
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(���������

© 2010, IJARCS All Rights Reserved 466

�����������	
��
�	�

Performance based Efficient K-means Algorithm for Data Mining

Rajesh Ahirwar
Department of Information Technology

Samrat Ashok Technological Institute

Vidisha, M.P., India.

rajesh.mtechit2011@gmail.com1

Mukesh Goyal
Department of Information Technology

Samrat Ashok Technological Institute

Vidisha, M.P., India.

mukesh.goyal23@gmail.com2

Narendra Kumar Kori
Department of Information Technology

Samrat Ashok Technological Institute

Vidisha, M.P., India.

kori_narendra86@rediffmail.com3

Abstract-Today, we are witnessing enormous growth in data volume. Often, data is distributed or it can be in the form of streaming data.

Efficient clustering in this entire scenario becomes a very challenging problem. Our work is in the context of K-means clustering algorithm. K-

means clustering has been one of the popular clustering algorithms. It requires several passes on the entire dataset, which can make it very

expensive for large disk-resident datasets and also for streaming data. In view of this, a lot of work has been done on various approximate

versions of k-means, which require only one or a small number of passes on the entire dataset. In our work has developed a new algorithm for

very large data clustering which typically requires only one or a small number of passes on the entire dataset. The algorithm uses sampling to

create initial cluster centers, and then takes one or more passes over the entire dataset to adjust these cluster centers. We have implemented to

develop clustering algorithm for distributed data set. The main contribution of this paper is the implementation and evaluation of that algorithm.

Our experiments show that this framework can be very effective in clustering evolving streaming data.

Key words- Data Mining; Clustering; Distributed k-means Algorithm; Search Engine Technique.

I. INTRODUCTION

Most of the initial clustering techniques were developed

by statistics or pattern recognition communities, where the

goal was to cluster a modest number of data instances which

often located on a single machine. However today, we are

witnessed an enormous growth in the amount of collected

data. Additionally, we can also have data distributed in

remote machines or we can have streaming type of data

which is potentially infinite. Traditional clustering

algorithms are inefficient because they were not designed to

process large amounts of data or to operate in distributed or

streaming environments.

Hence, developing fast and efficient clustering

algorithms for massive or distributed or streaming data has

been identified as challenging problem in the data mining

community. Massive data sets are known as out of core data

as they do not fit entirely in main memory. In this case, the

run time of the algorithm is dominated by the cost of I/O

operation or number of disk scan. Hence, ideally the

clustering algorithm for massive data should be optimized

for the number of scans over the disk [1].

Distributed data may reside in remote loosely-coupled

machines. In this case, communication between the nodes

may be a bottleneck. Hence, a distributed algorithm is

required. The runtime will be dominated by the slowest

communicating nodes. Hence, the goal of distributed

algorithm should be to minimize the effort and time

expended on communication. Streaming data is potentially

infinite and it is not possible to store all the data. Hence, the

algorithms for streaming data should preferably be one pass

and on-line and they should also require small amount of

memory for their execution. The requirement of small

memory is targeted towards mobile devices or sensor

network nodes. Our work employs the k-means clustering.

The K-means clustering algorithm was developed by

Macqueen in 1967 and later improved by Hartigan. Bottou

and Bengio proved the convergence properties of the K-

means algorithm. It has been shown to be very useful for a

body of practical applications. The k-means algorithm is not

suitable for massive or distributed or streaming data. A

problem with the k-means algorithm is that it makes a

complete scan over the entire data for every iteration, and it

requires much such iteration before converging to a quality

solution. This makes it potentially very expensive algorithm

to use, particularly for large disk-resident datasets.

Furthermore, in the context of streaming data, it may not

always possible to store the complete data. This makes k-

means algorithm impractical to use for streaming data. For

distributed data, one can use parallel k-means algorithm but

this algorithm requires that nodes communicate for every

iteration. This makes the parallel k-means very expensive to

use in presence of communication delays among the nodes.

The communication problem is especially prominent in

loosely connected remote machines. Also, the parallel k-

means works on uniformly partitioned data. The nodes are

said to posses’ data imbalance if the amount of distributed

data is not uniform at each node. In presence of such data

imbalance, the runtime of parallel k-means algorithm will be

dominated by the processing time of the node which

contains maximum amount of data. Moreover, other

standard practice for clustering distributed data is to

download and merge all data in a single machine and then

Rajesh Ahirwar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 466-471

© 2010, IJARCS All Rights Reserved 467

running a sequential clustering algorithm on it. But,

downloading huge amount of data and running sequential

algorithm is clearly not an efficient solution for clustering

distributed data. Hence, a distributed clustering algorithm is

required which optimizes the communication and can also

operate in presence of data imbalance [2] and [3].

A number of algorithms or approaches focus on

reducing the number of passes required over the data sets.

These researches have been done in the context of clustering

massive data or streaming data. However, these approaches

only provide approximate solutions, possibly with

deterministic or probabilistic bounds on the quality of the

solutions. Also, there is no distributed algorithm available at

present for clustering which optimizes communication and

can work in presence of data imbalance and can provide

exact results. Therefore, my work proposes efficient

algorithm which can produce exact results as k-means

algorithm for large out of core data, distributed data and

streaming data. The paper explain the development and

evaluation of a distributed fast and exact k-means algorithm

(DFEKM) extending the concepts of fast and exact k-means

(FEKM) [1] and [4].

II. BACKGROUND

In background of K-means we discuss only on

improvements over k-means, single or a few pass clustering

algorithms and parallel or distributed clustering algorithms,

clustering algorithms for streaming data.

A. Scalable k-means Using Compression

In recent developed a single pass approximation of

multi-pass k-means. This algorithm is initialized as ordinary

k-means, after which it is repeatedly made to take as much

data as it can, to fit into the main memory. The centers are

then updated with points from the main memory. Then, the

memory buffer contents are compressed in two steps. The

first step, called primary compression, finds points that are

close to the cluster they are currently assigned to and

discards the point if it is within an estimated radius. Then, in

second step, for each point a worst case scenario is set up by

perturbing the cluster means within confidence intervals. If

the points do not change their cluster membership with the

perturbed mean then these points are also considered in the

discard set. For rest of the data points, they do a secondary

compression using k-means algorithm and store weighted

points satisfying some tightness criteria. Some points which

do not satisfy the tightness criteria are retained in the buffer.

The algorithm updates the model every time it fetches new

points with the retained set and weighted points and

sufficient statistics from the discard set. The algorithm ends

after one scan of the data set.

Further simplified this idea where they store sufficient

statistics of all the points in memory buffer and then next

time uses the new points and the sufficient statistics of the

points stored in previous fetch. They performed extensive

experiments with synthetic and real data set and showed that

in many occasion Bradley and Fayyad’s scalable k-means is

slower than the traditional k-means. Furthermore, their

simplified scalable k-means has been found faster in all the

experiments [a] and [2].

B. BIRCH Using Sampling

BIRCH is another single (or a few) pass hierarchical

clustering algorithm, proposed by Zhang and Ramakrishna.

It incrementally builds an index tree as it scans the data.

They referred this as cluster feature tree (CF Tree). Each

node of the tree represents the sufficient statistics triplet

(number, sum, sum-squared) of all the points under that

node. A node is split if it represents too many points.

BIRCH is an efficient one or a few pass hierarchical

clustering algorithm which is developed for very large data

sets. It produces approximate solution. One bottleneck of

BIRCH is the size of the CF Tree. If the size of the CF Tree

does not fit into the main memory then BIRCH may become

inefficient [5].

C. Approximation Algorithm CURE

In previous developed an efficient hierarchical

clustering algorithm “CURE” for very large databases. This

algorithm uses random sampling and then it iteratively

partitions the data and merges the closest cluster at each

pass until it computes k clusters.

D. One Pass Approximation STREAM

One passes clustering algorithm for very large data sets

or streaming data. This algorithm was inspired by CURE.

They refer to this algorithm as “STREAM”. The main

premise of their algorithm is to use sampling and

approximate facility location algorithm to open best k

facilities. The k-median or k-center algorithm uses the

facility location algorithm iteratively to converge to the best

k facility locations as cluster centers. They show that their

algorithm obtains better quality solution than k-means

although k-means is occasionally faster.

E. Using Hoeffding Bound

A faster version (sub-linear) of k-means using sampling

based on Hoeffding or similar statistical bound. The

algorithm consists of a number of complete runs of k-means

algorithm with sample where in every run; sample size is

increased to maintain a loss bound with respect to the multi-

pass k-means algorithm over complete data set. The goal

here is to converge to a solution using a sample from the

data set such that this solution is close to the solution of a

multi-pass k-means algorithm by a predefined bound with a

high probability [6] and [8].

F. Heuristics for Out of Core Computation

More recently, proposed to apply k-means algorithm to

cluster massive datasets, scanning the dataset only once.

Their algorithm splits the entire dataset into chunks, and

each chunk can fit into the main memory. Then, it applies k-

means algorithm on each chunk of data, and merge the

clustering results by another k-means type algorithm. Good

results are shown for a real dataset; however, no theoretical

bounds on the results have been established [7] and [9].

G. Parallel Clustering Techniques

In recent proposed a technique called “Recursive

Agglomeration of Clustering Hierarchies by Encircling

Tactic” (RACHET). This technique is based on sufficient

statistics. It collects local dendograms and then merges them

to create a global dendogram. However, this needs to iterate

until the sufficient statistics converges to the desired quality.

Parthasarathy and Ogihara provided an algorithm where the

distance metric is formed applying association rules locally.

Rajesh Ahirwar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 466-471

© 2010, IJARCS All Rights Reserved 468

Kargupta and his group applied PCA to do high dimensional

clustering in a distributed fashion. A distributed clustering

technique that involves creating local clusters, and then

deriving global clusters from them. These algorithms

however are not designed to produce exact solution for

which it is required to scan over the complete data set [10]

and [11].

H. K-Median in Sliding Window over Stream

Most recent developed an algorithm for maintaining k-

medians in a sliding window over streaming data. They use

the idea of exponential histogram (EH) data structure to

enhance the algorithm presented. Here they especially

address the problem of merging clusters using the EH data

structure.

I. Better Approximation Algorithm for Streaming

Data

Provide a constant factor approximation algorithm for

k-median problem for streaming data which is one pass and

uses poly-logarithmic storage space. This algorithm

overcomes the increasing approximation factors in different

passes in “CURE” algorithm.

J. Clustering Evolving Streaming Data

Han, Aggarwal and their group proposed a framework

for clustering data steams called “CluStream” algorithm.

The proposed technique divides the clustering process to

two components. The on-line component stores summary

statistic about the data streams while the offline component

performs clustering on the summarized data according to a

number of user preferences such as the time frame and the

number of clusters. In their technique, they used a pyramidal

time frame and store a number of micro clusters from each

snapshot for the offline component. The clustering

algorithm then works on the micro clusters. A number of

experiments on real datasets have been conducted to prove

the accuracy and efficiency of the proposed algorithm [4]

and [10].

K. Fast and Exact K-Means (FEKM)

The approximate cluster centers computed using

sampling can be corrected and moved to exact cluster

centers using only one or a small number of passes on the

entire data. By exact cluster centers, refer to the cluster

centers that are computed by the original k-means algorithm.

Thus, this can use sampling to speed up the computation of

exact clusters. There are three key questions to be addressed.

First, when approximate cluster centers are computed using

sampling, what information needs to be stored? Second,

how can this information are used to avoid a large number

of passes on the entire dataset. Third, how do we know that

we have been able to achieve the same cluster centers as in

the original k-means algorithm? Initially run the k-means

algorithm on a sample, using the same convergence criteria

and same initial points as we would use for the k-means.

The following information is stored for future use. After

every iteration of k-means on the sampled data, store the

centers that have been computed. In addition, it computes

and stores another value, referred to as the Confidence

Radius of each cluster, whose computation will be described

later. This information can be stored in a table with

columns, and the number of rows equaling the number of

iterations for which k-means was run. Each entry of the

table contains a tuple (center, radius) for each cluster. Next,

complete one pass through the entire dataset. For every

point and each row of the table, determine the cluster to

which this point will be assigned at this iteration, assuming

that executing the algorithm on the entire dataset produces

the same cluster centers as the initial run on sampled data.

Next, try to estimate how likely it is that this point will be

assigned to a different cluster when the algorithm is

executed on the entire dataset. Thus, for a given point and

row of the table, determine if this point is a boundary point.

If it is, it is stored in a buffer. Otherwise, update the

sufficient statistics tuple, which has the number and sum of

the data points for the cluster. After the pass through the

dataset and storing the boundary point, we do the following

processing. Starting from the first row of the table, re-

compute centers using the boundary points and sufficient

statistics tuple. If any of the new computed centers fall

outside the pre-estimated confidence radii which means that

computation of boundary points is not valid, need to take

another pass through the data. Use the new centers as new

initialization points and again repeat all the steps. However,

if the new computed centers are within the confidence

radius, use these centers for the next iteration and continue.

The key observation is that using cluster centers from

sampling, boundary points, and sufficient statistics, which

are able to compute the same cluster centers that we would

have gotten through one pass on the entire dataset. Finally,

the algorithm terminates by checking for the same

termination condition that one would use in the original

algorithm. The paper propose distributed fast and exact k-

means algorithm (DFEKM) extending the concepts of fast

and exact k-means (FEKM) [1] and [2] and [12].

III. PROPOSED TECHNIQUES

In this paper we propose Distributed Fast and Exact K-

means (DFEKM) algorithm. We assume that data to be

clustered is available at two or more nodes, which are

referred to as the data sources. In addition, we have a node

denoted as the central site, where the results of clustering are

desired. It is also assumed that additional computation for

clustering can be performed at the central site. We only

consider horizontal partitioning of the data, i.e., each data

source has values along all dimensions of a subset of the

points. DFEKM uses ideas from Fast and Exact K-means

(FEKM) where pre-computed approximate cluster centers

can be corrected and moved to exact cluster centers using

only one or a small number of passes on the entire data, and

only one or a small number of rounds of communication

between data sources and the central site. DFEKM uses

ideas from FEKM where pre-computed approximate cluster

centers can be corrected and moved to exact cluster centers

using only one or a small number of passes on the entire

data, and only one or a small number of rounds of

communication between data sources and the central site.

There are three key questions to be addressed. First,

when approximate cluster centers are computed using

sampling, what information needs to be stored? Second,

how can this information are used to process data

independently on each data source, and to avoid frequent or

high volume communication. Third, how can we determine,

in a distributed environment, that we have been able to

achieve the same cluster centers as in the centralized k-

means algorithm. We sample data from each data source,

Rajesh Ahirwar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 466-471

© 2010, IJARCS All Rights Reserved 469

and communicate it to the central node. Then, on the central

node, we run the k-means algorithm on this sampled data.

The following information is stored for processing on each

data source. After every iteration of k-means on the sampled

data, we store the centers that have been computed. In

addition, we compute and store another value, referred to as

the Confidence Radius of each cluster. Then, we send the

table to all the data sources. Next, at each data source, we

take one pass through the portion of the dataset available at

that data source. For every point and each row of the table,

we compute the cluster to which this point will be assigned

at this iteration. WE also estimate if the point is a stable

point as we did it in FEKM. We store the sufficient statistics

of the (number, linear sum and square sum) stable points

and we store the points which are not stable or the boundary

point exactly as discussed in the context of FEKM. After the

pass through the dataset and storing the boundary point, all

the nodes send their boundary points and sufficient statistics

to central node. The central node then does the following

processing. Starting from the first row of the table, it

recomputed centers using the boundary points and sufficient

statistics tuple. If any of the new computed centers fall

outside the pre-estimated confidence radius, which means

that our computation of boundary points is not valid, we

need to send the last corrected centers to all other nodes.

Using these centers as the new initialization points, we have

to go through iteration and repeat all the steps. However, if

the new computed centers are within the confidence radius,

we use these centers for the next iteration and continue.

The main data structure in DFEKM is the cluster

abstract table or the CAtable and the algorithm starts with

building the CAtable from a sample of the original dataset.

This is done by the central node. In the pseudo code the

process number is denoted by MyId, which is 0 for the

central node. Initially, each entry of the CAtable contains

the two tuple, the center and the confidence radius of each

cluster in that iteration. This is done through the function

BuildCATable in the central node. Then the central node

broadcasts the CAtable to all other node using the function

Broadcast. The argument Comm World denotes a handle for

the all communicating processes. After this, at each node,

we take one scan over the portion of the dataset available to

that node and find out the likely boundary points for each

iteration for each row of the table. The function IsBndrPoint

checks for each data point if it meets the conditions of being

a boundary point. If one point becomes a boundary point for

one particular row, it is possible that the same point also be

a boundary point for the next rows or next iterations of the

CAtable. We also use Buffer and Index lists to store

boundary points and their corresponding row numbers as we

did it for FEKM. We also store the number and sum of the

non-boundary points with each CAtable entry. The function

UpdateSufficientStats accomplishes this. Then, the entire

central node again gathers the entire boundary points,

particularly the Buffer, the Index, and the sufficient statistics

from all other nodes.

A. Proposed Distributed Fast and Exact K-Means

Algorithm (DFEKM)-

The central node re-computes centers for each row of

the CAtable from the boundary points corresponding to that

row and from the sufficient statistics. It is done through the

function RecomputeCtrs. We then verify if the new centers

are located within the preestimated confidence radius to

maintain the correctness. The function IsCtrsWithinRadii is

responsible for this verification. If we find that the new

centers are located within the confidence radius of

corresponding clusters, we update the centers of the CAtable

in the next row using the function UpdateCAtableCtrs. If

any of the new centers is found outside the confidence

radius of the corresponding cluster, the initial centers are

replaced by those new centers and the central node

broadcasts the new centers to all other nodes.

Input: Di (Data Points), Si (Sample Data Points), InitCtrs

(Initial Centers), € (Stopping criteria in k-means algorithm).

Output: k Cluster Center.

begin

flag�1

while flag do

 List Buffer � NULL

 Index [] � NULL

 Table C Atable � NULL

 Si� collectsample ()

 GatherV (Si, 0, Comm_World)

If MyId = 0 then

 NumRow � BuildCTable (InitCtrs, Si, CAtable, €);

BroadCast (CAtable, 0, Comm_World);

CollectCATablestat (CATable, Buffer, Index);

GatherV (Buffer, 0, Comm_World);

GatherV (Index [], 0, Comm_World);

GatherV (CAtable, 0, Comm_World);

IF MyId=0

 then

flag � CorrectCATable (CAtable, Buffer, Index);

Broadcast (flag, 0, Comm_World);

end

outputCATableCtrs (CAtable, row Num Row);

end

//

IV. RESULTS

Our experiments compare the DFEKM algorithm to

these two approaches. As the main property of our algorithm

is that it produces the same results as the exact k-means

algorithm applied centrally, we did not compare DFEKM

against any of the existing approximate distributed

clustering approaches. Another challenge in designing our

experiments was to simulate execution on distributed data

repositories. As compared to a tightly coupled parallel

configuration, executing parallel code on distributed data

repositories potentially involves large load imbalance and/or

high communication latencies. Our experiments were

conducted on a parallel machine, and the above two effects

were simulated by introducing delays during each round of

communication. We also considered cases in which data has

not evenly distributed. For such cases, we compare parallel

k-means, sequential k-means, and our DFEKM algorithm.

Additionally, we were interested in seeing how many passes

over the entire dataset and how many rounds of

communication were required by the DFEKM algorithm. In

all experiments, the initial center points and the stopping

criteria for this algorithm are kept same as those of the k-

means algorithm. We used two convergence criteria. The

algorithm stops when (1) the new centers are not sufficiently

different from those generated in the previous iteration, or

(2) it has run for a specified maximum number of iterations.

The second criteria are useful with bad initializations, where

the algorithm could run for a large number of iterations.

Rajesh Ahirwar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 466-471

© 2010, IJARCS All Rights Reserved 470

During the sampling phase, we sample 10% of the data from

each data source.

Figure:1 Running Time of DFEKM and Parallel k-means in the Presence of

Load Imbalance.

The figure shows that three out puts of running time of

DFEKM and Parallel K-means in presence of load

imbalance (First two columns define first load imbalance,

second two columns define second load imbalance and last

two columns define third load imbalance).

V. CONCLUSION AND FUTURE WORKS

We have presented, analyzed, and evaluated a

distributed clustering algorithm that provably produces the

same cluster centers as the k-means clustering algorithm.

We have performed a number of experiments with real and

synthetic datasets to evaluate our algorithm. Our results

show that DFEKM is clearly better than two other possible

options for exact clustering on distributed data, which are

down-loading all data and running sequential k-means, or

running parallel k-means on a loosely coupled

configuration. Moreover, even in a tightly coupled

environment, DFEKM can outperform parallel k-means if

there is a significant load imbalance.

There can be a few possible future works from this paper.

One of them can be to develop the distributed version of the

stream clustering algorithms. Another work can be in the

direction of improving the algorithm to handle a variable

number of clusters instead of a fixed. This will be

particularly useful in case the data stream evolves such that

number of clusters change. It is also possible to develop a

framework of incremental clustering using the concepts

from our stream algorithms. Lastly, there is a need of

understanding the effects of various stream parameters such

as rate of incoming data on the performance of the

algorithms, which can also be a potential future work.

VI. REFERENCES

[1] K A Abdul Nazeer, S D Madhu Kumar, M P Sebastian,

“Enhancing the k-means clustering algorithm by using a

O(n logn) heuristic method for finding better initial

centroids”, IEEE 2011 Second International

Conference on Emerging Applications of Information

Technology, pp- 261-264.

[2] Sun Yuepeng, Liu Min, Wu Cheng, “A Modified k-

means Algorithm for Clustering Problem with

Balancing Constraints”, IEEE 2011 Third International

Conference on Measuring Technology and

Mechatronics Automation, pp- 127-130.

[3] Hai-Guang Li, Gong-Qing Wu, Xue-Gang Hu, Jing

Zhang, Lian Li1, Xindong Wu, “K-Means Clustering

with Bagging and MapReduce”, IEEE Proceedings of

the 44th Hawaii International Conference on System

Sciences – 2011, pp- 1-8.

[4] Rajendra Pamula, Jatindra Kumar Deka, Sukumar

Nandi, “An Outlier DetectionMethod based on

Clustering”, IEEE 2011 Second International

Conference on Emerging Applications of Information

Technology, pp- 535-556.

[5] Hong Zeng and Yiu-ming Cheung, “Semi-supervised

Maximum Margin Clustering with Pairwise

Constraints”, IEEE 2011.

[6] Amitava Mukhopadhyay, Bipasha Paul Shukla,

Diptiprasad Mukherjee and Bhabatosh Chanda, “A

Novel Neural Network based Meteorological Image

Prediction from a given Sequence of Images”, IEEE

2011 Second International Conference on Emerging

Applications of Information Technology, pp-202-205.

[7] Shi Na and Liu Xumin, “Research on k-means

Clustering Algorithm”, IEEE Third International

Symposium on Intelligent Information Technology and

Security Informatics 2010, pp- 63-67.

[8] Mantao Xu and Pasi Franti, “A HEURISTIC K-

MEANS CLUSTERING ALGORITHM BY KERNEL

PCA”, IEEE 2004 International Conference on Image

Processing (ICIP), pp-3503-3506.

[9] Man Sha and Huixian Yang, “Speaker recognition

based on APSO-K-means clustering Algorithm”, IEEE

2009 International Conference on Artificial Intelligence

and Computational Intelligence, pp- 440-444.

[10] Li Xinwu, “Research on Text Clustering Algorithm

Based on Improved K-means”, IEEE 2010 International

Conference on Computer Design and Applications

(ICCDA 2010), pp- v4- 573-576.

[11] Qin Chen, Jinping Mo, “Optimizing the Ant Clustering

Model Based on K-Means Algorithm”, IEEE 2009

World Congress on Computer Science and Information

Engineering, pp- 699-702.

[12] Taoying Li and Yan Chen, “An Improved k-means

Algorithm for Clustering Using Entropy Weighting

Measures”, IEEE Proceedings of the 7th World

Congress on Intelligent Control and Automation June

25 - 27, 2008, Chongqing, China, pp- 149-153.

Rajesh Ahirwar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 466-471

© 2010, IJARCS All Rights Reserved 471

VII. AUTHOR’S PROFILE

 Mr. Rajesh Ahirwar presently pursuing M.Tech in

Information Technology at Samrat Ashok Technological Institute, Vidisha,

M.P., India. The degree of B.E. secured in Information Technology from

Indira Gandhi Engineering College, Sagar, M.P., India. Research Interest

includes Data Mining, Artificial Intelligence, and Clustering. E-mail:

rajesh.mtechit2011@gmail.com.

 Mr. Mukesh Goyal presently pursuing M.Tech in

Information Technology at Samrat Ashok Technological Institute, Vidisha,

M.P., India. The degree of B.E. secured in Information Technology from

Indira Gandhi Engineering College, Sagar, M.P., India. Research Interest

includes Data Mining, Artificial Intelligence. E-mail:

mukesh.goyal23@gmail.com.

 Mr. Narendra Kori presently pursuing M.Tech in

Information Technology at Samrat Ashok Technological Institute, Vidisha,

M.P., India. The degree of B.E. secured in Information Technology from

Truba Institute of Engineering & Information Technology, M.P., India.

Research Interest includes Data Mining, Artificial Intelligence. E-mail:

kori_narendra86@rediffmail.com.

