
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(���������

�

�

© 2010, IJARCS All Rights Reserved 352

ISSN No. 0976-5697

Artificial Neural Network Based Edge Detection Algorithm for Hand Gesture

Recognition

Miss. Shweta K. Yewale*
ME Student

Prof. Ram Meghe Institute of Technology & Research,

Badnera

shwetayewale127@gmail.com

Prof. A. P. Bodkhe
 Head of IT Department,

Prof. Ram Meghe Institute of Technology & Research,

Badnera

ap_bodkhe@rediffmail.com

Abstract: Gesture is one of the most natural and expressive ways of communications between human and computer in a real system. We

naturally use various gestures to express our own intentions in everyday life. Hand gesture is one of the important methods of non-verbal

communication for human beings for its freer in movements and much more expressive than any other body parts. Hand gesture recognition has

a number of potential applications in human computer interaction, machine vision, virtual reality, machine control in industry, and so on. The

main objective of this paper is recognizing the hand gestures using MATLAB. It also gives the working details of recognition process using

Edge detection algorithm.

Keywords: Hand Gesture Recognition, Artificial Neural Network, MATLAB, Edge Detection, Canny Edge Detection Algorithm.

I. INTRODUCTION

Gestures are expressive, meaningful body motions – i.e.,

physical movements of the fingers, hands, arms, head, face,
or body with the intent to convey information or interact
with the environment. Gestures can exist in isolation or
involve external objects. Free of any object, we wave,
beckon, fend off, and to a greater or lesser degree
(depending on training) make use of more formal sign
languages. With respect to objects, we have a broad range of
gestures that are almost universal, including pointing at
objects, touching or moving objects, changing object shape,
activating objects such as controls. This suggests that
gestures can be classified according to their function. [1]

Gesture recognition is the process by which gestures
made by the user are made known to the system. [1] Gesture
recognition is also important for developing alternative
human-computer interaction modalities [2]. It enables
human to interface with machine in a more natural way.

Gesture recognition is a technique which used to make
computers ‘see’ and interpret intelligently is becoming
increasingly popular. Our claim is that just as human beings
interpret gestures made in any frame of reference by
automatically setting the coordinate system in the brain, so
should machines. This would enable the machine to better
understand and interpret gestures, somewhat like the human
brain does. [3]

A. Hand Gesture Recognition Using MATLAB

Human hand gestures provide the most important means

for non-verbal interaction among people. They range from
simple manipulative gestures that are used to point at and
move objects around to more complex communicative ones
that express our feelings and allow us to communicate with
others.

Hand gesture recognition based man-machine interface
is being developed vigorously in recent years. Due to the
effect of lighting and complex background, most visual hand
gesture recognition systems work only under restricted
environment.

MATLAB is an interactive system whose basic data
element is an array that does not require dimensioning.
MATLAB is the tool of choice for high-productivity
research, development, and analysis.

The Gesture Recognition system is shown in Figure 1. It
shows the flow of system for recognizing the patterns. Some
transformation, converts an image into a feature vector,
which will be then compared with feature vectors of a
training set of gestures. [4]

Figure 1. Gesture Recognition System

B. Artificial Neural Network

Neural nets represent an approach to Artificial

Intelligence that attempts to model the human brain.
Neurons are processing units that operate in parallel inside
the human brain. There are an estimated 10 billion neurons
in the human brain with about 60 trillion connections
between these neurons. Each neuron receives inputs from
other neurons in the form of tiny electrical signals and,
likewise, it also outputs electrical signals to other neurons.

Shweta K. Yewale et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 352-357
�

© 2010, IJARCS All Rights Reserved 353

The brain is therefore a network of neurons acting in parallel
– a Neural Network.

Similarly, an Artificial Neural Nets consists of artificial
neurons, which are mathematical models of biological
neurons. Like the biological neuron, an artificial neuron
(called a perceptron), receives numerical values and also
outputs a numerical value. The diagram below shows a
representation of an artificial neuron.

Figure 2. Representation of an Artificial Neuron

The input into the perceptron consists of the numerical
value multiplied by a weight plus a bias. The perceptron
only fires an output when the total strength of the input
signals exceeds a certain threshold. As in biological neural
Networks, this output is fed to other perceptrons.

The weighted input to a perceptron is acted upon by a
function (the transfer function) and this will determine the
activation or output. Common transfer functions used in
Artificial Neural networks include the Hard Limiter, Log-
Sigmoid and the Sign function.

An artificial neural network involves a network of
simple processing elements (artificial neurons) which can
exhibit complex global behavior, determined by the
connections between the processing elements and element
parameters. It consists of an interconnected group of
artificial neurons and processes information using a
connectionist approach to computation. In most cases an
ANN is an adaptive system that changes its structure based
on external or internal information that flows through the
network during the learning phase. The supervised learning
paradigm is also applicable to sequential data (e.g., for
speech and gesture recognition). In MATLAB, Feedforword
and Backpropogation algorithms are used for gesture
recognition. [5]

II. EDGE DETECTION ALGORITHM FOR

HAND GESTURE RECOGNITION

The procedure of Edge detection algorithm for hand

gesture recognition using MATLAB is as follows;

1. Image capturing using a webcam or the front

camera of the mobile phone.

2. Converting the captured image into frames.

3. Image pre-processing using Histogram

Equalization.

4. Edge detection of the hand by using an algorithm

like Canny Edge Detection.

5. Enlargement of the edges of regions of foreground

pixels by using Dilation to get a continuous edge.

6. Filling of the object enclosed by the edge.

7. Storing the boundary of the object in a linear array.

8. Vectorization operation performed for every pixel

on the boundary.

9. Detection of the fingertips.

10. Tracking of the fingertips in consecutive frames to

determine the motion.

11. Identification of the gesture based the motion.

12. Insertion of the input stream into the normal input

path of the computing device.

Figure 3. Block Diagram Using Edge Detection Algorithm

Figure 3 shows the block diagram using the Edge
Detection Approach. The images are first captured using a
webcam, separated into frames and converted into grayscale
format. The contrast is then improved using Histogram
Equalization. After the edges are detected, the images are
dilated to fill up the broken edges. The images are then
filled up using bwboundaries function in MATLAB, and the
boundary pixels are detected and stored sequentially in a
linear array. The fingertips are then detected using
vectorization technique and the gesture is recognized by the
system depending on the relative movement of the fingertips
in the different frames.

III. WORKING OF EDGE DETECTION

ALGORITHM

A. Video Capturing using a Camera

The image will be captured with the help of a single web
camera, which will then lead to the image pre-processing
stage. In case of mobile phones, it will be captured by the
front camera of the mobile phones.

B. Frame Separation

The frames of the captured video are saved as images. A
MATLAB function is used for this purpose.

C. Object Tracking

We use a local image co-ordinate scheme for
determining the fingertips. The co-ordinate system is
established in the first frame of a sequence of gestures, and

Shweta K. Yewale et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 352-357
�

© 2010, IJARCS All Rights Reserved 354

then is kept constant for the subsequent frames. Thus, the
need of having a common co-ordinate system for all images
is eliminated. This sort of a system emulates a human eye
i.e. the brain perceives any gesture irrespective of the
background.

D. Image Preprocessing

This block will basically concentrate on Histogram
Equalization. In this stage we aim to increase the contrast
among neighboring pixels, as shown in Figure 4(b). The
lowest colored pixel value is reduced to zero and the
greatest colored pixel value is made to value 255. The other
neighboring pixel values are averaged and spaced out in a
similar manner. This helps us to locate our object of interest
from the background.

Fig (a) Before Histogram Equalization

Fig (b) After Histogram Equalization

Figure 4. Histogram Equalization Process

E. Edge Detection

After converting this image into grayscale image edge

detection is applied. Here we find the points of the image
where there are sharp edges or discontinuities or where
sharp change in brightness is encountered. We will apply
the Canny Edge Detection Algorithm for the purpose of
detecting points at which image brightness changes sharply
or formally, there are more discontinuities.

The algorithm takes grayscale image on input and
returns bi-level image where non-zero pixels mark detected
edges. Below the 4-stage algorithm is described. [6]

Stage 1: Image Smoothing

The image data is smoothed by a Gaussian function of
width specified by the user parameter.

Considering the Gaussian function in one dimension,
this may be expressed

As we go on taking successive derivatives we get

smoother image.

Stage 2: Differentiation

The smoothed image, retrieved at Stage 1, is
differentiated with respect to the directions x and y. From
the computed gradient values x and y, the magnitude and the
angle of the gradient can be calculated using the hypotenuse
and arctangent function.

Stage 3: Non-Maximum Suppression

After the gradient has been calculated at each point of
the image, the edges can be located at the points of local
maximum gradient magnitude. It is done via suppression of
non-maximum points, that is, points whose gradient
magnitudes are not local maximums. However, in this case
the non-maximums perpendicular to the edge direction,
rather than those in the edge direction, have to be
suppressed, since the edge strength is expected to continue
along an extended contour.

At each point the center element of the neighborhood is
compared with its two neighbors along line of the gradient
given by the sector value. If the central value is non-
maximum, that is, not greater than the neighbors, it is
suppressed.

Stage 4: Edge Thresholding

The Canny operator uses the so-called “hysteresis”
thresholding. Most thresholders use a single threshold limit,
which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon
is commonly referred to as “streaking”. Hysteresis counters
streaking by setting an upper and lower edge value limit.
Considering a line segment, if a value lies above the upper
threshold limit it is immediately accepted. If the value lies
below the low threshold it is immediately rejected. Points
which lie between the two limits are accepted if they are
connected to pixels which exhibit strong response. The
likelihood of streaking is reduced drastically since the line
segment points must fluctuate above the upper limit and
below the lower limit for streaking to occur. The Canny
Algorithm recommends the ratio of high to low limit to be in
the range of two or three to one, based on predicted signal-
to-noise ratios. Fig.5 shows the edge-detected hand.

Figure 5. After Edge Detection

Shweta K. Yewale et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 352-357
�

© 2010, IJARCS All Rights Reserved 355

F. Dilation

After applying edge detection, due to lighting conditions

at times the edges are broken. So we dilate the edges by

thickening them.

The mathematical definition of dilation for binary images

is as follows:

1. Suppose that X is the set of Euclidean coordinates

corresponding to the input binary image, and that K is

the set of coordinates for the structuring element. Let

Kx denote the translation of K so that its origin is at x.

2. Then the dilation of X by K is simply the set of all

points x such that the intersection of Kx with X is non-

empty.

Greyscale dilation with a flat disk shaped structuring

element will generally brighten the image. Bright regions
surrounded by dark regions grow in size, and dark regions
surrounded by bright regions shrink in size. Small dark spots
in images will disappear as they are `filled in' to the
surrounding intensity value. Small bright spots will become
larger spots. The effect is most marked at places in the
image where the intensity changes rapidly and regions of
fairly uniform intensity will be largely unchanged except at
their edges.

Figure 6 (a) Graph of Dilation

Fig 6(b) Dilated Image

G. Image Filling and Boundary Detection

From the hand contour obtained from the preprocessing

steps, the feature of interest is the set of fingertips, which, in
turn, is a subset of the boundary of the hand. We use
bwboundaries, a MATLAB function to store the boundary
of the hand contour in a linear array, formed sequentially
from the topmost and leftmost boundary pixel, which is on.
bwboundaries detects boundaries of filled images or holes
within filled objects. Thus, we fill the continuous edge of
the hand contour with white pixels as shown in Fig.7.

Figure 7. Filled Image

Further, we detect boundaries of all objects in a cell
array, each cell corresponding to the boundary of one object,
and each element in every cell corresponding to a pixel on
the boundary of that object. Since the hand should ideally
correspond to the largest object in the image, we detect the
largest cell array for use in vectorization. This eliminates
any adverse effects noisy background might have on
fingertip detection.

H. Vectorization

In order to reduce computing complexity we define the

angle C(i) between two vectors [P(i-k), p(i)] and [P(i),
p(i+k)] as curvature, where k is a constant. The points along
the edge where the curvature reached a local extreme, that is
the local features, are then identified. Some of these local
features are labeled as “peak” or “valley”. We use this
algorithm to compute curvatures at every point, and thus
detect positions of the fingertip in the boundary detected
hand contour as shown in Figure 8 below.

Figure 8. Vectorization: Yellow vectors denote curvatures belonging to

a fingertip;

green vectors denote curvatures, which do not belong to a fingertip

I. Fingertip tracking and gesture identification

In fingertip tracking and Gesture Identification; we can

use ANN algorithm, to train the system and accordingly
give us the necessary output. Artificial neurons are much
simpler than the biological neuron; figure shows the basics
of artificial neurons.

Figure 9. Artificial Neuron

Shweta K. Yewale et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 352-357
�

© 2010, IJARCS All Rights Reserved 356

The ability of neural networks to discover nonlinear
relationships in input data makes them ideal for modeling
nonlinear dynamic systems such as the stock market.

1. Training a Neural Network

A neural network must be trained on some input data.

The two major problems in implementing this training
discussed are:

1. Defining the set of input to be used (the learning

environment)

2. Deciding on an algorithm to train the network

2. The Learning Environment

One of the most important factors in constructing a

neural network is deciding on what the network will learn.
The goal of most of these networks is to decide when to buy
or sell securities based on previous market indicators. The
challenge is determining which indicators and input data
will be used, and gathering enough training data to train the
system appropriately. The input data may be raw data on
volume, price, or daily change, but it may also include
derived data such as technical indicators or fundamental
indicators. Determining the proper input data is the first step
in training the network. The second step is presenting the
input data in a way that allows the network to learn properly
without overtraining.

3. Network Training

Training a network involves presenting input patterns in

a way so that the system minimizes its error and improves
its performance. The training algorithm may vary depending
on the network architecture, but the most common training
algorithm used when designing financial neural networks is
the backpropagation algorithm. [6]

Figure 10. Backpropagation Network

The most common network architecture for financial

neural networks is a multilayer feedforward network trained
using backpropagation. Backpropagation is the process of
backpropagating errors through the system from the output
layer towards the input layer during training.
Backpropagation is necessary because hidden units have no
training target value that can be used, so they must be
trained based on errors from previous layers. The output
layer is the only layer which has a target value for which to
compare. As the errors are back propagated through the
nodes, the connection weights are changed. Training occurs
until the errors in the weights are sufficiently small to be
accepted.

During feed forward, each input unit receives an input
signal and broadcasts this signal to each of the hidden units.
Each hidden unit then computes its activation and sends its

signal to each output unit. Each output unit computes its
activation to form the response for the given input pattern.

During back propagation of associated error, the output
from the output units are compared with the target value
associated with output unit and error is calculated. This error
is then backpropagated back to the hidden units and
similarly the errors from hidden layers are back propagated
to the input layer.

We detect fingertips in every frame of the gesture, and
based on the positions of the fingertips in successive frames,
and in all frames as a whole; we decide which gesture was
performed. In order to overcome errors caused by false
fingertip detection in some frames, we average the positions
of fingertips in a few frames to better detect possible
positions of the fingertip successively.

The translation of the fingertips from the start of the
gesture to the end decides which gesture was performed.

IV. EXPERIMENTAL RESULT

As edge detection is a fundamental step in computer

vision, it is necessary to point out the true edges to get the
best results from the matching process. For edge detection
Canny edge detection algorithm is used. The algorithm runs
in 5 separate steps:

1. Smoothing: Blurring of the image to remove noise.

2. Finding gradients: The edges should be marked

where the gradients of the image has large

magnitudes.

3. Non-maximum suppression: Only local maxima

should be marked as edges.

4. Double thresholding: Potential edges are

determined by thresholding.

5. Edge tracking by hysteresis: Final edges are

determined by suppressing all edges that are not

connected to a very certain (strong) edge.

Take one image from webcam and after that edge

detection algorithm is applied on that image in MATLAB.
Once image is taken, read that image from the MATLAB
code. Then apply this edge detection algorithm. The output
of this algorithm is given in figure 11.

Figure11 (a) shows the original image and Figure11 (b)
shows the output image with edges detected using edge
detection algorithm.

Figure (a) Before Edge Detection

Shweta K. Yewale et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 352-357
�

© 2010, IJARCS All Rights Reserved 357

Figure (b) After Edge Detection

Figure 11. Experimental Result of Edge detection

As shown in figure, Canny yielded the best results. An

adaptive edge-detection algorithm is necessary to provide a

robust solution that is adaptable to the varying noise levels

of these images to help distinguish valid image contents

from visual artifacts introduced by noise. The performance

of the Canny algorithm depends heavily on the adjustable

parameters, and the threshold values

IV. CONCLUSION

Human hand gestures provide the most important means

for non-verbal interaction among people. At present,
artificial neural networks are emerging as the technology of
choice for many applications, such as pattern recognition,
gesture recognition, prediction, system identification, and
control. ANN provides good and powerful solution for
gesture recognition in MATLAB. ANN has a fast

computational ability. The ability of neural nets to
generalize makes them a natural for gesture recognition.

Edge detection algorithm based on ANN provides the
emerging approach for hand gesture recognition. This
algorithm also gives the recognized output from start of the
gesture to the end which gesture was performed. By using
this algorithm fingertip tracking is possible. So it provides
the solution for controlling the various operations on
fingertip for better Human-Computer Interaction.

IV. REFERENCES

[1] Kay M. Stanney, “A Handbook of Virtual

Environments: Design, Implementation, and

Applications”, Lawrence Erlbum Associates, Mahwah,

NJ. Publication, page 223, 2002.

[2] Aditya Ramamoorthy, Namrata Vaswani, Santanu

Chaudhury and Subhashis Banerjee, “Recognition of

dynamic hand gestures”, Pattern Recognition 36 (2003)

2069 – 2081, The Journal of Pattern Recognition

Society. Elsevier Science Ltd. vol. 36, no. 9, pp 2069-

2081, October 2002.

[3] http://en.wikipedia.org/wiki/Gesture_recognition.

[4] Rajeshree Rokade, Dharmpal Doye, Manesh Kokare,

“Hand Gesture Recognition by Thinning Method”,

ICDIP, International Conference on Digital Image

Processing, IEEE Computer Society, pp.284-287, 2009.

[5] Peter Wentworth. “An Investigation into Gesture

Recognition in BingBee using Neural Nets in

MATLAB”, RHODES University, 2nd November, 2008.

[6] Raman Maini, Dr. Himanshu Aggarwal, “Study and

Comparison of Various Image Edge Detection

Techniques”, International Journal of Image Processing

(IJIP), Volume (3): Issue (1), CSC Publishing Services,

pp 1-11, 2009.

