Available Online at www.ijarcs.info

ANTI - MAGIC LABELING ON SOME STAR RELATED GRAPHS.

K.Ameenal Bibi
P.Gand Research Department of Mathematics.
D.K.M College For Women (Autonomous), Vellore-632001, India.

T.Ranjani
P.G and Research Department of Mathematics.
D.K.M College For Women (Autonomous)
Vellore - 632001,India.

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple, finite, undirected and connected graph. A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with order p and size q is said to admit antimagic labelling if there exists a bijection $f: E(G) \rightarrow\{1,2, \ldots q\}$ such that for each $u, v \in V(G), \sum f(e)$ are distinct for all $e=u v \in(G)$. In this paper , we have obtained anti- magic labelling on the graphs, obtained by joining apex vertices of some star graphs to a new vertex by assigning both even and odd positive integers to these vertices and edges respectively.

Keywords: Star graphs, Edge labelling, vertex labelling, Even Anti - magic labelling, Odd Anti- magic labelling.

1.INTRODUCTION

The concept of graph labeling was introduced by Rosa in 1967. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions.
Hartsfield and Ringel introduced the concept of Anti - magic labeling which is an assignment of distinct values to different vertices in a graph in such a way that when taking the sums of the labels, all the sums will be having different constants [4].

Definition 1.1:
 Vertex labeling :

Label the vertices of a graph with positive integers. This process is called vertex labeling. Let $\mathrm{f}: \forall\{1,2 \ldots \mathrm{n}\}$. Under this vertex labeling, the edge weight of an edge $\mathrm{e}=\mathrm{uv}$ is defined as $W(e)=W(u v)=f(u)+f(v)$.

Definition 1.2:

Edge labeling :

Label the edges of a graph with positive integers. This process is called edge labeling. Let $\mathrm{f}: \mathrm{E} \rightarrow\{1,2, \ldots \mathrm{n}\}$.Under this edge labeling, the vertex weight of a vertex $\mathrm{vV}(\mathrm{G})$ is defined as the sum of the labels of the edges incident with v that is $w(v)=\sum f(u v)$.

Definition 1.3:

Consider t copies of stars namely $\mathrm{K}_{1, \mathrm{n} 1}, \mathrm{~K}_{1, \mathrm{n} 2} \ldots \mathrm{~K}_{1, \text { nt }}$ then the graph $\mathrm{G}=\left\langle\mathrm{K}_{1, \mathrm{n} 1}, \mathrm{~K}_{1, \mathrm{n} 2} \ldots \mathrm{~K}_{1, \mathrm{nt}}>\right.$ is the graph obtained by joining apex vertices of each $\mathrm{k}_{1, \mathrm{ni}}$ and $\mathrm{k}_{1, \mathrm{ni}+1}$ to a new vertex u_{i}, where $1 \leq \mathrm{i} \leq \mathrm{t}-1$.

II Main Results:

Theorem 2.1:

The graph G obtained by joining t copies of stars $<\mathrm{K}_{1, \mathrm{n} 1}, \mathrm{~K}_{1, \mathrm{n} 2} \ldots \mathrm{~K}_{1, \mathrm{nt}}>$ admits Edge - Even anti - magic labeling.

Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices and $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be the edges of the star graphs, $K_{1, n}, i=1,2 \ldots .$. . We shall join these graphs $\mathrm{K}_{1, \mathrm{ni},} \mathrm{K}_{1, \mathrm{ni}+1}$ and $\mathrm{K}_{1, \mathrm{ni}+2}$ by adding a new vertex u_{i},
where $1 \leq \mathrm{i} \leq \mathrm{t}-1$ to their apex vertices. We define the labeling function f as follows:
$\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{2,4 \ldots .2 \mathrm{q}\}$, where q is the even number of edges of G.
$f\left(v_{i, 0}\right)=3 q+i$, for $i=1$
$f\left(v_{i, 0}\right)=6 q+3 i$, for $i=2$
$f\left(v_{i, 0}\right)=5 q+3 i$, for $i=3$
$f\left(e_{i}\right)=2 i$, for $i=1,2 \ldots . n$
$f\left(u_{i}\right)=2 q+i-1$, for $i=1$
Thus, the above labeling pattern gives rise to an anti - magic labeling on the given graph G.

Illustration 2.2:

Figure 1: Edge- Even Anti- magic labeling on $<\mathrm{K}_{1,2} \mathrm{~K}_{1,3}, \mathrm{~K}_{1,5}>$

Theorem 2.3:

The graph G obtained by joining t copies of stars <
$\mathrm{K}_{1, \mathrm{n} 1}, \mathrm{~K}_{1, \mathrm{n} 2} \ldots \mathrm{~K}_{1, \mathrm{nt}}>$ admits Edge - odd anti - magic labeling. Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices and $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be the edges of the star graphs, $\mathrm{K}_{1, \mathrm{ni}}, \mathrm{i}=1,2 \ldots \mathrm{t}$. We shall join these graphs $\mathrm{K}_{1, \mathrm{ni}}, \mathrm{K}_{1, \text { ni }+1}, \mathrm{~K}_{1, \mathrm{ni}+2}, \mathrm{~K}_{1, \mathrm{ni}+3}$ by adding a new vertex u_{i}, where $1 \leq \mathrm{i} \leq \mathrm{t}-1$ to their apex vertices. We define the labeling function f as follows:

$$
\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3 \ldots \mathrm{q}\},
$$

where q is the odd number of edges of G .
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, 0}\right)=2 \mathrm{q}+\mathrm{i}=7$, for $\mathrm{i}=1$
$f\left(v_{i, 0}\right)=6 q-3 i$, for $i=2$
$f\left(\mathrm{v}_{\mathrm{i}, 0}\right)=7 \mathrm{q}+3 \mathrm{i}-1$, for $\mathrm{i}=3$
$f\left(v_{i, 0}\right)=5 q+3 i$, for $i=4$
$f\left(e_{i}\right)=i, i+1, i+2, i+3 \ldots i+q$.
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{q}-\mathrm{i}$, for $\mathrm{i}=1$
$f\left(u_{i}\right)=2 q+i$, for $i=2$
$f\left(u_{i}\right)=3 q+i$, for $i=3$.
Thus, the above labeling pattern gives rise to an anti magic labeling on the given graph G.

Illustration 2.4:

Figure 2: Edge- Odd Anti- magic labeling on $<\mathbf{K}_{1,2}$ $\mathbf{K}_{1,3}, \mathbf{K}_{1,4}, \mathbf{K}_{1,6}>$

Theorem 2.5:

The graph G obtained by joining t copies of stars $<\mathrm{K}_{1, \mathrm{n1} 1}, \mathrm{~K}_{1, \mathrm{n2}} \ldots \mathrm{~K}_{1, \mathrm{nt}}>$ admits Vertex - even anti - magic labeling.

Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices and $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be the edges of the star graphs, $\mathrm{K}_{1, \mathrm{ni}}, \mathrm{i}=1,2 \ldots \mathrm{t}$. We shall join these graphs $K_{1, \text { ni }}$ and $K_{1, \text { ni }+1}$ by adding a new vertex u_{i}, where $1 \leq \mathrm{i}$ $\leq \mathrm{t}-1$ to their apex vertices. We define the labeling function f as follows:

$$
\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{2,4 \ldots .2 \mathrm{q}\}
$$

where q is the even number of edges of G .
$f\left(\mathrm{v}_{\mathrm{i}, 0}\right)=\mathrm{q}+2 \mathrm{i}$, for $\mathrm{i}=1$
$f\left(v_{i, 0}\right)=q+4 i+2$, for $i=2$
$f\left(v_{1, j}\right)=q+2 j+2$, for $j=1,2, \ldots t$
$f\left(u_{i}\right)=q+6 i+2 i$, for $i=1$
$f\left(v_{2, j}\right)=3 q+2 j+4$, for $j=1,2 \ldots t$
Thus ,the above labeling pattern gives rise to an anti - magic labeling on the given graph G.
Illustration 2.6:

Figure 3: Vertex- Even Anti- magic labeling on $<\mathbf{K}_{1,2}, \mathbf{K}_{1,4}>$

Theorem 2.7:

The graph G obtained by joining t copies of stars $<\mathrm{K}_{1, \mathrm{n} 1}, \mathrm{~K}_{1, \mathrm{n} 2} \ldots \mathrm{~K}_{1, \mathrm{nt}}>$ admits Vertex - odd anti - magic labeling.

Proof:

Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices and $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{n}}\right\}$ be the edges of the star graphs, $\mathrm{K}_{1, \mathrm{ni}}$, $\quad \mathrm{i}=1,2 \ldots \mathrm{t}$. We shall join these graphs $\mathrm{K}_{1, \text { ni }}, \mathrm{K}_{1, \text { ni }+1}$ and $\mathrm{K}_{1, \text { ni }+2}$ by adding a new vertex u_{i}, where $1 \leq \mathrm{i} \leq \mathrm{t}-1$ to their apex vertices. We define the labeling function f as follows:
$\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,3 \ldots \mathrm{q}\}$,
where q is the odd number of edges of G .
$f\left(v_{i, 0}\right)=i$, for $i=1$
$f\left(\mathrm{v}_{\mathrm{i}, 0}\right)=\mathrm{q}+\mathrm{i}-2$, for $\mathrm{i}=2$
$f\left(v_{i, 0}\right)=2 q-i$, for $i=3$
$\mathrm{f}\left(\mathrm{v}_{1, \mathrm{j}}\right)=\mathrm{q}+2 \mathrm{j}-11$, for $\mathrm{i}=1,2, \ldots \mathrm{t}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{q}-2 \mathrm{i}$, for $\mathrm{i}=1$
$f\left(u_{i}\right)=2 q-2 i-1$, for $i=2$
$f\left(v_{2, j}\right)=2 q-2 i$, for $j=1$
$f\left(v_{2, j}\right)=2 q+i, 2 q+i+1,2 q+i+2, \ldots 2 q+i+t$.
$f\left(v_{3, j}\right)=3 q+5 i \quad$, for $j=1$
$f\left(v_{3, j}\right)=4 q-2 i$, for $j=2$
$f\left(v_{3, j}\right)=4 q-i+1$, for $j=3$.
Thus, the above labeling pattern gives rise to an anti - magic labeling on the given graph G .
Illustration 2.8:

Figure 4:Vertex- Odd Anti- magic labeling on $<\mathbf{K}_{\mathbf{1 , 2}}$ $\mathbf{K}_{1,3}, \mathbf{K}_{1,4}>$

CONCLUSION:

In this paper, We have presented anti- magic labeling on some star related graphs by assigning even and odd positive integers for both the vertices and edges respectively. Here, we obtained anti- magic labeling on 2 copies, 3 copies and 4 copies of star related graphs. Similar results for finite number of copies of star related graphs are under investigation.

Reference:

1. K.Ameenal Bibi and T.Ranjani , Edge -odd graceful labeling on circulant graphs, "International Research Journal In Advanced Engineering And Technology" (IRJAET)E- ISSN :2454-4752 P-ISSN:2454-4744.
2. K.Ameenal Bibi and T.Ranjani ,Total bi-magic circulant graphs with generating sets($1,2,3,4$) and ($1,2,3,4,5$), "Global Journal of Pure and Applied Mathematics". ISSN 0973-1768 Volume 13 ,pp.3789-3799.
3. K.Ameenal Bibi , P.Rekha and T.Ranjani Cordial double staircase graphs, "Global Journal Of Pure And Applied Mathematics". ISSN 0973-1768 Volume 13, pp3395-3401.
4. K.Ameenal Bibi and T.Ranjani , Edge - Even Graceful labeling on Circulant Graphs with different generating sets, "Global Journal Of Pure And Applied Mathematics".ISSN 0973-1768 Vol.13, N0.9(2017),pp 4555-4567.
5. G.S Bloom and S.W Golomb, Applicationof numbered undirected graphs, Proceedings of IEEE, 165(4)91977), 562570.
6. G.S.Bloom and S,W.Golomb, Numbered complete graphs, Usual rules and assorted applications, in theory and applications
of graphs, Lecture Notes in Math, 642,Springer- Verlag, New York (19780 53-65.
7. J.A.Gallian, The Electronics Journal of Combinatorics, 16, \#Ds6(2013).
8. V.J.Kaneria, M.M.Jariya and Meera Meghpara on Graceful Labeling for Some Star Related Graphs, Saurashtra University, Rajkot, International Mathematical Forum, Vol.9,2014 No.26,1289-1293. Hikari Ltd.India.
9. Lo.S., On edge graceful labelting of graphs Congress Number, 50,231-241(1985).
10. F.Harary, Graph theory Addition Wesley,Massachusetts,1972.
11. Peter Kovar, Magic labelingof regular graphs, AKCE Inter.J.Graphs and Combin., 4 (2007) 261-275.
12. A.Rosa, On Certain Valuation of graph theory of Graphs (Rome, July 1966), Goden and Breach, N.Y.and Paris, 1967,349-355.
13. Solairaju.A and Chithra .K , Edge - odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics, 33,1520(2009).
14. S.K.Vaidya , N.A.Dani,K.K.Kanani and P.L.Vihol Cordial and 3- equitable labeling for some star realted graphs, International Mathematical Forum,4,(2009)1543-1553.
15. West.D.B. Introduction to graph theory, Prentice- Hall Inc,(2000).
