
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4214

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 427

ISSN No. 0976-5697

CLOUD WORKFLOW SCHEDULING BASED ON STANDARD DEVIATION OF
PREDICTIVE RESOURCE AVAILABILITY

Vijayalakshmi A. Lepakshi

Research Scholar
Dept. of Computer Science and Engineering

New Horizon College of Engineering
Bangalore, India

Dr. Prashanrh C S R
Professor and Head

Dept. of Computer Science and Engineering
New Horizon College of Engineering

Bangalore, India

Abstract: Cloud computing has emerged as a new paradigm that provides services to the user on pay-as-you-use basis. Cloud computing’s
Infrastructure as a service provides various resources to user such as computing, storage and bandwidth etc., where Computing services can be
provided in the form of Virtual Machines. Parallel applications submitted for execution on these Virtual Machines can be completed without
any delays only when the Virtual Machines are available for execution. In general, resources in cloud are shared by various users and their
availability is dynamic and unpredictable due to various reasons such as capacity of underlying hardware and number of users sharing the
resources and various other reasons. Hence, non-availability of these allocated resources may cause delays in completion of execution of
parallel applications. In this scenario, existing algorithms without considering the delays that may occur due to non-availability of Virtual
Machines may not perform better and are less reliable in terms of completion of jobs. In this paper, we propose a new heuristic called Workflow
Scheduling based on Standard Deviation of Predictive Resource Availability in cloud computing considers the dynamic nature of cloud
resources and its dynamic availability in scheduling decisions and produces reliable schedules..

Keywords: Cloud Computing, Resource Availability, Reliability, Task Scheduling, Virtual Machines

I. INTRODUCTION

Cloud computing [1] has emerged as a new paradigm that
provides computing as utility like water, electricity, gas and
telephony etc., on pay-as-you-use basis. Cloud computing
also provides storage and networking resources to users
along with computing as a service. Cloud providers provide
computing resources in the form of Virtual Machines (VM’s)
to its consumers based on Service Level Agreements. The
advanced microprocessor technologies and advanced
software technologies have increased the ability of
commodity hardware such that many scientific applications
and high performance applications can run on these Virtual
Machines efficiently. These Virtual Machines isolate
applications running on them from underlying hardware as
well as other VM’s. Thus enterprises and individual users
can outsource their application execution to cloud resources
while reducing the setup and maintenance costs of
infrastructures of their own.

Provisioning Resources [2] to support heterogeneous
applications is challenging due to dynamic nature of Cloud
computing. Even though applications can run on cloud
resources efficiently on shared cloud data centre
infrastructures concurrently, cloud providers do not provide
performance guarantee. Moreover, due to different types of
High Performance applications and web applications
executed on cloud with various Quality of Service (QoS)
requirements, resource provisioning is much harder.

Resources are highly dynamic due to various reasons
such as sharing of underlying hardware, interconnected
network, load on the servers; number of users, Service Level
Agreements between users and providers and administrator
policies of data centre, etc., which further makes the
availability unpredictable. The authors in [3] characterize the
availability of resources in grid environment in different

states ranging from non-availability to availability based on
the transitions it takes. Thus considering availability of these
resources in scheduling decisions improves reliability and
reduces unpredicted delays in execution of jobs.

Task scheduling algorithms [4] that consider availability
of resources in scheduling decisions improve resource
utilization while producing the reliable schedules to avoid
unpredicted delays in cloud environments where the idle time
of resources can be utilized by other applications. Hence
there is a need for effective task scheduling algorithms in
cloud computing. Task scheduling can be accomplished
either at compile-time or run time. When the user provides
application characteristics such as task execution times, data
dependencies between the tasks in advance, then scheduling
can be accomplished with static task scheduling model.

The rest of the paper is organized as follows: we define
problem statement and resource model in section 2. Related
work is discussed in Section 3. In Section 4, we introduce a
new heuristic SDPRA. Experimental results and comparative
results are presented in Section 5. Conclusion of present
research is given in Section 6.

II. PROBLEM STATEMENT AND RESOURCE

MODEL

In this work the main objective of the scheduling
algorithm is to produce reliable schedule that considers the
availability of Virtual Machines in scheduling decisions.
Various factors such as the physical characteristics of
underlying hardware, number of users sharing the resources,
load on the host, and failures of the physical devices,
network failures and time that takes to recover from failures,
account for availability of Virtual Machines. Apart from all
these factors, when Virtual Machines are allocated to tasks
for execution there may be provisioning and de-provisioning

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 428

delays which contribute to overall delays in completion of
tasks. In this work the availability of Virtual Machines are
predicted for certain time interval based on the historical data
available in the cloud environment by the schedulers. We
predict the availability of VM for each and every time unit in
the predicted time interval. Each time slot is considered as
one time unit required for execution. During scheduling the
availability of VM is considered for every time slot used on
that machine and probable predicted delays are incorporated
and decision will be taken.

In this work we consider scientific applications modelled
as Directed Acyclic Graphs, i.e., a graph without cycles,
directed edges and dependencies among the nodes. Each
node represents a task and edges between the tasks represent
communication or data transfer costs. A workflow W
consists of a set of tasks T={t1, t2,… tn}and a set of edges E.
An edge eij = (ti, tj) exists in DAG if there exists data
dependency between ti and tj. The task ti is called as a parent
task whereas tj is known as child task. The child task cannot
run until all its parent tasks have executed and the data is
transferred to child task. A node without parent node is
considered as a start node and a node without children is
considered as exit node. The overall execution time required
by the DAG is considered as the required to execute the start
node to until it completes the execution of exit node.

The problem can be formally stated as “Scheduling
parallel application modelled as Directed Acyclic Graph on
to a heterogeneous cloud computing environment, in which
resources such as Virtual Machines are provisioned for
execution with unpredictable availability, to minimize the
makespan while producing reliable schedules.”

An example DAG is given below:

Figure 1 A Sample DAG

Table 1 Computation Cost Matrix

Task vm1 vm2 vm3

1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20

10 21 7 16

III. RELATED WORK

An extensive study has been done related to task
scheduling algorithms, resource provisioning and dynamic
nature of availability of resources in the distributed cloud
environment. In general, task scheduling algorithms are
designed to meet various objectives. The authors in [5]
characterize the objectives of scheduling algorithms as cost
minimization, makespan minimization, workload
maximization, VM utilization maximization, energy
consumption minimization, reliability aware and security
aware.

The authors in [6] propose an algorithm; Heterogeneous
Earliest Finish Time (HEFT) is an application scheduling
algorithm for bounded number of heterogeneous processors
that considers the resources are 100% available for
allocation. HEFT algorithm works in two phases: n first
phase, the tasks are prioritized based on the upward rank of
tasks and during second phase, tasks are selected in the order
of their priority and the task is assigned to the processor,
which minimises its earliest finish time using an insertion
based policy.

The authors in [7] propose Expected Completion Time
based Scheduling (ECTS) algorithm for bounded number of
processors that considers resources are 100% available for
allocation. ECTS algorithm works in two phases; during first
phase tasks are prioritized level wise based on Expected
Completion Time (ECT). The ECT is calculated based on
Average Computation Cost of tasks and maximum data
arrival cost. During the second phase, a processor is selected
for allocation that minimizes the execution time of the
selected task using insertion-based policy while preserving
the precedence constraints among the tasks.

The authors in [4] propose an algorithm Standard
Deviation of Probability of Processor Availability (SDPA)
based task scheduling algorithm for bounded number of
processors that considers resource availability in scheduling
decisions. SDPA algorithm works in two phases; during first
phase, priority list is formed based on the upward rank of the
tasks and during the second phase, tasks are selected for
execution in the order of priority list and a processor that
minimizes the execution time is allocated based on insertion
based policy by considering the standard deviation of
probability of processor availability in scheduling decisions.

Resource providers [5] in cloud offer a wide range of VM
types to its users. Clouds offer VM instances with varying
configurations in terms of compute, storage and network
bandwidth such that they are optimal for certain types of
applications. Resource providers scale dynamically in and
out their resource pool. Resource provisioning algorithms use
strategies such as static and dynamic resource provisioning
for workflow executions. In static resource provisioning all
the decisions regarding the VM pool configuration is done
before the execution of the workflow. On the other hand, in
dynamic provisioning all the decisions are taken at runtime
regarding provisioning and de-provisioning of VM’s during
the execution of workflow. In static resource provisioning,
once the VM pool is determined, the leased resources remain
active throughout the execution of the workflow and are
released back to the provider when workflow execution
completes.

For Virtual Machines, the provisioning delay [5] ranges
from 50 seconds to 883 seconds and de-provisioning delay

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 429

may vary up to as low as 3 seconds. IaaS cloud providers
make no guarantees on this delay and vary from provider to
provider and VM type to VM type. Also, the performance of
a VM is degraded by at most 24% based on a normal
distribution with a 12% mean and a 10% standard deviation.
In addition to this, a network link’s total available bandwidth
is shared between all the transfers using that link results
some amount of delays. All these kinds of delays cannot be
neglected and must be taken into account.

The authors in [3] distinguish resources in grid
environment in multiple states based on administrator’s
policies, failures in the underlying hardware, workload on the
host machines etc., also they propose techniques for the
resource availability prediction based on historical data and
how the availability transits from available state to un-
available state or vice versa.

The authors in [8] propose multi-state prediction
algorithms that take length of time or estimated application
execution time as input and uses historical data of resource’s
availability for predicting the probabilities of that resource.
They proposed two approaches to analyse the resource’s
availability history; in the first approach they examined a
resource’s past N days of availability behaviour during the
interval being predicted and in the second approach they
examined a resource’s most recent N hours of activity
immediately preceding the prediction time interval.

IV. CLOUD WORKFLOW SCHEDULING BASED ON
STANDARD DEVIATION OF PREDICTIVE
RESOURCE AVAILABILITY

In this paper we propose a new heuristic called Cloud

workflow Scheduling based on Standard Deviation of
Predictive Resource Availability (SDPRA). The SDPRA
algorithm is an application scheduling algorithm for bounded
number of statically provisioned heterogeneous Virtual
Machines that considers probability of resource availability
for every time unit required for execution in the prediction

ALGORITHM :
Begin SDPRA
// N represents set of Nodes
// VM represents set of statically provisioned virtual
machines
// ppa(ni,vmj) is predicted probability of availability of
virtual machine for the predicted time interval
// SD(ni) standard deviation of probability of availability
on available virtual machines

//phase 1: task prioritization
For all ni in N
Compute ECT(ni) level wise
End For

ReadyTaskList ← Start Node

Generate the priority list based on the highest
priority of a task i.e maximum ECT at each level

// phase 2: scheduling phase

For all vmj in VM

(, vm) = max([], max
∈ ()((, vm) + ,))

 (, vm) = , + (, vm)
End For

For all vmj in VM
Calculate average ppa(ni) based on computation cost
required for task execution

ESD= Mppa(ni) - SD(ni) // Mppa is Mean of average
ppa(ni)

If ((EFT(ni,vmj) ~= max(EFT(nj))) AND (pap(ni,vmj) <
ESD))

EFT(ni,VMj) = EFT (ni,VMj) + (EFT (ni,VMj) *
SD(ni))
Else

EFT(ni,VMj) = EFT (ni,VMj)
End If
End For
Map node ni on processor pj which provides its least
EFTvm

Update T_Available[vmj] and ReadyTaskList
End While

End SDPRA

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 430

time interval and considers the averaged probability of
resource availability for the computation time required on a
resource in scheduling decisions.

The SDPRA algorithm works in two phases. In the first
phase, the tasks are prioritized level wise. In level wise task
priority, at each level the priority of all tasks are computed
by their Expected Completion Time (ECT). The ECT is
calculated based on the tasks average computation cost
(ACC) and maximum data arrival cost (MDAC).

The average computation cost (ACC) of a task ti is
computed by dividing the sum of computation cost on each
VM by the the number of available VM’s.

 (1)

Where, j ranges from 1 to m number of virtual machines.
The MDAC of task is the highest amount of time that the

task needs to spend to receive data among its predecessors.
The Expected Completion Time (ECT) of a task is calculated
as sum of the average computation cost of that task and the
maximum data arrival cost of the same task.

ECT(ti)= ACC(ti) + MDAC(ti) (2)

At each level that with highest ECT will get the highest

priority. Thus the priority list is formed for the given
workflow represented as DAG.

 During the second phase, the scheduler predicts the
probability of resource availability for every time unit in the
predicted time interval based on the historical data for all the
available Virtual Machines. A selected task from the priority
list assigned to a VM that minimizes the execution time
considering the standard deviation of averaged predicted
resource availability for the time required for execution and
by incorporating the probable delay that occurs in execution
using insertion based policy.

EFT(ni,VMj) = EFT (ni,VMj) + (EFT (ni,VMj) * SD(ni)) (3)

Our algorithm SDPRA is more reliable as it considers the

probable delays based on the predicted probability of
resource availability in its scheduling decisions.

V. EXPERIMENTAL RESULTS

We present the behaviour of our algorithm SDPRA and

comparative result of our algorithm SDPRA with other static
scheduling algorithms like HEFT and ECTS. For testing the
algorithm we used an example graph with 10 nodes given in
the Figure 1, randomly generated graphs of various sizes and
also considered real life application graph such as Gauss
graph [6], Montage graph, Cybershake graph and
Epigenomics graph [5], with generated predicted probability
of resource availability based on random normal distribution
with mean 0.5 and standard deviation of 0.2 for the predicted
time interval.

In this section we discuss comparison metrics, algorithm
used for Random DAG generation and results..

A. Comparison Metrics [4, 6,7]

The SDPRA algorithm is compared with other existing
algorithms based on the following metrics:

a) Makespan: Makespan or schedule length is the
overall execution of all the tasks from start node to exit node
in a DAG and is the main performance measure of a
scheduling algorithm.

b) Schedule Length Ratio (SLR): The best scheduling
algorithm is the one that gives the lowest SLR of a graph.
Average SLR values are considered for performance
evaluation of task graphs. The SLR is the ratio of the parallel
execution time to the sum of weights of the critical paths
tasks on the fastest processors.

c) Speedup: Speedup of scheduling algorithm is
computed by dividing sequential execution time by the
parallel execution time (makespan). The sequential
execution time of a DAG is calculated by assigning all sub-
tasks to a single processor which minimizes the cumulative
computation costs. .

B. Random DAG Generator:

Our experimental set up considers a random graph
generator algorithm given in [9] to generate Random directed
acyclic graphs. This algorithm takes number of nodes as
input and generates a weighted directed acyclic graph, where
number of edges is generated randomly, based on number of
nodes. Heterogeneity factor η [10] for virtual machine speeds
depends basically on the range percentage of computation
costs on virtual machines provisioned i.e., η = {0.1, 0.5, 1.0}

There is a significant difference in task’s computation
cost among processors when the range percentage of
computation costs is high. The average computation cost wi
of each task ti in the graph is randomly generated from a
uniform distribution with range [0, 2*Wdag], where Wdag is
generated randomly based on the number of nodes in the
graph.

Wi * (1 - η /2) <= Wij <= Wi * (1 + η /2) (4)

Our simulated framework first executes Random

Directed acyclic Graph Generator Program to generate
random directed acyclic graphs of various sizes. It takes
number of nodes, number of virtual machines required as
input and generates a random directed acyclic graph with
randomly generated computation cost matrix, and
communication cost matrix.

To study the performance of our SDPRA algorithm we
used randomly generated directed acyclic graphs of various
sizes such as 10,20,30,40 and 50 and randomly generated
predicted probability of availability for predicted time
interval using random normal distribution with mean 0.5 and
standard deviation of 0.2 to generate output schedule. For the
same set of graphs we also implemented HEFT and ECTS
algorithms and estimated the delay that results for HEFT and
ECTS schedules based predicted probability of availability
for the predicted time interval. Performance metrics are
computed based on output schedules.

C. Results:

Experimental results are organized using four test sets of
graphs as follows:

1) Test Set one: In test set one, we considered the
sample graph given in the above section 2, our algorithm
SDPRA which considers predicted resource availability for
the predicted time interval and the performance of SDPRA
is compared with existing HEFT and ECTS algorithms that

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 431

considers 100% resource availability for scheduling.
SDPRA algorithm produces resultswhich is about 27%
better than HEFT and 19% better than ECTS in terms of
performance metrics Makespan, SLR and Speedup. Our
algorithm is executed for different predicted probability of
availabilities for about 200 times and averaged results of
these executions are compared with existing algorithms. We
also estimated the probable delay that occurs for HEFT
schedule, ECTS schedule for the same predicted probability
of availability for the predicted time interval.

Comparative results of the sample graph given in section 2
are shown in Figure 2, Figure 3 and Figure 4 as follows:

Figure 2 Average makespan of sample graph

Figure 3 Average SLR of sample graph

Figure 4 Average Speedup of Sample graph

2) Test Set two: In test set two, we considered various
randomly generated DAGs of sizes 10,20,30,40 and 50
nodes. Our SDPRA algorithm is executed for these random
DAGs. Each random DAG generated is executed 200 times

with different predicted probability of availabilities for
predicted time interval and performance of the SDPRA
algorithm is compared in terms of different graph sizes. The
same sets of random graphs are executed for HEFT
algorithm as well as ECTS algorithm and probable delay for
HEFT and ECTS is evaluated for different predicted
probability of availabilities for predicted time interval.
Results show that SDPRA algorithm is more reliable than
HEFT and ECTS. For random graphs of various sizes, the
overall performance improvement of SDPRA in comparison
with HEFT ranges from 45% to 94% and ECTS ranges from
50% to 90% and at an average 71% for HEFT and 70% for
ECTS. Comparative results are shown in the Figure 5,
Figure 6 and Figure 7 below:

Figure 5 Average Makespan of randomly generated
graphs of various sizes

Figure 6 Average SLR of randomly generated graphs of
various sizes

Figure 7 Average Speedup of randomly generated
graphs of various sizes

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 432

3) Test Set Three: Application Graphs - Many scientific
applications are modelled as workflows that can be
processed efficiently in distributed cloud environments. In
this research work we consider application graphs such as
Gauss gpaph, Cybershake graph, Montage graph and
Epigenomics graph. The Montage workflow is an I/O
intensive astronomy application that is used to create custom
mosaics of the sky based on a set of input images. During
the execution of the workflow, the geometry of the output
image is calculated from that of the input images.
Astronomers can generate composite large images of a
region of the sky using various input images. In the
bioinformatics field, the CPU intensive Epigenomics
workflow is used to automate the execution of various
genome sequencing operations. Cybershake workflow is a
data and memory intensive earthquake hazard
characterisation application used by the South California
Earthquake Centre. Gaussian Elimination graph is a
compute intensive scientific application.

The overall performance improvement of SDPRA
algorithm is about 80% better than HEFT and 74% better
than ECTS for an I/O intensive application graph such as
Montage graph. The performance improvement of SDPRA
algorithm is about 69% better than HEFT and 70% better
than ECTS for a CPU intensive application graph such as
Epigenomics. The performance improvement of SDPRA
algorithm is about 73% better than HEFT and 76% better
than ECTS for a data and memory intensive application
graph such as Cybershake. The overall performance
improvement of SDPRA algorithm is about 57% better than
HEFT and 60% better than ECTS for a scientific application
graph such as Gaussian Elimination graph.

The performance of SDPRA and comparative results with
HEFT and ECTS of I/O intensive Montage application graph
are shown in the Figure 9, Figure 10 and Figure 11 below:

Figure 8 Montage Graph

Figure 9 Average Makespan of Montage Graph

Figure 10 Average SLR of Montage Graph

Figure 11 Average Speedup of Montage Graph

The performance of SDPRA and comparative results with

HEFT and ECTS of CPU intensive Epigenomics application
graph are shown in the Figure 13, Figure 14 and Figure 15
below:

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 433

Figure 12 Epigenomics Graph

Figure 13 Average Makespan of Epigenomics Graph

Figure 14 Average SLR of Epigenomics Graph

Figure 15 Average Speedup of Epigenomics Graph

The performance of SDPRA and comparative results with

HEFT and ECTS of CPU intensive Gaussian Elimination
application graph are shown in the Figures 17, Figure 18 and
Figure 19 below:

Figure 16 Gaussian Elimination Graph

Figure 17 Average Makespan of Gauss Graph

Figure 18 Average SLR of Gauss Graph

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 434

Figure 19 Average Speedup of Gauss Graph

The performance of SDPRA and comparative results with

HEFT and ECTS of CPU intensive Cybershake application
graph are shown in the following Figure 21, Figure 22 and
Figure 23 below:

Figure 20 CyberShake Graph

Figure 21 Average Makespan of CuberShake Graph

Figure 22 Average SLR of CyberShake Graph

Figure 23 Average Speedup of CyberShake Graph

4) Test Set four: In test set four, a random graph with 50
nodes is considered to study the performance of our
algorithm SDPRA in terms of parallelism for various
numbers of processors such as 9, 12 and 15. Experimental
results in the Figure 24 show that makespan is minimized
with increasing number of processors with increased
reliability.

Figure 24 Average Makespan of a randomly generated
50 node graph with varying number of Virtual machines

Static scheduling algorithms HEFT and ECTS for

bounded number of processors, in which tasks are prioritized
and scheduled to a virtual machines based on Earliest Finish
Time assume that all processors are 100% available for
allocation. In real cloud environment, due to various reasons
resources may not be available and delays may occur and it
may not achieve the required makespan that leads to low
reliability and unpredicted delays.

The simulation results given in this section show that our
SDPRA algorithm is more reliable than HEFT and ECTS
that considers 100% resource availability, as is considers
predicted probability of availability for the predicted time
interval in scheduling decisions and avoids unpredicted
delays.

VI. CONCLUSION

Resources allocated for workflow execution in the cloud

environment exhibit unpredictable and unstable performance

Vijayalakshmi A. Lepakshi et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,427-435

© 2015-19, IJARCS All Rights Reserved 435

due to sharing of underlying resources as well as virtual
resources by various users as their availability is highly
dynamic and show significant impact in scheduling [5]. In
this paper we propose a new heuristic called Cloud
Workflow Scheduling based on Standard Deviation of
Predictive Resource Availability (SDPRA) for a bounded
number of statically provisioned heterogeneous Virtual
Machines that considers resource availability factor in
scheduling decisions. SDPRA algorithm works in two
phases. In the first phase, tasks are prioritized based on
Expected Completion Time level wise and a priority list has
been formed. In the second phase, the scheduler predicts the
probability of availability of the Virtual Machines based on
historical data for each time unit for the predicted time
interval and tasks are scheduled to a processor with
minimum EFT considering the delay that occurs due to
probability of availability at each time slot required. Our
algorithm SDPRA is upheld to be reliable for scheduling
workflow applications structured as DAGs on to a
heterogeneous cloud where availability of resources are
dynamic, unpredictable and shared by various users. Our
algorithm outperforms HEFT and ECTS in the environment
where resource availability is considered. The performance
of SDPRA algorithm has been witnessed experimentally by
using an example graph, randomly generated graphs of
various sizes and application graphs such as Gauss graph,
Montage graph, Cybershake graph and Epigenomics graph.

For the example 10 node graph considered in Figure 1,
average makespan, average SLR and average Speedup of
SDPRA is about 27% better than HEFT and 19% better than
ECTS. The overall performance Improvement of SDPRA
algorithm is about 80% better than HEFT and 74% better
than ECTS for an I/O intensive application graph such as
Montage graph. The performance improvement of SDPRA
algorithm is about 69% better than HEFT and 70% better
than ECTS for a CPU intensive application graph such as
Epigenomics. The performance improvement of SDPRA
algorithm is about 73% better than HEFT and 76% better
than ECTS for a data and memory intensive application
graph such as Cybershake graph. The performance
improvement of SDPRA algorithm is about 57% better than
HEFT and 60% better than ECTS for a scientific application
graph such as Gaussian Elimination graph.

 For random directed acyclic graphs of various sizes
10,20,30,40 and 50 the overall performance improvement of
SDPRA in comparison with HEFT ranges from 45% to 94%
and ECTS ranges from 50% to 90% and at an average 71%
for HEFT and 70% for ECTS.

The simulation results show that SDPRA algorithm is
more reliable with predictive resource availability for a
predicted time interval, than existing algorithms that assumes

100% resource availability for scheduling where availability
of resources are unpredictable in the cloud environment.

VII. REFERENCES

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,

James Broberg, and Ivona Brandic, Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility, Future Generation
Computer Systems, Volume 25, Number 6, Pages: 599-616,
ISSN: 0167-739X, Elsevier Science, Amsterdam, The
Netherlands, June 2009.

[2] Linlin Wu, Saurabh Kumar Garg, Steve Versteeg, and
Rajkumar Buyya, SLA-Based Resource Provisioning for
Hosted Software-as-a-Service Applications in Cloud
Computing Environments, IEEE Transactions on Services
Computing (TSC), Volume 7, Number 3, Pages: 456-485,
ISSN: 1939-1374, IEEE Computer Society Press, USA, July-
September 2014.

[3] Brent Rood and Michael J. Lewis," Multi-State Grid Resource
Availability Characterization", IEEE 8th Grid Computing
Conference, 2007

[4] Vijayalakshmi A. Lepakshi, Prashanthe C S R, Standard
Deviation of probability of processor based task scheduling
algorithm in cloud computing, IEEE International Conference
on Trends in Automation, Communications and Computing
Technology (I-TACT-15), 2015, DOI:
10.1109/ITACT.2015.7492641

[5] Maria A. Rodriguez and Rajkumar Buyya, A Taxonomy and
Survey on Scheduling Algorithms for Scientific Workflows in
IaaS Cloud Computing Environments, Concurrency and
Computation: Practice and Experience (CCPE), Volume 29,
No. 8, Pages: 1-23, ISSN: 1532-0626, Wiley Press, New
York, USA, April 25, 2017.

[6] Haluk Topcuoglu, Salim Hariri, Min-You Wu “Performance-
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing” 1045-9219/02/$17.00 © 2002
IEEE

[7] R.Eswari and S.Nickolas : “Expected Completion Time based
Scheduling Algorithm for Heterogeneous Processors” 2011
International Conference on Information Communication and
Management IPCSIT vol.16 (2011) © (2011) IACSIT Press,
Singapore

[8] Brent Rood and Michael J. Lewis, “Grid Resource
Availability Prediction-Based Scheduling and Task
Replication,” Journal of Grid Computing, 2009

[9] Yinfeng Wang, Zhijing Liu, Wei Yan, “Algorithms for
Random Adjacency Matrixes Generation Used for Scheduling
Algorithms Test”, International Conference on Machine
Vision and Human-Machine Interface (MVHI), 2010

[10] E. Ilavarasan P. Thambidurai and R. Mahilmannan,
“Performance Effective Task Scheduling Algorithm for
Heterogeneous Computing System” Proceedings of the 4th
International Symposium on Parallel and Distributed
Computing (ISPDC’05) 0-7695-2434-6/05 $20.00 © 2005
IEEE

	INTRODUCTION
	PROBLEM STATEMENT AND RESOURCE MODEL
	RELATED WORK
	CLOUD WORKFLOW SCHEDULING BASED ON STANDARD DEVIATION OF PREDICTIVE RESOURCE AVAILABILITY
	EXPERIMENTAL RESULTS
	Comparison Metrics [4, 6,7]
	Makespan: Makespan or schedule length is the overall execution of all the tasks from start node to exit node in a DAG and is the main performance measure of a scheduling algorithm.
	Schedule Length Ratio (SLR): The best scheduling algorithm is the one that gives the lowest SLR of a graph. Average SLR values are considered for performance evaluation of task graphs. The SLR is the ratio of the parallel execution time to the sum of...
	Speedup: Speedup of scheduling algorithm is computed by dividing sequential execution time by the parallel execution time (makespan). The sequential execution time of a DAG is calculated by assigning all sub-tasks to a single processor which minimize...

	Random DAG Generator:
	Results:
	Test Set one: In test set one, we considered the sample graph given in the above section 2, our algorithm SDPRA which considers predicted resource availability for the predicted time interval and the performance of SDPRA is compared with existing HEF...
	Comparative results of the sample graph given in section 2 are shown in Figure 2, Figure 3 and Figure 4 as follows:
	Test Set two: In test set two, we considered various randomly generated DAGs of sizes 10,20,30,40 and 50 nodes. Our SDPRA algorithm is executed for these random DAGs. Each random DAG generated is executed 200 times with different predicted probabilit...
	Test Set Three: Application Graphs - Many scientific applications are modelled as workflows that can be processed efficiently in distributed cloud environments. In this research work we consider application graphs such as Gauss gpaph, Cybershake grap...
	Test Set four: In test set four, a random graph with 50 nodes is considered to study the performance of our algorithm SDPRA in terms of parallelism for various numbers of processors such as 9, 12 and 15. Experimental results in the Figure 24 show th...

	CONCLUSION
	REFERENCES

