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Abstract:  Let G= (V,E) be a simple, finite, undirected and connected graph. A graph G= (V,E) with order p and size q is said to admit anti- 
magic labelling if there exists a bijection  f:E(G) →{1,2,...q} such that for each u,v ϵ V(G) , ∑ f(e) are distinct for all e= uv ϵ E(G).  In this paper 
, we have obtained anti- magic labelling on the graphs, obtained by joining apex vertices of some star graphs to a new vertex by assigning both 
even and odd positive integers to these vertices and edges respectively. 
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1.INTRODUCTION 

The concept of graph labeling was introduced by Rosa in 
1967. A graph labeling is an assignment of integers to the 
vertices or edges or both subject to certain conditions. 
  Hartsfield and Ringel introduced the concept of Anti – magic 
labeling which is an assignment of distinct values to different 
vertices in a graph in such a way that when taking the sums of 
the labels, all the sums will be having different constants [4]. 
 
Definition 1.1: 
    Vertex labeling : 
                  Label the vertices of a graph with positive integers. 
This process is called vertex labeling. Let f:V→{1,2…n}. 
Under this vertex labeling , the edge weight of an edge e= uv 
is defined as W(e) = W(uv)= f(u)+f(v). 
Definition 1.2: 
Edge labeling : 
                      Label the edges of a graph with positive integers. 
This process is called edge labeling. Let f:E→{1,2,…n}.Under 
this edge labeling, the vertex weight of a vertex vϵ V(G) is 
defined as the sum of the labels of the edges incident with v 
that is w(v)= ∑f(uv). 
Definition 1.3: 
         Consider t copies of stars namely K1,n1,K1,n2…K1,nt then 
the graph G= <K1,n1,K1,n2…K1,nt > is the graph obtained by 
joining apex vertices of each k1,ni and k1,ni+1 to a new vertex ui, 
where  1≤ i ≤ t-1.       

 
II Main Results: 
Theorem 2.1: 
                    The graph G obtained by joining t copies of stars 
< K1,n1, K1,n2…K1,nt > admits Edge – Even anti – magic 
labeling. 
Proof: 

     Let {v1,v2….vn} be the vertices and {e1,e2,…en} be the 
edges of the star graphs, K1,ni,i= 1,2…t. We shall join these 
graphs K1,ni, K1,ni+1 and  K1,ni+2 by adding a new vertex ui,  

 
 
 
 
 
 

where   1≤ i ≤ t-1 to their apex vertices. We define the labeling 
function f as follows: 

f:E(G) → {2,4….2q} , where q is the even  number of edges 
of G. 

f(vi,0) = 3q+i , for i = 1 
f(vi,0) = 6q+3i,  for  i= 2 
f(vi,0) = 5q+3i , for i = 3 
f(ei) = 2i , for  i = 1,2….n 
f(ui) = 2q+i-1  , for  i=1 
                 Thus, the above labeling pattern gives rise to an anti 

– magic labeling on the given graph G. 
Illustration 2.2: 
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Figure 1: Edge- Even Anti- magic labeling on < K1,2 K1,3,K1,5 > 
 
Theorem 2.3: 

             The graph G obtained by joining t copies of stars < 
K1,n1, K1,n2…K1,nt > admits Edge – odd anti – magic labeling. 

Proof: 
     Let {v1,v2….vn} be the vertices and {e1,e2,…en} be the 

edges of the star graphs, K1,ni, i= 1,2…t. We shall join these 
graphs K1,ni, K1,ni+1, K1,ni+2, K1,ni+3  by adding a new vertex ui, 

where 1≤ i ≤ t-1 to their apex vertices. We define the labeling 
function f  as follows: 
f:E(G) → {1,3….q} , 

        where q is the odd number of edges of G. 
f(vi,0) = 2q+i=7  , for i = 1 
f(vi,0) = 6q-3i,  for  i= 2 
f(vi,0) = 7q+3i-1 , for i = 3 
f(vi,0) = 5q+3i ,  for i = 4 
f(ei) = i , i+1,i+2,i+3…i+q. 
f(ui) = q-i  , for  i=1 
f(ui) = 2q+i  , for  i=2 
f(ui) = 3q+i  , for  i=3. 

         Thus, the above labeling pattern gives rise to an anti – 
magic labeling on the given graph G. 

Illustration 2.4: 
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Figure 2: Edge- Odd Anti- magic labeling on < K1,2 
K1,3,K1,4 ,K1,6> 

 
 

Theorem 2.5: 
                     The graph G obtained by joining t copies of stars 

< K1,n1, K1,n2…K1,nt > admits Vertex – even  anti – magic 
labeling. 

Proof: 
                   Let {v1,v2….vn} be the vertices and {e1,e2,…en} be 
the edges of the star graphs, K1,ni,i= 1,2…t. We shall join these 
graphs K1,ni  and  K1,ni+1  by adding a new vertex ui, where 1≤ i 
≤ t-1 to their apex vertices. We define the labeling function f 

as follows: 
f:V(G) → {2,4….2q} ,  

where q is the even  number of edges of G. 
f(vi,0) = q+2i  , for i = 1 
f(vi,0) = q+4i+2,  for  i= 2 
f(v1,j) = q+2j+2 , for j = 1,2,…t 
f(ui) = q+6i+2i  , for  i=1 
f(v2,j) = 3q+2j+4  , for  j=1,2…t 
                     Thus ,the above labeling pattern gives rise to an 
anti – magic labeling on the given graph G. 
Illustration 2.6: 
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Figure 3: Vertex- Even Anti- magic labeling on < K1,2,K1,4> 

 
 
 
Theorem 2.7: 
                     The graph G obtained by joining t copies of stars 

< K1,n1, K1,n2…K1,nt > admits Vertex – odd anti – magic 
labeling. 

Proof: 
                  Let {v1,v2….vn} be the vertices and {e1,e2,…en} be 
the edges of the star graphs, K1,ni,               i= 1,2…t. We shall 

join these graphs K1,ni , K1,ni+1  and  K1,ni+2 by adding a new 
vertex ui, where  1≤ i ≤ t-1 to their apex vertices. We define 

the labeling  function f as follows: 

f:V(G) → {1,3….q} ,  
where q is the odd number of edges of  G. 
f(vi,0) = i  , for i = 1 
f(vi,0) = q+i-2,  for  i= 2 
f(vi,0) = 2q-i,  for  i=3 
f(v1,j) = q+2j-11 , for i = 1,2,…t 
f(ui) = q-2i  , for  i=1 
f(ui) =2q-2i-1  , for  i=2 
f(v2,j) = 2q-2i  , for  j=1 
f(v2,j) = 2q+i,2q+i+1,2q+i+2,…2q+i+t. 
f(v3,j) = 3q+5i       , for  j=1 
f(v3,j) = 4q-2i  , for  j=2 
f(v3,j) = 4q-i+1  , for  j=3.   
                          Thus, the above labeling pattern gives rise to 
an anti – magic labeling on the given graph G. 
Illustration 2.8: 
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Figure 4:Vertex- Odd Anti- magic labeling on < K1,2 
K1,3,K1,4> 

 
 
 

CONCLUSION: 
 

    In this paper, We have presented anti- magic labeling on      
some star related graphs by assigning even and odd positive 
integers for both the vertices and edges respectively. Here, we 
obtained anti- magic labeling on 2 copies, 3 copies and 4 
copies of star related graphs. Similar results for finite number 
of copies of star related graphs are under investigation. 
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