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Abstract-Today, we are witnessing enormous growth in data volume. Often, data is distributed or it can be in the form of streaming data. 

Efficient clustering in this entire scenario becomes a very challenging problem. Our work is in the context of K-means clustering algorithm. K-

means clustering has been one of the popular clustering algorithms. It requires several passes on the entire dataset, which can make it very 

expensive for large disk-resident datasets and also for streaming data. In view of this, a lot of work has been done on various approximate 

versions of k-means, which require only one or a small number of passes on the entire dataset. In our work has developed a new algorithm for 

very large data clustering which typically requires only one or a small number of passes on the entire dataset. The algorithm uses sampling to 

create initial cluster centers, and then takes one or more passes over the entire dataset to adjust these cluster centers. We have implemented to 

develop clustering algorithm for distributed data set. The main contribution of this paper is the implementation and evaluation of that algorithm.  

Our experiments show that this framework can be very effective in clustering evolving streaming data. 
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I. INTRODUCTION 

Most of the initial clustering techniques were developed 

by statistics or pattern recognition communities, where the 

goal was to cluster a modest number of data instances which 

often located on a single machine. However today, we are 

witnessed an enormous growth in the amount of collected 

data. Additionally, we can also have data distributed in 

remote machines or we can have streaming type of data 

which is potentially infinite. Traditional clustering 

algorithms are inefficient because they were not designed to 

process large amounts of data or to operate in distributed or 

streaming environments.  

Hence, developing fast and efficient clustering 

algorithms for massive or distributed or streaming data has 

been identified as challenging problem in the data mining 

community. Massive data sets are known as out of core data 

as they do not fit entirely in main memory. In this case, the 

run time of the algorithm is dominated by the cost of I/O 

operation or number of disk scan. Hence, ideally the 

clustering algorithm for massive data should be optimized 

for the number of scans over the disk [1]. 

Distributed data may reside in remote loosely-coupled 

machines. In this case, communication between the nodes 

may be a bottleneck. Hence, a distributed algorithm is 

required. The runtime will be dominated by the slowest 

communicating nodes. Hence, the goal of distributed 

algorithm should be to minimize the effort and time 

expended on communication. Streaming data is potentially 

infinite and it is not possible to store all the data. Hence, the 

algorithms for streaming data should preferably be one pass 

and on-line and they should also require small amount of 

memory for their execution. The requirement of small 

memory is targeted towards mobile devices or sensor 

network nodes. Our work employs the k-means clustering. 

The K-means clustering algorithm was developed by 

Macqueen in 1967 and later improved by Hartigan. Bottou 

and Bengio proved the convergence properties of the K-

means algorithm. It has been shown to be very useful for a 

body of practical applications. The k-means algorithm is not 

suitable for massive or distributed or streaming data. A 

problem with the k-means algorithm is that it makes a 

complete scan over the entire data for every iteration, and it 

requires much such iteration before converging to a quality 

solution. This makes it potentially very expensive algorithm 

to use, particularly for large disk-resident datasets. 

Furthermore, in the context of streaming data, it may not 

always possible to store the complete data. This makes k-

means algorithm impractical to use for streaming data. For 

distributed data, one can use parallel k-means algorithm but 

this algorithm requires that nodes communicate for every 

iteration. This makes the parallel k-means very expensive to 

use in presence of communication delays among the nodes.  

The communication problem is especially prominent in 

loosely connected remote machines. Also, the parallel k-

means works on uniformly partitioned data. The nodes are 

said to posses’ data imbalance if the amount of distributed 

data is not uniform at each node. In presence of such data 

imbalance, the runtime of parallel k-means algorithm will be 

dominated by the processing time of the node which 

contains maximum amount of data. Moreover, other 

standard practice for clustering distributed data is to 

download and merge all data in a single machine and then 
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running a sequential clustering algorithm on it. But, 

downloading huge amount of data and running sequential 

algorithm is clearly not an efficient solution for clustering 

distributed data. Hence, a distributed clustering algorithm is 

required which optimizes the communication and can also 

operate in presence of data imbalance [2] and [3]. 

A number of algorithms or approaches focus on 

reducing the number of passes required over the data sets. 

These researches have been done in the context of clustering 

massive data or streaming data. However, these approaches 

only provide approximate solutions, possibly with 

deterministic or probabilistic bounds on the quality of the 

solutions. Also, there is no distributed algorithm available at 

present for clustering which optimizes communication and 

can work in presence of data imbalance and can provide 

exact results. Therefore, my work proposes efficient 

algorithm which can produce exact results as k-means 

algorithm for large out of core data, distributed data and 

streaming data. The paper explain the development and 

evaluation of a distributed fast and exact k-means algorithm 

(DFEKM) extending the concepts of fast and exact k-means 

(FEKM) [1] and [4]. 

II. BACKGROUND 

In background of K-means we discuss only on 

improvements over k-means, single or a few pass clustering 

algorithms and parallel or distributed clustering algorithms, 

clustering algorithms for streaming data. 

A. Scalable k-means Using Compression 

In recent developed a single pass approximation of 

multi-pass k-means. This algorithm is initialized as ordinary 

k-means, after which it is repeatedly made to take as much 

data as it can, to fit into the main memory. The centers are 

then updated with points from the main memory. Then, the 

memory buffer contents are compressed in two steps. The 

first step, called primary compression, finds points that are 

close to the cluster they are currently assigned to and 

discards the point if it is within an estimated radius. Then, in 

second step, for each point a worst case scenario is set up by 

perturbing the cluster means within confidence intervals. If 

the points do not change their cluster membership with the 

perturbed mean then these points are also considered in the 

discard set. For rest of the data points, they do a secondary 

compression using k-means algorithm and store weighted 

points satisfying some tightness criteria. Some points which 

do not satisfy the tightness criteria are retained in the buffer. 

The algorithm updates the model every time it fetches new 

points with the retained set and weighted points and 

sufficient statistics from the discard set. The algorithm ends 

after one scan of the data set.  

Further simplified this idea where they store sufficient 

statistics of all the points in memory buffer and then next 

time uses the new points and the sufficient statistics of the 

points stored in previous fetch. They performed extensive 

experiments with synthetic and real data set and showed that 

in many occasion Bradley and Fayyad’s scalable k-means is 

slower than the traditional k-means. Furthermore, their 

simplified scalable k-means has been found faster in all the 

experiments [a] and [2]. 

B. BIRCH Using Sampling 

BIRCH is another single (or a few) pass hierarchical 

clustering algorithm, proposed by Zhang and Ramakrishna. 

It incrementally builds an index tree as it scans the data. 

They referred this as cluster feature tree (CF Tree). Each 

node of the tree represents the sufficient statistics triplet 

(number, sum, sum-squared) of all the points under that 

node. A node is split if it represents too many points. 

BIRCH is an efficient one or a few pass hierarchical 

clustering algorithm which is developed for very large data 

sets. It produces approximate solution. One bottleneck of 

BIRCH is the size of the CF Tree. If the size of the CF Tree 

does not fit into the main memory then BIRCH may become 

inefficient [5]. 

C. Approximation Algorithm CURE 

In previous developed an efficient hierarchical 

clustering algorithm “CURE” for very large databases. This 

algorithm uses random sampling and then it iteratively 

partitions the data and merges the closest cluster at each 

pass until it computes k clusters. 

D. One Pass Approximation STREAM 

One passes clustering algorithm for very large data sets 

or streaming data. This algorithm was inspired by CURE. 

They refer to this algorithm as “STREAM”. The main 

premise of their algorithm is to use sampling and 

approximate facility location algorithm to open best k 

facilities. The k-median or k-center algorithm uses the 

facility location algorithm iteratively to converge to the best 

k facility locations as cluster centers. They show that their 

algorithm obtains better quality solution than k-means 

although k-means is occasionally faster. 

E. Using Hoeffding Bound 

A faster version (sub-linear) of k-means using sampling 

based on Hoeffding or similar statistical bound. The 

algorithm consists of a number of complete runs of k-means 

algorithm with sample where in every run; sample size is 

increased to maintain a loss bound with respect to the multi-

pass k-means algorithm over complete data set. The goal 

here is to converge to a solution using a sample from the 

data set such that this solution is close to the solution of a 

multi-pass k-means algorithm by a predefined bound with a 

high probability [6] and [8]. 

F. Heuristics for Out of Core Computation 

More recently, proposed to apply k-means algorithm to 

cluster massive datasets, scanning the dataset only once. 

Their algorithm splits the entire dataset into chunks, and 

each chunk can fit into the main memory. Then, it applies k-

means algorithm on each chunk of data, and merge the 

clustering results by another k-means type algorithm. Good 

results are shown for a real dataset; however, no theoretical 

bounds on the results have been established [7] and [9]. 

G. Parallel Clustering Techniques 

In recent proposed a technique called “Recursive 

Agglomeration of Clustering Hierarchies by Encircling 

Tactic” (RACHET). This technique is based on sufficient 

statistics. It collects local dendograms and then merges them 

to create a global dendogram. However, this needs to iterate 

until the sufficient statistics converges to the desired quality. 

Parthasarathy and Ogihara provided an algorithm where the 

distance metric is formed applying association rules locally. 
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Kargupta and his group applied PCA to do high dimensional 

clustering in a distributed fashion. A distributed clustering 

technique that involves creating local clusters, and then 

deriving global clusters from them. These algorithms 

however are not designed to produce exact solution for 

which it is required to scan over the complete data set [10] 

and [11]. 

H. K-Median in Sliding Window over Stream 

Most recent developed an algorithm for maintaining k-

medians in a sliding window over streaming data. They use 

the idea of exponential histogram (EH) data structure to 

enhance the algorithm presented. Here they especially 

address the problem of merging clusters using the EH data 

structure. 

I. Better Approximation Algorithm for Streaming 

Data 

Provide a constant factor approximation algorithm for 

k-median problem for streaming data which is one pass and 

uses poly-logarithmic storage space. This algorithm 

overcomes the increasing approximation factors in different 

passes in “CURE” algorithm. 

J. Clustering Evolving Streaming Data 

Han, Aggarwal and their group proposed a framework 

for clustering data steams called “CluStream” algorithm. 

The proposed technique divides the clustering process to 

two components. The on-line component stores summary 

statistic about the data streams while the offline component 

performs clustering on the summarized data according to a 

number of user preferences such as the time frame and the 

number of clusters. In their technique, they used a pyramidal 

time frame and store a number of micro clusters from each 

snapshot for the offline component. The clustering 

algorithm then works on the micro clusters. A number of 

experiments on real datasets have been conducted to prove 

the accuracy and efficiency of the proposed algorithm [4] 

and [10]. 

K. Fast and Exact K-Means (FEKM) 

The approximate cluster centers computed using 

sampling can be corrected and moved to exact cluster 

centers using only one or a small number of passes on the 

entire data. By exact cluster centers, refer to the cluster 

centers that are computed by the original k-means algorithm. 

Thus, this can use sampling to speed up the computation of 

exact clusters. There are three key questions to be addressed. 

First, when approximate cluster centers are computed using 

sampling, what information needs to be stored? Second, 

how can this information are used to avoid a large number 

of passes on the entire dataset. Third, how do we know that 

we have been able to achieve the same cluster centers as in 

the original k-means algorithm? Initially run the k-means 

algorithm on a sample, using the same convergence criteria 

and same initial points as we would use for the k-means. 

The following information is stored for future use. After 

every iteration of k-means on the sampled data, store the 

centers that have been computed. In addition, it computes 

and stores another value, referred to as the Confidence 

Radius of each cluster, whose computation will be described 

later. This information can be stored in a table with 

columns, and the number of rows equaling the number of 

iterations for which k-means was run. Each entry of the 

table contains a tuple (center, radius) for each cluster. Next, 

complete one pass through the entire dataset. For every 

point and each row of the table, determine the cluster to 

which this point will be assigned at this iteration, assuming 

that executing the algorithm on the entire dataset produces 

the same cluster centers as the initial run on sampled data. 

Next, try to estimate how likely it is that this point will be 

assigned to a different cluster when the algorithm is 

executed on the entire dataset. Thus, for a given point and 

row of the table, determine if this point is a boundary point. 

If it is, it is stored in a buffer. Otherwise, update the 

sufficient statistics tuple, which has the number and sum of 

the data points for the cluster. After the pass through the 

dataset and storing the boundary point, we do the following 

processing. Starting from the first row of the table, re-

compute centers using the boundary points and sufficient 

statistics tuple. If any of the new computed centers fall 

outside the pre-estimated confidence radii which means that 

computation of boundary points is not valid, need to take 

another pass through the data. Use the new centers as new 

initialization points and again repeat all the steps. However, 

if the new computed centers are within the confidence 

radius, use these centers for the next iteration and continue. 

The key observation is that using cluster centers from 

sampling, boundary points, and sufficient statistics, which 

are able to compute the same cluster centers that we would 

have gotten through one pass on the entire dataset. Finally, 

the algorithm terminates by checking for the same 

termination condition that one would use in the original 

algorithm. The paper propose distributed fast and exact k-

means algorithm (DFEKM) extending the concepts of fast 

and exact k-means (FEKM) [1] and [2] and [12]. 

III. PROPOSED TECHNIQUES 

In this paper we propose Distributed Fast and Exact K-

means (DFEKM) algorithm. We assume that data to be 

clustered is available at two or more nodes, which are 

referred to as the data sources. In addition, we have a node 

denoted as the central site, where the results of clustering are 

desired. It is also assumed that additional computation for 

clustering can be performed at the central site. We only 

consider horizontal partitioning of the data, i.e., each data 

source has values along all dimensions of a subset of the 

points. DFEKM uses ideas from Fast and Exact K-means 

(FEKM) where pre-computed approximate cluster centers 

can be corrected and moved to exact cluster centers using 

only one or a small number of passes on the entire data, and 

only one or a small number of rounds of communication 

between data sources and the central site. DFEKM uses 

ideas from FEKM where pre-computed approximate cluster 

centers can be corrected and moved to exact cluster centers 

using only one or a small number of passes on the entire 

data, and only one or a small number of rounds of 

communication between data sources and the central site.  

There are three key questions to be addressed. First, 

when approximate cluster centers are computed using 

sampling, what information needs to be stored? Second, 

how can this information are used to process data 

independently on each data source, and to avoid frequent or 

high volume communication. Third, how can we determine, 

in a distributed environment, that we have been able to 

achieve the same cluster centers as in the centralized k-

means algorithm. We sample data from each data source, 
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and communicate it to the central node. Then, on the central 

node, we run the k-means algorithm on this sampled data. 

The following information is stored for processing on each 

data source. After every iteration of k-means on the sampled 

data, we store the centers that have been computed. In 

addition, we compute and store another value, referred to as 

the Confidence Radius of each cluster. Then, we send the 

table to all the data sources. Next, at each data source, we 

take one pass through the portion of the dataset available at 

that data source. For every point and each row of the table, 

we compute the cluster to which this point will be assigned 

at this iteration. WE also estimate if the point is a stable 

point as we did it in FEKM. We store the sufficient statistics 

of the (number, linear sum and square sum) stable points 

and we store the points which are not stable or the boundary 

point exactly as discussed in the context of FEKM. After the 

pass through the dataset and storing the boundary point, all 

the nodes send their boundary points and sufficient statistics 

to central node. The central node then does the following 

processing. Starting from the first row of the table, it 

recomputed centers using the boundary points and sufficient 

statistics tuple. If any of the new computed centers fall 

outside the pre-estimated confidence radius, which means 

that our computation of boundary points is not valid, we 

need to send the last corrected centers to all other nodes. 

Using these centers as the new initialization points, we have 

to go through iteration and repeat all the steps. However, if 

the new computed centers are within the confidence radius, 

we use these centers for the next iteration and continue. 

The main data structure in DFEKM is the cluster 

abstract table or the CAtable and the algorithm starts with 

building the CAtable from a sample of the original dataset. 

This is done by the central node. In the pseudo code the 

process number is denoted by MyId, which is 0 for the 

central node. Initially, each entry of the CAtable contains 

the two tuple, the center and the confidence radius of each 

cluster in that iteration. This is done through the function 

BuildCATable in the central node. Then the central node 

broadcasts the CAtable to all other node using the function 

Broadcast. The argument Comm World denotes a handle for 

the all communicating processes. After this, at each node, 

we take one scan over the portion of the dataset available to 

that node and find out the likely boundary points for each 

iteration for each row of the table. The function IsBndrPoint 

checks for each data point if it meets the conditions of being 

a boundary point. If one point becomes a boundary point for 

one particular row, it is possible that the same point also be 

a boundary point for the next rows or next iterations of the 

CAtable. We also use Buffer and Index lists to store 

boundary points and their corresponding row numbers as we 

did it for FEKM. We also store the number and sum of the 

non-boundary points with each CAtable entry. The function 

UpdateSufficientStats accomplishes this. Then, the entire 

central node again gathers the entire boundary points, 

particularly the Buffer, the Index, and the sufficient statistics 

from all other nodes.  

A. Proposed Distributed Fast and Exact K-Means 

Algorithm (DFEKM)- 

The central node re-computes centers for each row of 

the CAtable from the boundary points corresponding to that 

row and from the sufficient statistics. It is done through the 

function RecomputeCtrs. We then verify if the new centers 

are located within the preestimated confidence radius to 

maintain the correctness. The function IsCtrsWithinRadii is 

responsible for this verification. If we find that the new 

centers are located within the confidence radius of 

corresponding clusters, we update the centers of the CAtable 

in the next row using the function UpdateCAtableCtrs. If 

any of the new centers is found outside the confidence 

radius of the corresponding cluster, the initial centers are 

replaced by those new centers and the central node 

broadcasts the new centers to all other nodes.  

 
Input: Di (Data Points), Si (Sample Data Points), InitCtrs 

(Initial Centers), € (Stopping criteria in k-means algorithm). 

Output: k Cluster Center. 

begin 

flag�1 

while flag do 

           List Buffer � NULL 

          Index [ ] � NULL 

         Table C Atable � NULL 

        Si� collectsample () 

    GatherV (Si, 0, Comm_World) 

If MyId = 0  then 

 NumRow � BuildCTable (InitCtrs, Si, CAtable, €); 

BroadCast (CAtable, 0, Comm_World); 

CollectCATablestat (CATable, Buffer, Index); 

GatherV (Buffer, 0, Comm_World); 

GatherV (Index [], 0, Comm_World); 

GatherV (CAtable, 0, Comm_World); 

IF MyId=0 

 then 

flag � CorrectCATable (CAtable, Buffer, Index); 

Broadcast (flag, 0, Comm_World); 

end 

outputCATableCtrs (CAtable, row Num Row); 

end 

// 

IV. RESULTS 

Our experiments compare the DFEKM algorithm to 

these two approaches. As the main property of our algorithm 

is that it produces the same results as the exact k-means 

algorithm applied centrally, we did not compare DFEKM 

against any of the existing approximate distributed 

clustering approaches. Another challenge in designing our 

experiments was to simulate execution on distributed data 

repositories. As compared to a tightly coupled parallel 

configuration, executing parallel code on distributed data 

repositories potentially involves large load imbalance and/or 

high communication latencies. Our experiments were 

conducted on a parallel machine, and the above two effects 

were simulated by introducing delays during each round of 

communication. We also considered cases in which data has 

not evenly distributed. For such cases, we compare parallel 

k-means, sequential k-means, and our DFEKM algorithm. 

Additionally, we were interested in seeing how many passes 

over the entire dataset and how many rounds of 

communication were required by the DFEKM algorithm. In 

all experiments, the initial center points and the stopping 

criteria for this algorithm are kept same as those of the k-

means algorithm. We used two convergence criteria. The 

algorithm stops when (1) the new centers are not sufficiently 

different from those generated in the previous iteration, or 

(2) it has run for a specified maximum number of iterations. 

The second criteria are useful with bad initializations, where 

the algorithm could run for a large number of iterations. 
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During the sampling phase, we sample 10% of the data from 

each data source.  

 
 

Figure:1 Running Time of DFEKM and Parallel k-means in the Presence of 

Load Imbalance. 

 

The figure shows that three out puts of running time of 

DFEKM and Parallel K-means in presence of load 

imbalance (First two columns define first load imbalance, 

second two columns define second load imbalance and last 

two columns define third load imbalance). 

 

V. CONCLUSION AND FUTURE WORKS 

We have presented, analyzed, and evaluated a 

distributed clustering algorithm that provably produces the 

same cluster centers as the k-means clustering algorithm. 

We have performed a number of experiments with real and 

synthetic datasets to evaluate our algorithm. Our results 

show that DFEKM is clearly better than two other possible 

options for exact clustering on distributed data, which are 

down-loading all data and running sequential k-means, or 

running parallel k-means on a loosely coupled 

configuration. Moreover, even in a tightly coupled 

environment, DFEKM can outperform parallel k-means if 

there is a significant load imbalance. 

There can be a few possible future works from this paper. 

One of them can be to develop the distributed version of the 

stream clustering algorithms. Another work can be in the 

direction of improving the algorithm to handle a variable 

number of clusters instead of a fixed. This will be 

particularly useful in case the data stream evolves such that 

number of clusters change. It is also possible to develop a 

framework of incremental clustering using the concepts 

from our stream algorithms. Lastly, there is a need of 

understanding the effects of various stream parameters such 

as rate of incoming data on the performance of the 

algorithms, which can also be a potential future work. 
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