Available Online at www.ijarcs.info

DOMINATING FUNCTIONS OF CORONA PRODUCT GRAPH OF K_{n} AND P_{m}

C Shobha Rani
Research Scholar, Department of Mathematics, Madanapalle Institute of Technology \& Science, Madanapalle-517325, India
E-mail: charapallishobha@gmail.com

B Maheswari

Professor, Department of Applied Mathematics,
Sri Padmavati Mahila Visvavidyalayam,
Tirupati-517502, India ${ }^{2}$
E-mail: maherahul55@gmail.com

S Jeelani Begum
Assistant Professor, Department of Mathematics, Madanapalle Institute of Technology \& Science, Madanapalle-517325, India
E-mail: sjb.maths@gmail.com

G S S Raju
Professor, Department of Mathematics, JNTU College of Engineering, Pulivendula- 516390, India ${ }^{4}$
E-mail: rajugss@yahoo.com

S Gouse Mohiddin
Assistant Professor, Department of Mathematics, Madanapalle Institute of Technology \& Science, Madanapalle-517325, India
E-mail: gousemaths@gmail.com

Abstract

Let G be a simple graph with vertex set V and edge set E . A subset D of a vertex set V is known as dominating set of G , if for every vertex v in V-D, there exists a vertex u in D such that ($u, v) \in E$. Let $G(V, E)$ be a graph and a function $f: V \rightarrow[0,1]$ is called a dominating function (DF) of G, if $f[N[v]]=\sum_{u \in N[v]} f(u) \geq 1$, for each $v \in V$. The dominating function f of G is called a minimal

 dominating function, if for all $g<f, g$ is not a dominating function. In this paper we study dominating functions of corona product graph of complete graph K_{n} with path P_{n}.Keywords: Corona product graph, Dominating sets, Dominating functions.

I. INTRODUCTION

Domination theory gain an importance in graph theory which aids to find efficient routes within ad-hoc mobile networks and designing secure systems for electrical grids. The study on theory of product graphs is useful to understand computational complexity in wireless networking.
Frucht and Harary [1] introduced a new product on two graphs G_{1} and G_{2}, called corona product denoted by $G_{1} \square G_{2}$. Generally Product of graphs occurs in discrete mathematics. Allan and Laskar [2], Cockayne and Hedetniemi [3,4] have studied various domination parameters of graphs. Dominating functions are studied in $[5,6,7]$.

A nonempty subset D of V in a graph G is a dominating set of G , if every vertex in V -D is adjacent to at least one vertex in D . The number of vertices in a minimum dominating set is defined as the domination number of G and is denoted by $\gamma(G)$. If D consists of minimum number of vertices among all dominating sets, then D is called the minimum dominating set(MDS).

The corona product of a K_{n} and P_{m} is a graph obtained by taking one copy of a \boldsymbol{n}-vertex complete graph K_{n} and n copies of P_{m} and then joining the $\mathbf{i}^{\text {th }}$ vertex of K_{n} to every vertex of $\mathbf{i}^{\text {th }}$ copy of P_{m} and it is denoted by $G=K_{n} \square P_{m}$.

Now some properties of the graph $G=K_{n} \square P_{m}$ is discussed in the following.
Theorem 1: The graph $G=K_{n} \square P_{m}$ is a connected graph.
Proof: Consider the graph $G=K_{n} \square P_{m}$ By the definition of corona product, we know that the $\mathrm{i}^{\text {th }}$ vertex of K_{n} is adjacent to each copy of $\mathrm{i}^{\text {th }}$ copy of P_{m} in G. That is the vertices in K_{n} are connected to the vertices of P_{m} thus it becomes a one component. Hence it follows that G is connected.
Theorem 2: The degree of a vertex v in $G=K_{n} \square P_{m}$ is given by $d(v)= \begin{cases}m+n-1, & \text { if } v \in K_{n} \\ 3 \text { or } 2, & \text { if } v \in P_{m}\end{cases}$
Proof: In the graph G, $\mathrm{i}^{\text {th }}$ vertex of K_{n} is joined to m vertices of $\mathrm{i}^{\text {th }}$ copy of P_{m} in G . We observe that any vertex

II. CORONA PRODUCT OF K_{n} AND P_{m}

v in K_{n} is adjacent to ($\mathrm{n}-1$) vertices of K_{n}. Therefore the degree of a vertex v in K_{n} is ($\mathrm{n}+\mathrm{m}-1$) in G .
i.e., $d(v)=\left\{m+n-1, \quad\right.$ if $v \in K_{n} \quad \rightarrow(1)$

And there are m vertices in each copy of P_{m}, such that each vertex v in P_{m} is of degree 2, if v is the end vertex in P_{m} and v in P_{m} is of degree 3, if v is the not end vertex in P_{m}. Since this vertex is adjacent to a correspond vertex of K_{n} in G , it follows that the degree of a vertex $\mathrm{V} \in P_{\mathrm{m}}$ in G is either 2 or 3.
i.e., $d(v)= \begin{cases}3, & \text { if } v \in P_{m} \text { and vis not a end vertex, } \\ 2, & \text { if } v \in P_{m} \text { and vis an end vertex. }\end{cases}$

Finally from (1) \& (2), we get
$d(v)= \begin{cases}m+n-1, & \text { if } v \in K_{n} \\ 3 \text { or } 2, & \text { if } v \in P_{m}\end{cases}$
Theorem 3: The number of vertices and edges in $G=K_{n} \square P_{m}$ is given by
$|V(G)|=n(m+1) \quad$ and $\quad|E(G)|=\frac{n}{2}(4 m+n-1)$.
Proof: Let us consider the graph $G=K_{n} \square P_{m}$ with the vertex set V. In G, we know that n, m denotes the number of vertices of K_{n} and the cycle P_{m} respectively. By the definition, the vertex set of G contains the vertices of K_{n} and the vertices P_{m} in n - copies. Hence, it follows that $|V(G)|=\mathrm{n}+\mathrm{nm}=\mathrm{n}(\mathrm{m}+1)$.
By the above theorem, the degree of a vertex is given by $d(v)= \begin{cases}m+n-1, & \text { if } v \in K_{n} \\ 3 \text { or } 2, & \text { if } v \in P_{m}\end{cases}$
Hence $|E(G)|=\frac{1}{2}\left(\sum_{v \in K_{n}} \operatorname{deg}(v)+n \sum_{v \in P_{m}} \operatorname{deg}(v)\right)$

$$
=\frac{1}{2}[n(m+n-1)+2 n(2)+n(m-2)(3)]
$$

$$
=\frac{1}{2}\left[m n+n^{2}-n+4 n+3 m n-6 n\right]
$$

$$
=\frac{1}{2}\left[n^{2}+4 m n-3 n\right]
$$

$$
|E(G)|=\frac{n}{2}[4 m+n-3] .
$$

II. III. MAIN RESULTS

Here we study on dominating sets and dominating functions of the graph $G=K_{n} \square P_{m}$.
Theorem 4: The minimal dominating set for the $\operatorname{graph} G=K_{n} \square P_{m}$ is set of all vertices of K_{n}
Proof: Consider $G=K_{n} \square P_{m}$. Let \boldsymbol{D} denote a dominating set of the graph $G=K_{n} \square P_{m}$. Suppose D contains the set of all vertices of K_{n}. By the definition of the graph $G=K_{n} \square P_{m}$, every vertex in K_{n} is adjacent to all vertices of each copy of P_{m}. That is, the vertices in K_{n} dominates the vertices in each copy of P_{m}. Thus D becomes a dominating set of $G=K_{n} \square P_{m}$. If possible to remove a vertex in D , that vertex is v_{i} is the $\mathrm{i}^{\text {th }}$ vertex in K_{n}, then the remaining set
becomes $D_{1}=D-\left\{\mathrm{v}_{\mathrm{i}}\right\}$ is not a dominating set. Because v_{i} in K_{n} not dominates the vertices in $\mathrm{i}^{\text {th }}$ copy of P_{m}. That means the subset of D is not a dominating set. Hence D becomes a minimal dominating set of $G=K_{n} \square P_{m}$.
Theorem 5: The domination number of the graph $G=K_{n} \square P_{m}$ is n .
Proof: Let D denote a dominating set of G. Suppose D contains the vertices of K_{n}. By the definition of the graph, every vertex in K_{n} is adjacent to all vertices of associated copy of P_{m}. That is the vertices in K_{n} dominate the vertices in all copies of P_{m} respectively. Further these vertices being in K_{n}, they dominate among themselves. Thus becomes a DS of G. Therefore $\gamma(G)=n$.
Theorem 6: Let D be a minimal dominating set (MDS) of $G=K_{n} \square P_{m}$. Let a function $f: V \rightarrow[0,1]$ be defined by

$$
f(v)= \begin{cases}1, & \text { if } v \in D \\ 0, & \text { otherwise }\end{cases}
$$

Then f becomes a MDF.
Proof: Consider $G=K_{n} \square P_{m}$ be corona product of K_{n} and P_{m}.
Let \boldsymbol{D} be a MDS of $G=K_{n} \square P_{m}$. Clearly this set contains all vertices of K_{n} and this set is also minimal.
Case (1): Let v in K_{n} be such that $\mathrm{d}(\mathrm{v})=(\mathrm{m}+n-1)$ in G, then $\mathrm{N}[\mathrm{v}]$ contains \boldsymbol{m} vertices of P_{m} and n vertices of K_{n} in G.
Thus $\sum_{u \in N[v]} f(u)=(\underbrace{1+---+1}_{n \text {-times }})+(\underbrace{0+---+0}_{m \text {-times }})=n$
Case (2): Suppose V in P_{m} then
(i)If $\mathrm{d}(v)=2$ in G, then $\mathrm{N}[\mathrm{v}]$ contains two vertices of P_{m} and one vertex of K_{n} in G. Thus $\sum_{u \in N[v]} f(u)=1+0+0=1$
(ii)If $\mathrm{d}(v)=3$ in G, then $\mathrm{N}[\mathrm{v}]$ contains three vertices of P_{m} and one vertex of K_{n} in G.Thus $\sum_{u \in N[v]} f(u)=1+0+0=1$

Therefore all the possibilities, we get $\sum_{u \in N[v]} f(u) \geq 1, \forall v \in V$
Therefore the function f is a Dominating Function.
Now we check for minimality of f, define $\mathrm{g}: \mathrm{V} \rightarrow[0,1]$ by

$$
g(v)= \begin{cases}r, & \text { if } v=v_{k} \in D \\ 1, & \text { if } v \in D-\left\{v_{k}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Where $0<r<1$. Since, strict inequality holds at the vertex v_{k} in D, it follows that $g<f$.
Case (1): Let v in K_{n} be such that $\mathrm{d}(\mathrm{v})=(\mathrm{m}+n-1)$ in G, then $\mathrm{N}[\mathrm{v}]$ contains \boldsymbol{m} vertices of P_{m} and n vertices of K_{n} in G.

If v_{k} in $N[v] \Rightarrow \sum_{u \in N[v]} g(u)=(\underbrace{1+---+1}_{(n-1)-\text {-times }}+r)+(\underbrace{0+---+0}_{m-\text { times }})=n+r-1$

If v_{k} not in $N[v] \Rightarrow \sum_{u \in N[v]} g(u)=(\underbrace{1+---+1}_{n-\text { times }})+(\underbrace{0+---++0}_{m-\text { times }})=n$
Case (2): Suppose v in P_{m} then
(i) If $\mathrm{d}(v)=2$ in G, then $\mathrm{N}[\mathrm{v}]$ contains two vertices of P_{m} and one vertex of K_{n} in G.
If v_{k} in $N[v]$, then $\sum_{u \in N[v]} g(u)=r+0+0=r<1$
If v_{k} not in $N[v]$, then $\sum_{u \in N[v]} g(u)=1+0+0=1$
(ii)If $\mathrm{d}(v)=3$ in G, then $\mathrm{N}[\mathrm{v}]$ contains three vertices of P_{m} and one vertex of K_{n} in G.
If v_{k} in $N[v]$, then $\sum_{u \in N[v]} g(u)=r+0+0+0=r<1$
If v_{k} not in $N[v]$, then $\sum_{u \in N[v]} g(u)=1+0+0+0=1$
In this case, g is not a dominating function.
Therefore g is not a DF, because
$\sum_{u \in N[v]} g(u)<1$, for some $v \in V$
Hence f is a minimal dominating function on G.

III. IV. ACKNOWLEDGMENT

The corresponding author acknowledge Department of Science and Technology, Government of India for financial support wide reference no: No.SR/WOS-A/MS-07/2014 (G) under women scientist scheme to carry out this work.

V. CONCLUSION

It is interesting to study the dominating functions of corona product graph of complete graph with a path. This work gives the scope for an extensive study of domination numbers and other dominating functions of this graph.

IV. VI. REFERENCES

[1] R. Frucht, and F. Harary, "On the corona of Two Graphs", Aequationes Mathematicae, Volume 4, Issue 3, pp. 322 - 325, 1970.
[2] R.B. Allan, and R.C. Laskar, "On domination, Independent domination numbers of a graph" Discrete Math., 23, pp. 7376, 1978.
[3] E.J. Cockayne, and S.T.Hedetniemi, "Towards a theory of domination in graphs", Networks, volume 7, pp. 247-261, 1977.
[4] E. J. Cockayne, G. Fricke, S.T. Hedetniemi, and C.M. Mynhardt, "Properties of minimal dominating functions of graphs", ARS. Combinatoria, volume 41, pp. 107-115, 1995.
[5] J.A. Bondy, and U.S.R Murty, "Graph Theory", Springer, 2008.
[6] M. Siva Parvathi, and B. Maheswari, "Minimal Dominating Functions Of Corona Product Graph Of A Path With A Star", IAEME, Volume 5, Issue 1, pp. 01-11, January - April 2014.
[7] T.W. Haynes, S.T. Hedetniemi \& J.S. Slater, "Fundamentals of Domination in Graphs", Marcel Decker, Inc. 1998.

