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Abstract: The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which 

arises from road roughness and to increase the ride handling associated with the pitching and rolling movements.  This necessitates a very fast 

and accurate controller to meet as much control objectives, as possible, this paper deals with an artificial intelligence Neural Control technique to 

design a robust controller. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The 

approach of the proposed controller is to minimize the vibration on each corner of vehicle by generating suitable control signals. This control 

signals will be used as input to the hydraulic actuators which will generate appropriate control forces to improve the vehicle performances. A full 

vehicle nonlinear active suspension system with hydraulic actuators is introduced and tested. The robustness of the proposed controller is being 

assessed by comparing with an optimal Fractional Order PIiDd (FOPID) controller. The results show that intelligent neural controller have 

improved dynamic response measured by a decreased cost function. 

 

Keywords:  Full vehicle, Nonlinear Active Suspension System with Hydraulic Actuators, Neural Controller. 

 

I. INTRODUCTON 

A number of researchers have suggested control methods 

for vehicle suspension systems. Some have designed a linear 

controller for a quarter or half vehicle [1-9].  Gaspar et al. in 

Reference [10] have used a robust controller for a full 

vehicle linear active suspension system using the mixed 

parameter synthesis. A sliding mode technique is designed 

for a linear full vehicle active suspension system [11].  In 

this Reference a method is developed for the purpose of 

sensor fault diagnosis and accommodation.  In Reference 

[12], the authors present the development of an integrated 

control system of active front steering and normal force 

control using fuzzy reasoning to enhance the full vehicle 

model handling performance. A fuzzy logic based fast gain 

scheduling controller is proposed for control nonlinear 

suspension systems for quarter car system [13]. In fact, 

nonlinearity inherently exists in damper and spring models 

[14-16]. Therefore, the nonlinear effect should be inevitably 

taken into account to design the controller for practical 

active suspension system.  

 This paper will be developed a novel Neural Controller 

for full vehicle nonlinear active suspension system with 

hydraulic actuators. The full vehicle model will be 

investigated to take into account the three motions of the 

vehicle: vertical movement at centre of gravity, pitching 

movement and rolling movement. 

Neural Networks (NNs) are capable of handling complex 

and nonlinear problems, process information rapidly and can 

reduce the engineering effort required in controller model 

development. Artificial neural networks are made up of a 

simplified individual models of the biological neuron that 

are connected together to form a network. It consists of a 

pool of simple processing units which communicate by 

sending signals to each other over a large number of 

weighted connections. Capability of learning information by 

example; ability to generalize to new input and robustness to 

noisy data are the important properties of neural networks. 

From these properties, neural networks are able to solve 

complex problems that are currently intractable.  

The artificial neural network is an intelligent device 

wildly used to design robust controllers for nonlinear 

processes in engineering problems. In many publications, 

neural networks are used to design controllers, such as the 

model reference adaptive control, model predictive control, 

nonlinear internal model control, adaptive inverse control 

system and neural adaptive feedback linearization [17, 18]. 

The control architectures in these papers depend on 

designing a neural network identifier and then this identifier 

is used as a path to propagate the error between the output of 

the process and output of the reference model to train and 

select the optimal values of the neural network control. 

Therefore, in those methods two neural networks were 

trained to track several control objectives.  

 One of the main advantages of using a neural network as 

a controller is that neural networks are universal function 

approximations which learn on the basis of examples and 

may be immediately applied in an adaptive control system 

because of their capacity to adapt in real time. There are 

many learning algorithms available to obtain the optimal 

values of the trainable parameters of neural network. The 

back-propagation algorithm (BPA) has been known as an 

algorithm with a very poor convergence rate. The 

Levenberg-Marquardt Algorithm (LMA) is an iterative 

technique that locates the minimum of a multivariate 

function that is expressed as the sum of squares of nonlinear 

real-valued functions [19, 20]. 

In this paper Fractional Order PIlDd  (FOPID) will be 

designed for full vehicle nonlinear active suspension using 
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the Evolutionary Algorithm (EA). The data obtained from 

the FOPID controller are used as reference to design the 

neural controller. The Levenberg-Marquardt training 

algorithm has been used to obtain the optimal values of the 

trainable parameters.  The performance of the neural 

controller has been improved by adding the Scaling Gains. 

The scaling gains of the neural controller have been adjusted 

using Golden Section Search (GSS) method. The 

effectiveness and robustness of the proposed neural network 

controller and FOPID controller will be compared. Four 

types of the disturbances will be investigated to establish the 

robustness of the proposed controller:  change the amplitude 

of the sine shape of the road profile input, change the 

amplitude of the square shape of the road profile input, 

change the bending inertia torque with random road profile 

input and change the breaking inertia torque with random 

road profile input. The results will show whether the 

proposed controller is more robust than the optimal PID 

controller. 

II. MATHEMATICAL MODEL OF THE 

HYDRAULIC ACTUATOR 

Hydraulic actuators are important equipment and widely 

used because of their high power capability, fast and smooth 

response characteristics and good positioning capability 

[21].  The hydraulic actuators are commonly used in various 

industries and engineering such as materials test machines, 

vehicle active suspension systems, mining machinery, flight 

simulators, paper making machines, ships and 

electromagnetic marine engineering, injection melding 

machines, robotics, and steel and aluminum mill equipment. 

For understanding the performance of the improved 

suspension system and for developing a robust controller for 

this system, to develop an accurate dynamic model for a 

hydraulic servo-system is the first step. Therefore, a 

description of the dynamics for the fluid subsystem, the 

servo-valve, the cylinder and the load are required. The 

electro-hydraulic system here is a cylinder controlled by the 

input voltage signal to the servo-valve. The cylinder is 

attached to sprung mass of the vehicle and connected in 

parallel with a passive system unit, i.e. nonlinear spring and 

nonlinear damper. The Hydraulic actuators are used to 

generate the forces between the vehicle’s body and the axle 

to enhance and improve the riding and handling qualities in 

a modern vehicle. 

 Figure 1 shows the physical model of a hydraulic 

actuator with a nonlinear spring and nonlinear damper of a 

quarter vehicle model. 

The hydraulic actuator consists of a hydraulic cylinder, a 

piston, servo-valves, an electrical pump and a reservoir. Ps 

and  Pr  are  the  pressures  of  the  hydraulic  fluid supplied  

from  and  returned  to  the  reservoir, respectively. When 

there is a difference between fluid pressure in upper cylinder 

chamber and fluid pressure in lower chamber, the piston in 

the hydraulic cylinder extends or compresses and a suitable 

damping force is generated for the suspension to improve 

the vehicle’s dynamic performance. The dynamic equation 

of the hydraulic actuator is given as [22]  

 

)QxA(PP ipipiLiL −σ−β−= ��                                         (1)                                                                                       

where  
t

e

V

β
=σ

4
 , tpCσ=β , iipi wzx −=  is the relative 

displacement between the suspension point and wheel, PLi is 

the hydraulic pressure inside actuator, eβ  is the effective 

bulk modulus of hydraulic system, tV  is the total volume of 

fluid under compression, tpC  is the leakage coefficient of 

piston and Ap is the cross section area of the piston. 

Hydraulic flow through the piston inside the ith actuator iQ  

is governed by the following equation 

)P)xsgn(P(xCQ iLivisvidi −
ρ

ω=
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where dC  is the discharge coefficient, ω   the area 

gradient, vx  the spool valve displacement, ρ  the fluid 

density. The spool valve displacement is controlled by 

an input voltage um. The corresponding dynamic 

relationship can be simplified as a first order 

differential equation 

)xu(x vimiiv −
τ

=
1

�                                                     (3)                        

The nonlinear force produced by the active 

hydraulic actuator is applied between body and wheel 

axles. This force is governed by the following equation 

[23] 
 

iLpiA PAF =                                                                     (4)                                                               

where Ap the cross section area of the piston inside the 

i
th
 actuator, PLi the hydraulic pressure inside the i

th
 

actuator. 

Due to rubbing of the piston with the inside 

actuator wall, heat will be generated. Therefore, the 

actual force generated by the i
th
 hydraulic actuator FAi 

is not equal to the force supply by i
th
 hydraulic actuator 

FPi. The difference between these two forces is named 

as frictional force Ffi. This force can not be neglected 

because the value of this force is big and can be greater 

than 200 Nm [24].  Frictional force is modelled with a 

smooth approximation of Signum function 
 

Figure 1 Active Suspension with Hydraulic Actuator 
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III. MATHEMATICAL MODEL OF THE 

CONTROLLED SYSTEM 

A framework is being suggested in which an active 

suspension controller generates suitable command signals as 

the inputs of the hydraulic actuators to improve the vehicle 

performance including riding comfort and road handling 

stability. The riding comfort can be measured by evaluating 

the displacement and acceleration of the sprung mass. The 

handling stability can be obtained by minimising the vertical 

and the rotational motions of the vehicle body including 

rolling and pitching motions during sharp manoeuvres of 

cornering and braking. 

 A full vehicle physical model with active suspension is 

proposed by the authors and shown in Figure 2.  This model 

consists of five parts: the vehicle body mass (M) and four 

unsprung masses mi (where [ ]4321 ,,,i ∈ ). The vehicle body 

mass is assumed to be a rigid body and has degrees of 

freedom in vertical, pitch and roll directions. The vertical 

displacements at each suspension point are denoted by z1, z2, 

z3 and z4. The zc, α and η  denote the displacement, pitch 

angle and roll angle at the centre of gravity of the vehicle, 

respectively. Jx and Jy are the moments of inertia about x-

axis and y-axis, respectively. The cornering torque and 

breaking torque are denoted by Tx and Ty, respectively. In 

the model, the disturbances u1, u2, u3 and u4 are caused by 

road roughness. The vertical displacements of unsprung 

masses are denoted by w1, w2, w3 and w4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The suspension components possess nonlinear property. 

Therefore, each suspension will be assumed as a nonlinear 

device with nonlinear spring and nonlinear damper placed in 

parallel with the hydraulic actuator. The main purpose of 

using the suspension control is to generate an actuating force 

between the vehicle body mass and unsprung masses. The ith 

nonlinear suspension has stiffness coefficient and damping 

coefficient denoted by Ki and Ci, respectively. Each tyre will 

be simulated as linear oscillator with stiffness and damping 

coefficient denoted by ki and ci, respectively.  

The motion of the vehicle body mass is governed by the 

following equations: 

 

•  Vertical motion 

       Using Newton’s Second law of motion 

� � �
= = =

+−−=
4

1

4

1

4

1i i i
PiCiKic FFFzM ��                                                                                       

(6) 

where KiF   is the i
th nonlinear suspension spring force 

which can be written as[25]  

3
)wz(K)wz(KF iiiiiiKi −ξ+−=  

fiAiPi FFF −=  , 

 where FAi is the nonlinear hydraulic force provided by the 

ith actuator and Ffi the nonlinear frictional force.  

•  Pitching motion 

Using the Newton’s law for the pitching motion 
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where b is the distance between the front wheels. 

 

• Rolling motion 

Using the Newton’s law again for the rolling motion 
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where l1 is the distance between the centre of  front wheel 

axle and centre of gravity of the vehicle. l2 is the distance 

between the centre of gravity of the vehicle and the centre of 

rare wheel axle.  

The motion of the ith unsprung mass is governed by the 

following equation 

iPCiKiiiiiiiii FFF)uw(c)uw(kwm −++−−−−= ����    (9)                                                        

IV. THE STRUCTURE OF NEURAL NETWORK 

Neural network architecture is quite simple to create and 

involves two or more neurons combined to form one or 

more layers. Figure 3 depicts the structure of multilayer 

neural network (or some time called multilayer perceptron 

network). In this figure, the neural network model has three 

layers: input layer, hidden layer and output layer. The input 

layer represents the input variables related to the problem. 

The output layer represents the desire output response of the 

system. The nodes in the hidden layer and output layer are 

the processing elements that allow the network to develop a 

behavioural representation of the problem space being 

addressed. Processing of the input information occurs at 

each of the hidden and output nodes within the network and 

is computationally relatively simple. Each node in the 

particular layer of the network is connected to all of the 

nodes in the previous layer. There is a weight value 

associated with each of the connection between nodes. The 

weighted inputs to a particular node are summed and the 

resultant value is passed through a nonlinear activation 

Figure 2 Full Vehicle Nonlinear Active Suspension System 
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function to determine the output value of the node. 

Therefore, each node has multiple inputs and single output.  

The output of the kth node in the hidden layer can be 

given as: 

���� �� � �	�
 ���� ��� � �	����
��	 ������ � ���� � � �	   (10)                                                       

where q(1,k) is the output of the k
th node in the hidden layer, 

Γ1 is the activation function of the hidden layer, w(k,i) is the 

weight between ith input and kth node, xi is the ith input and 

b1(k) is the bias of the kth node.  

 The output of the lth node in the output layer can be 

given as 

���� �� � ���
 ���� ������ �� � �����
��
��	 ���� � ���� � � �� (11)                                                    

where q(1,l) is the output of the lth node in the output layer, 

Γ2 is the activation function of the output layer, v(j,l) is the 

weight between jth node and lth node, q(1,j)  is the jth output 

of the hidden layer and b2(l) is the bias of the lth node. 

There are many training algorithms which can be used to 

determine the optimal values for the trainable parameters 

(weights and biases) between each of the nodes to minimise 

a Mean Squared Error (MSE) function 

 !" � 	

�#

 
 ������ �� $ %������

�&
��	

#
��	                            (12)                                                                     

Where P is the number of data for each epoch, qi(2,j) is the 

output of jth node in the output layer for ith  epoch and Ti(j) is 

the jth desire output for ith epoch.  

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. LEVENBERG-MARQUARDT TRANINING 

ALGORITHM 

The training phase of the neural networks required a set 

of examples of proper network behaviour i.e. network inputs 

and target output. The trainable parameters of neural 

network are adjusted during training phase to minimize the 

mean squared error (MSE) between the neural network 

outputs and the target outputs. At the first iteration, the 

trainable parameters of the neural network are randomly 

initialized. The neural network processes each input vector 

and the output of the neural network is compared with the 

desired output (target output). 

The Back-Propagation Algorithm has been a significant 

improvement in neural network researches [26-30]. The 

simplest implementation of backpropagation learning 

updates trainable parameters in the direction in which the 

performance function (mean squared error) decreases most 

rapidly (the negative of the gradient). The Backpropagation 

Algorithm has been known as an algorithm with a very poor 

converging rate for practical problems [31]. Many 

researches were carried out to accelerate the convergence of 

the algorithm. These researches focused on two different 

categories. The first category uses heuristic techniques, 

which were developed from an analysis of the performance 

of the backpropagation algorithm [32-34]. There are three 

different heuristic techniques: Momentum Technique, 

Variable Learning Rate Technique and Resilient Technique. 

In the second category of fast algorithms uses standard 

numerical optimization techniques. There are three main 

techniques of numerical optimization: Conjugate Gradient 

Technique [35], Quasi-Newton Technique [36] and 

Levenberg Marquardt Technique [37]. 

The Conjugate Gradient Technique produces generally 

faster convergence than steepest descent directions by 

searching along conjugate direction. The Quasi-Newton 

Technique is faster than the conjugate gradient technique, 

but it is complex and expensive to compute the Hessian 

matrix for feedforward NNs. These two algorithms lead to 

little acceptable result when the nonlinearity is heavy. 

The Levenberg-Marquardt Technique (LMT) is an 

iterative technique that locates the minimum of a 

multivariate function expressed as the sum of squares of 

nonlinear real-valued functions. It has become a standard 

technique for nonlinear least-squares problems [31], widely 

adopted in a broad spectrum of disciplines. The LMT can be 

thought of as a combination of Backpropagation Algorithm 

and the Quasi-Newton Technique [38]. When the current 

solution is far from the correct one, the algorithm behaves 

like a Backpropagation Algorithm: slow, but guaranteed to 

converge. When the current solution is close to the correct 

solution, it becomes a Quasi-Newton method. 

With the LMA, the increment of the trainable parameters 

vector can be calculated as follows: 

'( � )*+* � ,-./0*+1                                                     (13)                                                      

where (  is the trainable parameters vector;  I is identity 

matrix; J is the Jacobian matrix and , is the learning rate 

which automatically adjust during learning phase; 

1 is the cumulative error vector, it can be written as follows: 

1 � 23		��3�	 �� �3�&	��3	����3�� ����3�&�� �� �3	#��3�# ����3�&#4
5

  

where P is number of input data, �� number of outputs. 

 3�� � ����� �� $ %����  
where � � ���� � � 6� and  � � �� �� � � !�.  

 If performance measure (MSE) in epoch p+1 is greater 

than the performance measure in epoch p, 7 is divided by 

constant number ζ �8 9 � 9 ��, whenever performance 

measure decreased, 7  is multiplied by ζ. Equation (5.25) 

shows that if 7 is equal to zero the LMT becomes Quasi-

Newton Technique (in this technique the increment of the 

trainable parameters vector�'( � )*+*./0*+1� and if µ is 

high the LMT becomes Backpropagation Algorithm.  

The Jacobian matrix (it has � : ��P dimension) can be 

compute as follows: 

Figure 3 Multilayers Neural Network 
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where � is the total number of trainable parameters in 

neural network which must be optimized; ekp is the 

error of k
th 

output at p
th 

epoch. 

Therefore, trainable parameters vector can be updated 

as follows: 
  (;<0 � (; � '( � (; � )*+* � ,-./0*+1                (14)                                                          

VI. DESIGN THE PROPOSED NEURAL CONTROL 

Neural Networks (NNs) are capable of handling complex 

and nonlinear problems, process information rapidly and can 

reduce the engineering effort required in controller model 

development. Figure 4 depicts the controlled vehicle system 

with a neural controller as a key component. A neural 

controller has been designed to generate suitable control 

signals. The control signals will be applied as a control input 

signals to govern the hydraulic actuators to generate suitable 

damping forces for improving the vehicle performance. To 

find the optimal values of the trainable parameters of the 

neural controller for driving the plant to meet all control 

objectives, an FOPID sub-controller should be designed (the 

details for the full design of FOPID controller for full 

vehicle nonlinear suspension are described in Reference 

[39]). In author’s work, the input and output data obtained 

from the FOPID controller should be used to train the 

parameters of neural controller using the LM Training 

Algorithm. Figure 5 depicts the training phase of the Neural 

Controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The bold line means multiple input or output signals. 

After the optimal values of trainable parameters are obtained 

the neural controller design should be improved by adjusting 

the scaling gains, i.e. GE, GED, GEI and GU, as shown in 

Figure 4. To select the optimal values of the scaling gains, 

four dimensional Golden Section Search (4-D GSS) method 

are introduced  to reduce the trial time (For more detail 

about 4-D GSS method, see Reference [40]). 

VII. SIMULATION AND RESULTS 

The input road profile is selected as a white noise 

random signal. To design the neural controller, the optimal 

parameters of the FOPID controller should be obtained first 

using the EA. In author’s work, the input and output data 

obtained from the FOPID controller have been used to 

design the neural controller. The LM Training Algorithm 

has been used to modify the training parameters to track the 

output data obtained from the FOPID controller. Four neural 

controllers have been designed, in which one for each 

suspension. To improve the performance of the neural 

controller the scaling gains should be adjusted. The 4-D 

GSS method has been used to adjust the scaling gains (GE, 

GED, GEI and GU). As the result, the optimized values of 

scaling gains are 4, 3, 10 and 0.5, respectively. 

 All vehicle body variables, including vertical 

displacement at the centre of gravity: zc, vertical 

displacement at P3: z3, pitch angle: α and roll angle:η, 

depend on the vertical displacements at points P1, P2 and P4 

(z1, z2 and z4, respectively). The suspension deflection  (zi – 

wi) and body acceleration (=>?) are used to evaluate the road 

handling and riding comfort of the passengers, respectively. 

By supplying the control signal, it is expected that just the 

vertical displacements of sprung mass (zi) and body 

acceleration (=>?) will be targeted to reduce while the vertical 

displacements of unsprung masses (wi) are not concerned. 

Therefore, when zi decreases, the road handling performance 

will be improved while body acceleration decreases, the 

riding comfort is improved. In this paper just the responses 

of the vertical displacements at P1, P2 and P4 and the body 

acceleration have been shown for comparison. In Figures 6-

8 the responses of vertical displacements at P1, P2 and P4 are 

compared, respectively for the full vehicle nonlinear active 

suspension system without controller (passive system) and 

 

Figure 5 Training Phase of Neural Controller  

 Figure 4 Neural Controller for a Full Vehicle Model 
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with neural controller.  Figure 9 shows the response of the 

acceleration at the vehicle’s centre of gravity. From these 

figures it can be seen that the proposed controller is 

powerful and efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The efficient controller is the controller that it is still 

stable even the disturbance signal is applied on the plant. 

Therefore, to establish the effectiveness of any controller the 

robustness should be examined. Four types of disturbances 

are applied in turn to test the robustness of the neural 

controller. 

• Square input signal with varying amplitude applied as 

road input profile      

The square input signal has been applied as road input. 

The amplitude of this signal has been changed from 0.01m 

to 0.08m. At each value, the cost function (as described in 

equation 15) has been calculated: 

�
=ε

ε=φ
4

1

2
50 z.                                                                      (15)                                                                                       

Figure 10 shows the time response of the cost function as 

function of amplitude of square signal input. 

• Sine wave input signal with varying amplitude applied 

as road input profile  

The different amplitude of sine wave input from 0.01m 

to 0.08m has been applied as road profile input. The time 

response of the cost function for the full vehicle without 

control, the result of optimal FOPID controller and neural 

controller are shown together in Figure11.  

• Bending inertia Torque (Tx) applied  

The value of bending torque (from 1000 Nm to 9000Nm) 

in addition to random signal as road profile has been 

applied. The cost function response is plotted as function of 

bending torque (Tx) in Figure 12.  

• Breaking inertia Torque (Ty) applied  

The value of breaking torque (from 1000 Nm to 

9000Nm) in addition to random signal as road profile has 

been applied. In Figure 13, the cost function response is 

plotted as function of braking torque (Ty).  

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Time response of acceleration at Pc 

 Figure 6 Time response of vertical displacement at P1              

 
Figure 7 Time response of vertical displacement at P2      

Figure 8 Time response of vertical displacement at P4      
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VIII.  CONCLUSION 

From the results, the neural controller has capability of 

minimizing the control objectives better than the FOPID 

controller. The ride comfort and the road handling will be 

improved by using the neural controller. It has been 

confirmed that the proposed controller is more robust than 

the FOPID controller. The test of the robustness proves that 

the neural controller is still stable and it forces the cost 

function to be minimum even significant disturbances 

occurred. The proposed controller just has one neural 

network, which means it will be more economic than the 

other neural network controllers, such as model reference 

adaptive neural control, model predictive neural control, 

nonlinear internal model neural control, adaptive inverse 

neural control system or neural adaptive feedback 

linearization. In all of these methods a minimum of two 

neural networks to design the controller are used (in the 

adaptive inverse control system it must be used three neural 

networks to design the controller) one as identifier and other 

one as controller. 
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