
Volume 2, No. 2, Mar-Apr 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

ISSN No. 0976-5697

Optimization and Improving Security in Web Browsers Using the Proxy Pattern

Hassan Rashidi

 Department of Statistics, Mathematics and Computer Science
 Allameh Tabataba’i University

Tehran, Iran
hrashi@googlemail.com

Abstract: Design patterns are general reusable solutions to a commonly occurring problem in software design. One of the important patterns is
Proxy Pattern. It is used for improving security in many systems such as separating an interface from a number of alternate implementations,
wrapping around a set of legacy classes and so on. In this paper, a solution for display the content of tables in web pages by using the Proxy
Pattern is proposed. This solution optimizes operations in browsers and improves security of system.

Keywords: design pattern, proxy pattern, security, browser, web page, table

I. INTRODUCTION

The idea of Design Patterns was introduced by
Christopher Alexander, an architect, in the field of
architecture. It has been then adapted for various other
disciplines, including computer science [8]-[9]. In object-
oriented approach, a design pattern is composed of a small
number of classes that, through delegation and inheritance,
provide a robust and modifiable solution. These classes can
be adapted and refined for the specific system under
construction. They are re-usable solutions to recurring
problems. They were tried, tested and considered as
solutions to be templates. Then they can be adapted and
personalized for the problem domain. In addition, design
patterns provide examples of inheritance and delegation.

Many patterns have been proposed for a broad variety
of problems in software engineering [1], including analysis
[Fowler, 1997] [Larman, 1998], system design
[Buschmann et al., 1996], middleware [Mowbray &
Malveau, 1997], process modeling [Ambler, 1998],
dependency management [Feiler et al., 1998], and
configuration management [Brown et al., 1999].
Buschmann et al [3] categorize patterns into three groups,
Architectural Patterns, Design Patterns, and Idioms.
Architectural Patterns are very high-level structure for
software systems and contain a set of predefined sub-
systems. They define the responsibilities of each sub-
system and detail the relationships between sub-systems.
Design Patterns are mid-level construct and
Implementation-independent. They are designed for
‘micro-architectures’ and somewhere between sub-system
and individual components. Idioms are earliest form of
software pattern. They are comparatively low-level and
give a guide for implementing the components and
relationships of the pattern. Idioms consider the pattern at a
programming language level and describe the patterns
using the constructs of the specific language.

This paper focuses on Design Patterns and presents a
solution to improve security in browsers and optimize
operations by using the Proxy Pattern when they display
the contents of a table in web pages. The structure of the
remaining sections is as follows: Section 2 reviews design
patterns and makes a classification of them. Section 3

explains Proxy pattern and gives the applications of this
pattern. Section 4 shows how the Proxy Pattern improves
security in web browsers when a page contains some
tables. Section 5 is considered for conclusion and future
research.

II. DESIGN PATTERNS

Using patterns to define a software solution is an

analytical task that requires abstract thinking. Design
patterns are template designs in form of several classes in
object-oriented design. They are methods of encapsulating
the knowledge of experienced software designers in a
human readable and understandable form. They are
particularly appropriate in situations where classes are
likely to be reused in a system that evolves over time.

Design patterns are partial solutions to common
problems that can be used in a variety of systems such as
separating an interface from a number of alternate
implementations, wrapping around a set of legacy classes,
protecting a caller from changes associated with specific
platforms [1]. Design Patterns make object-oriented
software more reusable, flexible, modular and
understandable.

Each Design Pattern is associated with a Name,
Description, Solution and Consequences. Some of the
names used by Gamma et al[2] have become standard
software terminology. Description of each Pattern
describes when it might be used, often in terms of
modifiability and extensibility Solution is expressed in
terms of classes and interfaces and consequences are
related to trade-offs and alternatives.

Table 1 classifies Design Patterns into three groups:
creational, structural and behavioral and presents the most
important patterns in each group [4]. The creational design
patterns are all about class instantiation. These patterns can
be further divided into class-creation patterns and object-
creational patterns. While class-creation patterns use
inheritance effectively in the instantiation process, object-
creation patterns use delegation effectively to get the job
done. The structural design patterns are all about Class and
Object composition. The structural class-creation patterns
use inheritance to compose interfaces. The structural

object-patterns define ways to compose objects to obtain
new functionality. The behavioral design patterns are all
about Class's objects communication. These patterns are
those patterns that are most specifically concerned with
communication between objects.

Table I: A Classification of Design Patterns

III. PROXY PATTERN

This section focuses on Proxy Pattern and shows how

it improves the performance or the security of a system by
delaying expensive computations, using memory only
when needed or checking access before loading an object
into memory.

In UML (Unified Modeling Language), classes are
depicted as boxes with three sections, the top one indicates
the name of the class, the middle one lists the attributes of
the class, and the third one lists the methods [5]-[7]. A
typical UML Class diagram for an object filename in

operating system is shown in Fig. 1 by using Proxy Pattern.
The ProxyObject class acts on behalf of a RealObject
class. Both classes implement the same interface. The
ProxyObject stores a subset of the attributes of the
RealObject. The ProxyObject handles certain requests
completely (e.g., determining the size of an image),
whereas others are delegates to the RealObject. After
delegation, the RealObject is created and loaded in
memory. The consequence of using Proxy patterns is that
they add a level of indirection between Client and
RealObject The Client is shielded from any optimization
for creating RealObject.

Figure 1: A typical representation of Object filename using Proxy Pattern

(UML Class Diagram)

The Proxy Patterns are used for Protection. Fig. 2
shows an example for Protection with four classes: Broker,
Access, PortfolioProxy and Proxy. The Access association
class contains a set of operations that a Broker can use to
access a Portfolio. Every operation in the PortfolioProxy
first checks with isAccessible() if the invoking Broker has
legitimate access. Once access has been granted,
PortfolioProxy delegates the operation to the actual
Portfolio object. If access is denied, the actual Portfolio
object is not loaded into memory. One Access association
can be used to control access to many Portfolios.

The Proxy Patterns are also used for Storage. One
example is illustrated in Fig. 3 in which an image class (left
side) is converted to three classes (right side). An
ImageProxy object acts on behalf of an Image stored on
disk. The ImageProxy contains the same information as the
Image (e.g., width, height, position, resolution) except for
the Image contents. The ImageProxy services all contents
independent requests. Only when the Image contents need
to be accessed (e.g., when it is drawn on the screen), the
ImageProxy creates the RealImage object and loads its
contents from disk.

Moreover, caching expensive computations is another
application of Proxy Patterns. In this application, expensive
computations often only need to be done once, because the
base values from which the computation is done do not
change or change slowly. In such cases, the result of the
computation can be cached as a private attribute. Consider,
for example the Layer.getOutline() operation in Fig. 4, as
part of a Geographical Information Subsystem (GIS) [1].
All LayerElements are defined once as part of the
configuration of the system and do not change during the
execution. Then, the vector of Points returned by the
Layer.getOutline () operation is always the same for a
given bbox and detail Moreover, end users have the
tendency to focus on a limited number of points around the
map as they focus on a specific city or region. Taking into
account these observations, a simple optimization is to add

Object
filename
op1()
op2()

RealObject
data:byte[]
op1()
op2()

ProxyObject
filename
op1()
op2()

1 0..1

Client

Groups Major
Patterns Description

C
re

at
io

na
l p

at
te

rn
s

Abstract
Factory

Creates an instance of several families of
classes

Builder Separates object construction from its
representation

Factory
Method

Creates an instance of several derived
classes

Object
Pool

Avoids expensive acquisition and
releases resources by recycling objects
that are no longer in use

Prototype A fully initialized instance to be copied
or cloned

Singleton A class of which only a single instance
can exist

St
ru

ct
ur

al
 p

at
te

rn
s

Adapter Matches interfaces of different classes

Bridge Separates an object’s interface from its
implementation

Composite A tree structure of simple and composite
objects

Decorator Adds responsibilities to objects
dynamically

Facade A single class that represents an entire
subsystem

Flyweight A fine-grained instance used for efficient
sharing

Private
Class Data Restricts accessor/mutator access

Proxy An object representing another object

B
eh

av
io

ra
l p

at
te

rn
s

Chain of
responsibilit

y

A way of passing a request between a
chain of objects

Command Encapsulates a command request as an
object

Interpreter A way to include language elements in a
program

Iterator Sequentially accesses the elements of a
collection

Mediator Defines simplified communication
between classes

Memento Captures and restores an object's internal
state

Null
Object

Designed to act as a default value of an
object

Observer Notifies changes to a number of classes

State Alters an object's behavior when its state
changes

Strategy Encapsulates an algorithm inside a class
Template
method

Defers the exact steps of an algorithm to
subclass

Visitor Defines a new operation to a class
without change

http://sourcemaking.com/design_patterns/builder�
http://sourcemaking.com/design_patterns/factory_method�
http://sourcemaking.com/design_patterns/factory_method�
http://sourcemaking.com/design_patterns/object_pool�
http://sourcemaking.com/design_patterns/object_pool�
http://sourcemaking.com/design_patterns/prototype�
http://sourcemaking.com/design_patterns/singleton�
http://sourcemaking.com/design_patterns/bridge�
http://sourcemaking.com/design_patterns/composite�
http://sourcemaking.com/design_patterns/decorator�
http://sourcemaking.com/design_patterns/facade�
http://sourcemaking.com/design_patterns/flyweight�
http://sourcemaking.com/design_patterns/private_class_data�
http://sourcemaking.com/design_patterns/private_class_data�
http://sourcemaking.com/design_patterns/proxy�
http://sourcemaking.com/design_patterns/chain_of_responsibility�
http://sourcemaking.com/design_patterns/chain_of_responsibility�
http://sourcemaking.com/design_patterns/chain_of_responsibility�
http://sourcemaking.com/design_patterns/command�
http://sourcemaking.com/design_patterns/interpreter�
http://sourcemaking.com/design_patterns/iterator�
http://sourcemaking.com/design_patterns/mediator�
http://sourcemaking.com/design_patterns/memento�
http://sourcemaking.com/design_patterns/null_object�
http://sourcemaking.com/design_patterns/null_object�
http://sourcemaking.com/design_patterns/observer�
http://sourcemaking.com/design_patterns/state�
http://sourcemaking.com/design_patterns/strategy�
http://sourcemaking.com/design_patterns/template_method�
http://sourcemaking.com/design_patterns/template_method�
http://sourcemaking.com/design_patterns/visitor�

a private cachedPoints attribute to the Layer class, which
remembers the result of the getOutline () operation for
given bbox and detail pairs. The getOutline operation
then checks the cachedPoints attribute first, returns the
corresponding Point Vector, if found, it otherwise invokes
the getOutline () operation on each

containedLayerElement. Note that this approach includes
a trade-off: On the one hand, we improve the average
response time for the getOutline () operation; on the other
hand, we consume memory space by storing redundant
information.

Figure 2: A UML class diagram for dynamic access implemented with a protection using Proxy Pattern.

Figure 3: A UML class diagram for storage using Proxy Pattern.

Figure 4: A UML class diagram for caching expensive computation using Proxy Pattern, adding type information to the object model of the GIS

Image
fileName: String
data: byte[]
width()
height()
paint()

ImageProxy
fileName: String
width()
height()
paint()

Image
fileName: String
width()
height()
paint()

RealImage
data: byte[]
width()
height()
paint()

image

1 0..1

IV. USING THE PROXY PATTERN IN
BROSWERS

There are several goals when a designer wants to
design an Object in Object oriented approach. One
important goal is to optimize objects and delaying
expensive computations as long as possible. Another goal
is to improve security. This section presents a solution
method when we want to optimize operations and improve
security in web page in which has some tables.

Consider an object representing an image stored as a
file. Loading all the pixels that constitute the image from
the file is expensive. However, the image data does not
need to be loaded until the image is displayed. We can
realize such an optimization using a Proxy pattern [2]. An
ImageProxy object takes the place of the Image and
provides the same interface as the Image object, as shown
in Fig. 3. Simple operations such as width () and height ()
are handled by ImageProxy. When Image needs to be
drawn, however, ImageProxy loads the data from disk and
creates a RealImage object. If the client does not invokes
the paint () operation, the RealImage object is not created,
thus saving substantial computation time. The calling
classes only access the ImageProxy and the RealImage
through the Image interface.

Web pages usually contain of several tables. The tables
themselves consist of rows, which in turn consist of cells.

The actual width and height of each cell is computed based
in part on its content (e.g., the amount of text in the cell,
the size of an image in the cell), and the height of a row is
the maximum of the heights of all cells in the row.
Consequently, the final layout of a table in a Web page can
only be computed once the content of each cell has been
retrieved from the Internet.

Using the proxy pattern described in Fig. 3, we can
present an object model and a solution that enables a Web
browser to start displaying a table before the size of all
cells is known, possibly redrawing the table as the content
of each cell is downloaded. The solution is illustrated in the
UML class diagram of Fig. 5. There are five classes in the
diagram: Table, TableRow, TableCell, TableCellProxy
and RealTableCell. In the table shown, there are four
attributes (x, y, w, h) and the method paint (). The
attributes are considered for position, width, and height of
the table. The Table is composed of several TableRows and
each TableRow is composed of several TableCells. When
the table is created, TableCellProxy estimates its
dimensions as best as it can update them as the content is
retrieved. Every time TableCellProxy provides a new
estimate of its dimensions, it signals Table via a semaphore
or a listener [6]. The Table then recomputes the dimensions
and positions of all of its rows and redraws itself.

Figure 5: The class diagram for the solution.

V. CONCLUSION AND FUTURE WORK

Design patterns are methods that enable reuse of code
and good solutions since it contains experiences from
successful solutions to other similar problems. One of the
important design patterns is Proxy Pattern of which is used
when we need to represent a complex object with a simpler
one. If creation of object is much expensive, its creation

can be postponed till the very need arises and then, a
simple object can represent it.

This paper proposed a solution for display contents of
tables in web pages by using the Proxy Patterns. This
solution can be used in browsers that improve security of
systems and optimize the design. Implementing of the
solution, finding a good estimator for dimension of tables

and collecting results from experiments is proposed for
future research.

VI. REFERENCES

[1]. Bruegge B. and Dutoit A.H, "Object-Oriented Software

Engineering: Using UML, Patterns, and Java", Prentice
Hall, 2004.

[2]. Gamma E., Helm R., Johnson R., and Vlissides J., "Design
Patterns: Elements of Reusable Object-Oriented Software",
Addison-Wesley, 1995.

[3]. Buschmann F., Meunier R., Rohnert H., Sommerlad P. and
Stal M., “Pattern-Oriented Software Architecture: A
System of Patterns”, Wiley, Chichester, U.K., 1996.

[4]. 101 Design Patterns & Tips for Developers, available on
web at http://sourcemaking.com/design_patterns.

[5]. Larman C., “Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design”, 3rd Edition,
Prentice Hall, 2004.

[6]. Schmidt D., Stal M., Rohnert H. and Buschmann F.,
“Pattern-Oriented Software Architecture, Patterns for
Concurrent and Networked Objects”, Volume 2, John
Wiley & Sons, 2000.

[7]. Booch G., Rumbaugh J, and Jacobson I, “The Unified
Modeling Language Reference Manual”, Addison-Wesley,
1999.

[8]. Wolfgang P., Hermann S., "Design Patterns-Essentials,
Experience, Java Case Study", Fourth Asia-Pacific
Software Engineering and International Computer Science
Conference, pp. 534-535, 1997.

[9]. Wolfgang P., Hermann S., "Design Patterns for Object-
Oriented Software Development (Tutorial)", Proceedings
of the 19th international conference on Software
engineering, pp. 663-664, 1997.

