
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1856

ISSN No. 0976-5697

An Overview of B+ Tree Performance

Amulya Singh
Department of computer science

Jamia Hamdard
New Delhi, India

Mr. Bhavya Alankar
Department of computer science

Jamia Hamdard
New Delhi, India

Abstract:Over the years, difference in speed between Central Processing Units or CPUs and main memory has become so much that lots of
applications, including DBMSs, spend a lot of time waiting for data to be fetched from main-memory. B+ trees have been observed poorly
utilizing the cache memory, which is leading to the development of many cache-conscious indices. Earlier simulation models were used to study
cache conscious indices, the trend has recently gone towards measuring performance on real computer architectures, which means the
performance is measured on real systems, instead of simulation models. In this study, we study the performance of the pB+ tree on the Itanium 2
processor, focusing on various implementation options and their effect on the performance.

Keywords: DBMS, B+ Tree, CPU

INTRODUCTION

Over the past 20 years, the Central Processing Unit or the
CPU speeds have been increasing at a faster pace as
compared to the memory speeds. As a result, many modern
applications or software spenda lot of their time waiting for
data to be fetched or delivered from the memory. DBMSs
are not an exception, and the recent studies [1, 3] show that
slightly less than half ofthe Central Processing Unit or the
CPU time used by the commercial Database Management
Systems or the commercial DBMSs is spent on important
computations. One of the main parts or the components of
the Database Management Systems or DBMSs are the
indices, which in past have been optimized to minimize or
decrease disk input-output or I/O. Database Management
Systems or DBMSs do pretty well in hiding the disk Input-
output latency or disk I/O latency, but with the increasing
gap between CPU and memory speeds, indexing
performance is becoming increasingly bound or affected by
memory speeds. This hasled to the development of many
memory oriented or memory based or “cache-conscious”
indices, which tend to use memory more efficiently. The
main focusis the implementation of one such index, the
“Prefetching B+-tree” (pB+-tree), and measurements of its
performance on a modern server CPU [9].
THE MAIN MEMORY BOTTLENECK
These days, the modern computers are based or built on von
Neumann architecture[7], in which the Central Processing
Unit or the CPU and storage (main memory) are kept
separate.Over the last twenty years, the CPU speed has been
increasing by 61%, and on the other hand, the main-memory
speed has only been increasing by just 10% per year [8].
The speed difference between the two has become so big, in
fact, that in many applications Central Processing Units or
the CPUs spend a lot of their time waiting for data to be
fetched or delivered from the main-memory [5].
The commonly used method which deals with this main –
memory bottleneck is the use of cache – memory (or cache),

which is a limited size, high speed memory, stored on the
same chip as the Central Processing Unit or the CPU [6].

CACHE-CONSCIOUS INDICES

DBMSs or Database Management Systems are not
exempted from the main memory bottleneck. A recent
follow-up study showed that the condition hasn’t improved
[3],which indicates that commercial Database Management
Systems are not being engineered to cope up with the main-
memory bottleneck.

PROBLEM STATEMENT
As mentioned in the introduction, these days’ modern
computers are based or built on the von Neumann
architecture[7], in which the CPU and main-memory are
kept separate.This separation between the two has created
the so called “Von Neumann bottleneck”, because (for many
workloads) CPU are now capable of processing data much
faster than it can be delivered from main-memory. The term
was founded by John Backup in his 1977 ACM Turing
award lecture [2]

CACHE MEMORY
Hill and Smith [4] classify cache-misses into 3 categories
• Compulsory misses happen when the cache-line is first at
referenced.
• Capacity misses happen when the cache-line, which is
being accessed has been replaced because the cache was
full.
• Conflict misses happen when the cache-line accessed has
been replaced because of the limited associativity, but would
be found in a fully associative cache.

Amulya Singhet al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1856-1857

© 2015-19, IJARCS All Rights Reserved 1857

Out of these three types of misses, only compulsory misses
can’t be avoided. The amount or the number of capacity
misses can be decreased by increasing the size of the cache,
and the amount or the number of conflict misses can be
reduced by increasing the associativity of the memory; a
fully associative memory has none.

Modern Central Processing Units or the CPUs have up to
three levels of cache, each positioned or placed closer the
Central Processing Unit or the CPU core. The Itanium 2
processor has 3 levels of cache, and the latest generation
has2 Central Processing Unit or CPU cores [9]. It is
noteworthy that two – third of the die area is occupied by
cache, which shows that it plays an important role in
themodern-day computing.

PROPOSED SOLUTION

The Itanium 2 processor instruction set includes a pre-fetch
instruction, which has three different types of prefetching
hints:

The Exclusive hint:This controls whether the cache-line
should be marked as dirty, in which, it is written back to the
cache-level below when replaced.
Data Alignment
Data alignment is extremely important when you are
working with integer data on the Itanium 2 processor.An
eight byte window must hold all the stores and holds.If an

unaligned integer data operation is issued, the CPU will
throw an error or exception and call a handler inside the OS.

IMPLEMENTATION CHOICES

- Prefetching hints
- The prefetching loop
- Node prefetching

CONCLUSION

In this study we have studied the performance of the pB+
tree on the Itanium 2 processor. Its main focus was on the
variety of implementation options or choices in study we
faced and their impact on performance. Whereas some of
these options have a slight effect on the performance, others
affect it a lot; when all these benefits or gains are put
altogether, the performance implications of using
prefetching can be considered or are considerable.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.

DBMSs on a modern processor: Where does time go? In
Proceedings of VLDB, pages 266–277, Edinburgh,Scotland,
1999.

[2] J. Backus. Can c-programming be liberated from the von
Neumann style? A Functional style and its algebra of
programs.Comm. ACM, 21(8):613–641, Aug. 1978.

[3] M. Becker, N. Mancheril, and S. Okamoto. DBMSs on a
modern processor: “Wheredoes time go?” revisited. Technical
report, CMU, 2004.

[4] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches.IEEE Transactions on Computers, 38(12):1612–1630,
1989.

[5] S. A. McKee. Reflections on the memory wall. In Proceedings
of the Conference on Computing Frontiers, page 162, Ischia,
Italy, 2004.

[6] A. J. Smith. Cache memories .ACM Computing Surveys,
14(3):473–530, 1982.

[7] J. von Neumann. First draft of a report on the EDVAC.IEEE
Annals of the History of Computing, 15(4):27–75, 1993.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. 2002. BIBLIOGRAPHY 49

[9]http://skemman.is/stream/get/1946/7489/19942/1/MSc_ArniMar
-Jonsson.pdf

	Introduction
	CONCLUSION

