. After making the required
changes to the software, regression testing should be carried
out in order to assure the validity of the modified part and to
ensure that the changes do not affect other parts of the
program.
A system is said to regress if 1) a new component is added,
or 2) a modification done to the existing component affects
other parts of the program. Therefore, it is absolutely
necessary to retest not only the changed code but also to
retest the possible affected code due to the change.
Regression testing is an expensive activity and normally
accounts for half of the total cost of software maintenance
[1]. It is essential to cut-down the cost of retesting the
software by pursuing a selective approach to identify and
retest only those parts of the program that are affected by the
change. Gupta et al. [2] have identified two important
problems in selective regression testing: (1) identifying
those existing tests that must be rerun since they may exhibit
different behavior in the changed program and (2)
identifying those program components that must be retested
to satisfy some coverage criterion.

2. PROGRAM SLICING

Program slicing is the computation of the set of
programs statements, the program slice that may affect the
values at some point of interest, referred to as
a slicing criterion. Program slicing can be used in debugging
to locate source of errors more easily. Program slicing is a

method of separating out the relevant parts of a program
with respect to a particular computation. Thus, slice of a
program is a set of statements of the program that affects the
value of a variable at a particular point of interest. A
program slice at a statement s consists of a set of relevant
statements of a program those directly or indirectly affects s.
Program slicing was originally introduced by Mark Weiser
[3] as a method for automatically decomposing programs by
analyzing their data flow and control flow dependences
starting from a subset of a program’s behavior. Finding all
statements in a program that directly or indirectly affect the
value of a variable occurrence is referred to as Program
Slicing.

3. APPLICATIONS OF PROGRAM SLICING

In the following, we briefly discuss some of the applications
of program slicing.
• Testing: Software maintainers often carry out

regression testing. Regression testing essentially
implies retesting software after modification [4,5,6].
Even after the smallest change to a piece of code,
extensive tests may be necessary which might involve
running a large number of test cases to eliminate any
unwanted behavior arising due to the change.

• Debugging: Programmers mentally slice a code while
debugging it. Program slicing is useful for debugging,
because it potentially allows one to ignore many
statements in the process of localizing the bug.

• Software Maintenance: One of the problems in
software maintenance is that of the ripple effect, i.e.,
whether a code change in a program will affect the
behavior of other codes of the program. To avoid this
problem, it is necessary to know which variables in
which statements will be affected by a modified
variable, and which variables in which statements will
affect a modified variable during software maintenance.
The needs can be satisfied by slicing the program being
maintained [7].

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 548

• Change Impact Analysis: In regression testing only
those parts are tested that are affected by the changes
made to the program. Software change impact analysis
is the mechanism of finding out the unpredicted and
potential effect of the changes and the propagation of
the impact to other parts of the program.

• Software Quality Assurance: Software quality
assurance auditors have to locate safety critical code
and to ascertain its effect throughout the system.
Program slicing can be used to locate all code that
influences the values of variables that might be part of a
safety critical component. But beforehand these
critical components have to be determined by domain
experts.

• Other Applications of Program Slicing: Program
slicing methods have been used in several other
applications such as compiler optimization, detecting
dead code, software portability analysis, program
understanding, program verification, measuring class
cohesion, etc.

4. PROPOSED WORK

The change in the user requirements and growing
expectations of the customers has forced the software to
evolve at regular intervals of time. As the complexity of the
software increases, the cost and effort to maintain such
complex software also increases. Therefore, regression
testing has become an integral part of the software

maintenance process. It is indispensable to make changes
and modifications to an already tested program.
Program slicing is an effective and efficient technique to
debug, test, analyze, understand and maintain software.
However, while applying the same techniques to OO
programs, we fail because of the presence of many other
dependences originating from the OO features. Although
OO features have improved program understandability and
readability, but have complicated the maintenance activities.
The dependences that arise due to the class and object
concepts are inheritance dependence, message dependence,
data dependence, type dependence, reference dependence,
concurrency dependence, etc. The presence of the features
like packages, super, dynamic method dispatch, interface,
exception handling, multi-threading, etc, in Java add to the
list of dependences and thus make the maintenance even
more difficult. Their effects on the maintenance of the
programs need to be considered separately.
Keeping in view the above motivations and to overcome the
challenges, we fix our goal on following points.

1. To construct a Proposed Dependency Tree for
representing different dependences in Java programs
arising due to the different object-oriented features.

2. To develop and implement a slicing algorithm that
identifies different program parts affected by the
changes made to the program.

3. To select the test cases that are relevant for regression
testing of the program under consideration.

5. PROGRAM DEPENDENCY TREE AND HIERARCHICAL SLICING

Figure1: Model for Dependency Tree &Hierarchical Slicing.

Instead of analyzing the data flow and control flow for an
OO program as a whole, it is useful to employ the
hierarchical structure of the OO programs (e.g. Java
programs), to detect the impact of the changes made to the
program. A Java program P, is composed of a set of
packages, classes, methods and statements, organized in a
hierarchical manner. Therefore, in hierarchical slicing, we
first try to slice out the packages that might have been
affected by the change. From the set of affected packages,
we then slice out the affected classes. Then the affected
methods and the statements inside those methods are sliced
out for retesting. The above concept of hierarchical slicing
can be explained by considering a slicing criterion (i.e. the

point of modification) < s, v >, where s is the statement
containing variable v. Let S(P) be the set of packages,
classes, methods and statements of a program P. The steps
of hierarchical slicing are as follows:
Step-1 First, we detect the package p containing s and v and
all other packages, based on their direct or indirect
dependences on p caused due to import statements. All those
packages which are not related to the package p are
removed. By following this process, the package level slice
obtained is marked as S1(P).
Step-2 Then, we analyze S(P), to find out all those classes
that are related to the class containing s and v. All other

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 549

irrelevant classes are removed to get the class level slice.
The class level slice is marked as S2(P).
Step-3 Next, we analyze S(P) and delete all the member
methods and variables that are not related to the method
containing s and v. This results in the method level slice,
which is marked as S3(P).
Step-4 Finally, to find out the statement level slice, we
analyze S(P) and delete all the statements and predicates that
are not related to statement s containing variable v. The slice
thus obtained is marked as S4(P).
This step wise extraction of the slices is known as
hierarchical slicing. We use this concept of hierarchical
slicing for selecting our regression test cases.
Java being the most popular OO language, we are
encouraged to consider Java programs. We propose a
dependency tree of java program suitable for slicing and test
case generations.

6. PROPOSED PROGRAM DEPENDENCY TREE OF
JAVA PROGRAM

The proposed Program Dependency Tree is a hierarchical
structure which displays dependency information. We
classify these dependences based on their role in
representing some Object-Oriented features at different
hierarchical levels.

• Package level dependences: Package level
dependence specifies the dependence of a package
on another package.

• Class level dependences: When a class uses the
features of another class, this kind of dependency is
shown under this.

• Method level dependences: Message passing is an
important feature in object-oriented programs
realized through method invocation by the objects.
When one method invokes another method, it
passes messages in the form of parameters. In
method level dependency, we can see all methods
and their dependent methods.

7. PROPOSED HIERARCHICAL DECOMPOSITION (HD) SLICING ALGORITHM

Following is the proposed algorithm named Hierarchical Decomposition (HD) Slicing, for finding those program parts that are
affected by the change. The node that corresponds to the statement of modification is taken as the slicing criterion to compute the
slices.

Figure2: Package Level Slice

Figure3: Class Level Slice

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 550

Figure4: Method level Slice

Algorithm: Hierarchical Decomposition Slicing
Algorithm
Input: PROGINFO, Reference of statements to be
changed(STM), Program Dependency Tree (PDTROOT)
Output: Package Level Slice, Class Level Slice, Method
Level Slice

1. Set DepNodeList:=[];
2. Repeat and traverse each node N of PDTROOT

using Preorder method
a. If there is parent-child relation between

STM and N [STM is parent, N is child or
STM is child, N is parent]

i. Add Node N to DepNodeList
[End of If]
[End of Repeat Traverse Loop]

3. Set PackSlice=[]
4. Repeat for each Statement S inDepNodeList

a. Get PackageName PN of statement S from
PROGINFO

b. Add PN to PackSlice
[End of Repeat Loop]

5. Set ClassSlice=[]
6. Repeat for each Statement S inDepNodeList

a. Get ClassName CN of statement S from
PROGINFO

b. Add CN to ClassSlice
[End of Repeat Loop]

7. Set MethodSlice=[]
8. Repeat for each Statement S inDepNodeList

a. Get MethodName MN of statement S
from PROGINFO

b. Add MN to MethodSlice
[End of Repeat Loop]

9. End

8. PROPOSED REGRESSION TEST CASE
SELECTION ALGORITHM

Following is the proposed algorithm named Regression Test
Selection, for generating selective regression test cases. Our
proposed algorithm takes the validation rules defined by the
client and after analyzing the slices, it generates all test
cases. The outcome of the algorithm is a set of change-based
selected test cases suitable for regression testing. Algorithm
gives the steps of our proposed regression test case selection
approach in pseudo code form.
Algorithm: Hierarchical Regression Test Case Selection
Algorithm
Input: PackageName, ClassName, Decomposed Slices,
Validation Rules
Output: A set of selected change based test cases

1. Set Testset=[]
2. Repeat and Apply Process for each rule in RuleSet

a. Get Rule from RuleSet
b. Analyse the rule, generate positive

testcase and insert testcase into Testset
c. Analyse the rule, generate negative

testcase and insert into Testset.
[End of Repeat Loop Step 3]

3. View Testset
4. End

9. IMPLEMENTATION

To implement the proposed methods of Program Slicing,
Program Dependency Tree and Generating Regression Test
cases, I have used Java Language with Net Beans IDE.

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 551

Dependency Tree (Unexplored): In this tree, there are two regions. First region is the Tree on left side, in which 3 types of
dependencies are shown. Second region is the programs of all dependency which is placed in the center. Dependencies shown in
the left side tells that which packages are dependent on any other package, which classes are dependent on any of the class &
which methods are dependent on any methods.

Figure 5: Dependency Tree (Unexplored)

Dependency Tree(Explored): Three types of dependency are shown in the Dependency Tree. When we click on Package Level
Dependency all the packages appears & as we click on any package, all the package dependent on that package also appears.
Classes get appears when we click on Class Level Dependency &By clicking on any class, dependent classes get appears.

Figure 6: Dependency Tree(Explored)

Slicing Implementation: Figure7 represents the implementation work of Program Slicing. In this frame, first we have to select
any package in the first combo box, and then all the classes of selected package will appear in second combo box. Press load
button & all the statements of selected class will appear in left corner of the frame. Then select any statement& it gives you 4
options to select any of four button named Package Level slice, Class level slice, Function level slice, Statement level slice. So the
slices corresponding to button selected will appear in the frame.

Figure 7: Slicing Implementation

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 552

Slicing Implementation (Package level Slice): This frame displays package level slice of selected statement. It means all those
packages which are dependent on the statement which we have selected from the left side are displayed.

Figure 8: Slicing Implementation (Package level Slice)

Slicing Implementation (Class level Slice): This frame displays class level slice of selected statement. It means all those classes
which are dependent on the statement which we have selected from the left side are displayed.

Figure 9: Slicing Implementation (Class level Slice)

Slicing Implementation (Function level Slice):This frame displays function level slice of selected statement. It means all those
functions which are dependent on the statement which we have selected from the left side are displayed.

Figure 10: Slicing Implementation (Function level Slice)

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 553

Slicing Implementation (Statement level Slice): This frame displays statement level slice of selected statement. It means all
those statements which are dependent on the statement which we have selected from the left side are displayed.

g
Figure11: Slicing Implementation (Statement level Slice)

Validation Rule Setup: This form displays validation rules of the program. Validation rules are stored in the database. Based on
the validation rules test case are generated.

Figure12: Validation Rule Setup

Test Case Generation: This form displays validation rules and list of test cases. Test case type is given which is either positive or
negative. This is very much helpful in regression testing due to automatic generation of test cases.

Figure13: Test Case Generation

Surbhi Bansal et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,547-554

© 2015-19, IJARCS All Rights Reserved 554

10. CONCLUSION

We proposed an algorithm of java program slicing which is
very useful in regression testing. This algorithm takes
Program Dependency Tree as input and generates Package
level slice, class level slice, method level slice and statement
level slices. Using this slicing approach, we can quickly
identify the affected program parts with respect to some
modifications made to the program. The selected test cases
are also found to be very efficient in detecting the regression
errors.
The HD (Hierarchical Decomposition) Slicing algorithm is
useful for software engineering applications that require
computing slices at different program points. Because of its
efficiency, very large systems can now be sliced in a very
short time, opening new avenues for research. Applications
for testing may also benefit from the fast computation time.

11.FUTURE SCOPE

The slicers can be used to develop efficient debuggers and
test drivers for large scale object-oriented programs. We can
plan to explore this possibility.An investigation into the
suitability of the proposed Program Dependency Tree to
represent dependences in other object-oriented programs
(such as C#) will be studied in future. We also aim to

calculate efficiency achieved in regression testing. Meaning,
we must know that how much time our slicer saves in
regression testing.

12.REFERENCES:

[1] Leung, H., and White, L. Insights into Regression Testing

Selection. In Proceedings of the Conference on Software
Maintenance (1989), pp. 60–69.

[2] Gupta, R., Harrold, M. J., and Soffa, M. L. Program Slicing-
Based Regression Testing Techniques. Software Testability,
Verifiability and Reliability 6, 2 (1996), 83– 111.

[3] Weiser, M. Program Slicing. In Proceedings of the 5th
International Conference on Software (1981), San Diego,
California, USA, pp. 439–449.

[4] Binkley, D. The Application of Program Sli9cing to
Regression Testing. Information and Software Technology 40,
11 (1998), 583–594.

[5] Mall, R. Fundamentals of Software Engineering, 3rd ed. PHI
Learning Pvt. Ltd., 2010, pp. 159–160.

[6] Tao, C., Li, B., Sun, X., and Zhang, C. An Approach to
Regression Test Selection Based on Hierarchical Slicing
Technique. In 34th Annual IEEE Computer Software and
Applications Conference Workshops (2010), pp. 347–352.

[7] Gallagher, K. B., and Lyle, J. R. Using Program Slicing in
Software Maintenance. IEEE Transactions on Software
Engineering 17, 8 (1991), 751–761.

