
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 165

ISSN No. 0976-5697

Analysis of Mining Techniques for Version Histories to guide software changes

Dr Gurdev Singh
Department of Computer Science & Engg.

Amritsar,Punjab

hodcsegimet@gmail.com

 Er Babaldeep Kaur Er Gagandeep Singh*

Department of Computer Science & Engg. Department of Computer Science & Engg.

 Amritsar,Punjab Amritsar,Punjab

 babbaldeep@yahoo.co.in gagandeep.engineer@gmail.com

 Abstract: The histories of software systems hold useful information when reasoning about the systems at hand or about general laws of

software evolution. Modern software has evolved to meet the need of stakeholders, but the nature and scope of this evolution based on mining

version histories is difficult to anticipate and manage. In this paper we examine techniques which can discover interesting patterns based on

mining using association rules and training the network that can guide software developers about the changes. Mining the version histories of

software suggest and predict further likely changes and can prevent errors due to incomplete changes and provide an edge in software evolution.

Keywords: Association rule, Software Evolution, Neural Network

 I. INTRODUCTION

The importance of observing and modeling software

evolution started to be recognized in 1970’s with the work of

Lehman [1]. Since then more and more research has been

spent to identifying the driving forces of software evolution,

and to using this information to better understand software.

Before going into details, we define three terms: version,

evolution and history. A version is a snapshot of an entity at a

particular moment in time. The evolution is the process that

leads from one version to another. A history as the reification

which encapsulates knowledge about evolution and version

information. According to these definitions, we say that we

use the history to understand the evolution. Suppose you are a

programmer and just made a change. What else do you have

to change? In earlier work, researchers have used history data

to understand programs and their evolution [2].In this work

we will discuss the ROSE tool to leverage version histories.

In contrast to present work our research work

1 uses data mining techniques to obtain association rules

from version histories

2 detects coupling between fine-grained program entities

such as functions or variables/functions.

 II. PROCESSING THE DATA

Figure 1. Shows the Rose server. The ROSE server

reads a version archive groups the changes into transactions,

mines the transactions for rules which describe implications

between software entities “If akeys[] is changed, then

initDefaults() is changed, too.” When the user changes some

entity (say, aKeys[]),

the ROSE client queries the rule set for applicable rules and

makes appropriate suggestions for further changes.(figure 2)

 III. RELATING THE CHANGES

Most modern version control systems have a concept

of product versioning—that is, one is able to access

transactions as they alter the entire product. CVS, though

provides only file versioning. To recover per-product

Rule

application

Rose Eclipse client

Change(s)

suggestions

User

Figure 2

Grouping Mining

Version archives Transactions Rules

Rose server

Figure 1

Gagandeep Singh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 165-167

© 2010, IJARCS All Rights Reserved 166

transactions from CVS archives, we must group the

individual per-file changes into individual transactions. CVS

has no syntactic knowledge about the files it stores; it

manages only files and line numbers for each change. ROSE

thus parses the files; associating syntactic entities with line

ranges, ROSE can thus relate any change (given by file and

line) to the affected components.

 IV. TRANSACTION TO RULES

Given the transactions as described in the previous

sections, the aim of the ROSE server is to mine rules from

these transactions. What is a rule? Here is an example:

 {(rg.java, field, aKeys[])}

) { (rg.java, method, initDefaults()),

(plug.properties, file, plug.properties) }

This rule means that whenever the user changes the

field aKeys[] in rg.java, then she should also change the

method initDefaults() and the file plug.properties.

Support. The support determines the number of

transactions the rule has been derived from. Assume that the

field aKeys[] was changed in 8 transactions. Of these 8

transactions, 7 also included changes of both

the method initDefaults() and the file plug.properties. Then,

the support for the above rule is 7.

 Confidence. The confidence determines the strength

of the consequence, or the relative amount of the given

consequences across all alternatives. In the above example,

the consequence of changing initDefaults() and

plug.properties applies in 7 out of the 8 transactions involving

fKeys[]. Hence, the confidence for the above

rule is 7/8 = 0.875.

A. Association rule

ROSE uses the Apriori Algorithm to compute association

rules.

 V. NEURAL NETWORK

A neural network is first and foremost a graph, with patterns

represented in terms of numerical values attached to the nodes

of the graph and transformations between patterns achieved

via simple message-passing algorithms. Certain of the nodes

in the graph are generally distinguished as being input nodes

or output nodes, and the graph as a whole can be viewed as a

representation of a multivariate function linking inputs to

outputs. Numerical values (weights) are attached to the links

of the

graph, parameterize the input/output function and allowing it

to be adjusted via a learning algorithm.

The neural network approach can be used for

mapping transactions to rules. for example if a change in

akeys[] field affects the initdefault[] every time. Then neural

network can be traine for such things. i.e Training the

network in such a way that transaction to rules will be based

on historical data changes in the different versions. if there is

change in one module effects the other modules that are

coupled , this can be done through neural network.

 VI. RESULT

In particular, our evaluation does not allow any

conclusions about the predictive power for closed-source

projects, as Rose is an open source tool. Transactions do not

record the order of the individual changes involved. Hence,

our evaluation cannot take the order into account the changes

were made—and treats all changes equal. In practice, we

expect specific orderings of changes to be more frequent than

others, which may affect results for navigation and

prevention.

 VII. RELATED WORK

Gall et al. were the first to use release data to detect

logical coupling between modules [4] The CVS history

allows detecting more fine-grained logical coupling between

classes [5], files and functions [6].

 VIII. CONCLUSION

ROSE can be a helpful tool in suggesting further

changes to be made, and in warning about missing changes

.Neural network approach can make the system fast as Batch

training of a network proceeds by making weight and bias

changes based on an entire set (batch) of input vectors.

Incremental training changes the weights and biases of a

network as needed after presentation of each individual input

vector. Incremental training is sometimes referred to as “on

line” or “adaptive” training. Neural networks have been

trained to perform complex functions.

 IX. RERERENCES

 [1] Manny M. Lehman, and Les Belady. Program

Evolution Processes of Software Change. London
Academic Press, 1985.

 [2] T. Ball , J.-M. Kim, A. A. Porter and H. P. Siy. “If
your version control system could talk.”. .In ICSE

Gagandeep Singh et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 165-167

© 2010, IJARCS All Rights Reserved 167

Workshop on Process Modelling and Empirical Studies of
Software Engineering, 1997.

 [3] BISHOP, C. M. 1995, “Neural Networks for Pattern
Recognition”. Oxford University Press, New York.

 [4] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history”. In Proc.
International Conference

 on Software Maintenance (ICSM ’98), pages 190–198,
Washington D.C., USA, IEEE

[5] H. Gall, M. Jazayeri, and J. Krajewski , “CVS release
history data for detecting logical couplings”. IWPSE
2003 [15], pp 13–23.

[6] T. Zimmermann, S. Diehl and A. Zeller. “How
history justifies system architecture (or not).” In
IWPSE 2003, pp 73–83.

[7] Filip Van Rysselberghe, and Serge Demeyer, “Studying
software evolution information by visualizing the change
history”. In Proceedings of The 20th IEEE International
Conference on Software Maintenance (ICSM 2004),
2004.

 [8] Thomas Zimmermann, P. Wegerber, S. Diehl, and
Andreas Zeller, “Mining version histories to guide
software changes”. In 26th International Conference on
Software Engineering (ICSE 2004), pp 563–572, 2004.

[9] M. Morisio, M. Ezran, and C. Tully, “Success and Failure
Factors in Software Reuse,” IEEE Trans. Software Eng.,
vol. 28, no. 4, pp. 340-357, Apr. 2002

 [10 R. Robbes, “Mining a change-based software repository,”
in Proceedings of the 4th International Workshop on
Mining Software Repositories (MSR 2007). ACM Press,
2007, p. 15.

[11] R. Robbes and M. Lanza, “Versioning systems for
evolution research,” in Proceedings of IWPSE 2005 (8th
International Workshop on Principles of Software
Evolution). IEEE CS Press, 2005, pp. 155–164.

[12] L. Yu and S. Ramaswamy, “Mining cvs repositories to
understand open-source project developer roles,” in MSR
’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories. Washington, DC,
USA: IEEE Computer Society, 2007, p. 8.

