
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 57

ISSN No. 0976-5697

 Observations on Fault Proneness Prediction Models of Object-Oriented System to

Improve Software Quality

Anil Kumar Malviya

Department of Computer Science & Engineering

Kamla Nehru Institute of Technology

Sultanpur, U.P. India

anilkmalviya@yahoo.com

Dharmendra Lal Gupta*

Research Scholar
Department of Computer Science & Engineering

Mewar University, Chittorgarh

 (Rajasthan) India

dlgupta2002@gmail.com

Abstract: Software quality is the fundamental need of industry and also for a user. And the future business and reputation of the company

depends on the quality of the product. It is need of today to develop quality product. Software quality of system can be measured in terms of

fault-proneness of data. Effective prediction for the fault-proneness class early in software development plays a very important role in the

analysis of the software quality and balance of software cost.

For the effective prediction of fault-proneness the Pareto Principle will be helpful because it implies that 80% of all errors uncovered

during testing will be likely be traceable to 20% of all program components. The problem of course is to isolate these suspected components and

thoroughly test them. In this paper, we proposed fault-prone and not-fault-prone class using discriminant analysis , neural network and logistic

regression and prediction accuracy was measured and compared for each prediction system.

Keywords: Object-oriented, Reliability, Artificial Neural Networks, Fault, and Failure.

I. INTRODUCTION

Object–oriented technique of software development is

becoming de facto standard in software development

community. This is due to a variety of claims by many

software researchers and practioners that an object oriented

approach leads to better productivity, reliability,

maintainability and reusability. Object-Oriented systems

emphasize three software design fundamentals that are

useful in controlling software complexity: polymorphism,

encapsulation, and inheritance.

A software complexity model of object-oriented

systems was proposed by Tegarden et al. [9]. According to

Tegarden software complexity of Object Oriented systems

can be described at four levels: variable, method, object, and

system. At each level, measures are identified to account for

the cohesion (intra) and coupling (inter) aspects of the

system at that level.

Software complexity is the difficulty to maintain,

change and understand software. It deals with the

psychological complexity of programs. Three specific types

of psychological complexity that affect a programmer’s

ability to comprehend software are problem complexity,

system design complexity, and procedural complexity.

Design complexity has been conjectured to play a strong

role in the quality of the resulting software system in Object

Oriented development environments [10]. Prior research on

software metrics for Object Oriented systems suggests that

structural properties of software components influence the

cognitive complexity for the individuals (e.g., developers,

testers) involved in their development [11]. This cognitive

complexity is likely to affect other aspects of these

components, such as fault-proneness and maintainability.

Design complexity in traditional development methods

involved the modeling of information flow in the

application. Hence, graph-theoretic measures [12] and

information-content driven measures [13] were used for

representing design complexity. In the Object Oriented

environment, certain integral design concepts such as

inheritance, coupling, and cohesion have been argued to

significantly affect complexity. Hence, Object Oriented

design complexity measures proposed in literature have

captured these design concepts [6], [14], [15.

Since we all know very well about the Pareto Principle

which will be more effective for the prediction of fault-

proneness because it implies that 80% of all errors

uncovered during testing will be likely be traceable to 20%

of all program components. The problem of course is to

isolate these suspected components and thoroughly test

them.The rest of the paper has been organized as follows. In

section 2 we show the related work by different researches.

In section 3 we present fault-proneness prediction models.

Section 4 discusses software reliability, attributes and faults.

In section 5, we discuss confounding effect of class size.

Section 6 presents research objectives. Description of the

empirical study is presented in Section 7. Results and

discussion of the analysis are presented in Section 8. Section

9 concludes the discussion.

II. RELATED WORK

A number of papers have investigated the relationships

between design metrics and the detection of faults in object-

oriented software ([1], [2], [3], [4], [5], [6]). Many

organizations want to predict the number of defects (faults)

in software systems, before they are deployed to gauge the

likely delivered quality and maintenance effort [4]. As our

understanding of the software development process

improves, it is becoming clear that embedded faults are not

placed in the software by random processes known only to

nature. The location of these faults is clearly related to

measurable software design metrics [7]. Briand, L.C. et al.

[2] build a fault-proneness prediction model based on a set

of Object oriented measures using data collected from a mid

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 58

sized Java system, and then apply the model to a different

Java system developed by the same team. Fioravanti, F. and

Nesi, P. [5] report a research study of more than 200

different object-oriented metrics extracted from the

literature with the aim of identifying suitable models for

fault proneness class detection. Munson, J.C. [7] describes

the processes whereby software complexity metrics may be

used to identify regions of software that are fault prone. This

information is then exploited to develop a model of dynamic

program complexity for the identification of failure prone

software. Over the years, increasing importance has been

attached to the search of effective models for predicting

software faults.

Bingbing, Y. et al. [31] have proposed a new clustering

method called affinity propagation is investigated for the

analysis of two software metric datasets extracted from real

world software projects. The numerical experiment results

show that the affinity propagation algorithm can be applied

well in software quality prediction in the very early stage

and it is more effective on reducing Type-II errors.

Loh, C. H. et al. [32] introduced a software quality model,

namely QUAMO (QUAlity Model) which is based on

divide-and-conquer strategy to measure the quality of object

oriented system through a set of object-oriented design

metrics and data mining techniques.

Hribar. L. et al.[34] have proposed about fuzzy logic

and KNN (K-nearest-neighbour)[33] classification method

approaches are used to predict Weibull distribution

parameters shape, slope and total number of faults in the

system based on the software components individual

contribution.

A wide range of prediction models have been proposed

in the literature. Fenton, N. E. et al. [4] provide a critical

review of state-of-the-art of models for predicting software

defects. Most of the wide range of prediction models uses

size and complexity metrics to predict defects. The authors

claim that there are a number of serious theoretical and

practical problems in many studies. The authors

recommended holistic models for software defect prediction,

using Bayesian Networks, as alternative approaches to the

single-issue models used at present. Cartwright, M. et al. [8]

construct useful prediction systems for size and number of

defects based upon simple counts as the number of states

and events per class. The authors claimed that the prediction

system is possible, even in the absence of the suits of

metrics that have been advocated by researchers into Object

Oriented technology.

To produce high quality object-oriented applications, a

strong emphasis on design aspects, especially during the

early phases of software development, is necessary. Design

metrics play an important role in helping developers

understand design aspects of software and, hence, improve

software quality and developer productivity [6].

Fault-proneness models can be built using many

different methods that mainly belong to few main classes:

machine learning principles, probabilistic approaches,

statistical techniques, and mixed techniques. Machine

learning principles, probabilistic approaches, statistical

techniques, and mixed techniques. Machine learning

techniques have been investigated by Porter and selby, who

studied the use of decision trees [16], [17], and by

Khoshgoftaar, Lanning, and Pandya, who applied neural

networks [18]. Probabilistic approaches have been exploited

by Fenton and Neil, who propose the use of Bayesian Belief

Networks[4]. Statistical techniques have been investigated

by Khoshgoftaar, who applied discriminant analysis with

Munson [19] and logistic regression with Allen, Halstead,

Trio, and Flass[20]. Mixed techniques have been suggested

by Briand, Basili, and Thomas, who applied optimized set

reduction[21], and by Morasca and Ruhe, who worked by

combining rough set analysis and logistic

regression[22],[23].

III. FAULT-PRONENESS PREDICTION

MODELS

A wide range of prediction models have proposed in the

literature. We briefly describe few of the popular methods.

A. Decision Trees

Decision trees are able to identify classes of objects

based on a set of local decisions. Each node of a decision

tree is associated with an explanatory variable. When a node

is reached, the actual value of the associated explanatory

variables identifies an output edge that leads to another

node. During the classification, the tree is traversed, starting

from the root node, until a leaf node is reached. Leaf nodes

are associated with classification values. Decision trees can

be automatically built from sets of historical observations

and are particularly useful when the explanatory variables

are discrete, although they can be adapted to handle

continuous explanatory variable (in this case intervals are

considered) [19].

B. Discriminant Analysis

Discriminant analysis is a statistical modeling technique

for estimating classification. It can determine with some

accuracy to what extent separation into predefined classes is

possible for an observation sample with given metrics, or it

can assess the adequacy of a particular classification: it can

be predictive or descriptive [24].

The statistical technique of discriminant analysis is

basically a classification procedure. The underlying

principle of the technique is that an operational hypothesis is

formulated that there exists an a priori classification of

multivariate observations into two or more groups or sets of

observations. Further, the membership in one of these

supposed groups is mutually exclusive. A criterion variable

will be used for this group assignment. Thus a program, for

example, might be classified with a code of zero if it has

been found to have no faults or with a code of 1 if it has

more than 1 fault [25].

C. Neural Networks

Neural networks are sets of interconnected neurons,

each having a number of inputs, an output, and a

transformation function. Neural networks are commonly

organized in a sequence of layers (at least three), and the

neurons of each layer receive as inputs the weighted sum of

the outputs of the previous layer. The first layer receives as

inputs the explanatory variables and the last layer outputs

the resulting classification value. Neural networks natively

handle continuous explanatory variables [19].

D. Optimized Set Reduction

Optimized set reduction attempts to determine which

subsets of observations from the historical data set provide

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 59

the best characterizations of the objects to be assessed. Each

of the optimal subsets is then characterized by a set of

predicates (a pattern), which can be applied for classifying

new objects. Optimized set reduction can handle either

continuous or discrete explanatory variables and provides

the expected value of the dependent variable [19].

E. Logistic Regression

Logistic regression has been used in empirical software

engineering for a number of goals, including estimation of

software fault-proneness. Recently, the multivariate logistic

regression analysis, whose inputs are several metrics, has

been frequently used to evaluate the fault-proneness of the

program. A multivariate logistic regression model is based

on following relationship equation:

P(X1, …, Xn)=1 / { 1+ exp(-(C0+C1X1+ …+CnXn))}

Where P is the probability that an error is found in a class

and Xi s are metrics of the class. If given metrics values

make P greater than 0.5, the class is predicted to have faults

(fault prone) [26].

IV. SOFTWARE RELIABILITY, ATTRIBUTES

AND FAULTS

Software reliability is a major component of software

quality. The IEEE defines reliability as “The ability of a

system or component to perform its required functions under

stated conditions for a specified period of time”. According

to ANSI, software reliability is defined as the probability of

failure free software operation for a specified period of time

in a specified environment. A failure is the unacceptable

departure of a program operation from program

requirements. A software fault is a defect in the code that

may cause a failure. It is well known that system reliability

is inversely proportional to the number of unfixed defects in

the system. Fixing defects may not necessarily make the

software more reliable. On the contrary, the process of fault

removal may introduce some new faults as it involves

modification or writing of new codes. The number of faults

remaining in the software at any time is the difference

between the number introduced and the number removed.

The most effective evaluator of software reliability is a

combination of software size and software complexity. It is

generally accepted that more complex modules are more

difficult to understand and have a higher probability of

defects than less complex modules. Given the association

between module complexity and errors, it follows that the

modules with both a high complexity and large size tend to

have the risk because they tend to have code that is very

terse making it difficult to either change or modify [7].

There is now sufficient evidence to support the

conclusion that there is a distinct relationship between

software faults and measurable design attributes and that

this information will yield specific guidelines for the design

of reliable software. If a software component/module is

measured and found to be complex, then it will have a large

number of faults. These faults may be detected by analytical

methods, e.g. program inspections. The faults may also be

identified based on the failures that they induce when the

software is executing. Software may preserve a number of

latent faults over its lifetime in that the particular manner

that it is used may never cause the complex code sequences

to execute and thus never expose the faults [7].

The primary objective of modeling the relationship

between software design metrics and software faults is that

the design metrics may be measured early in the software

development life cycle. If we are able to create an

appropriate measure of software metrics that is highly

correlated with software faults, we may then use this

measure of metrics as a surrogate for fault measures in

subsequent reliability modeling efforts.

V. CONFOUNDING EFFECT OF CLASS SIZE

A typical empirical validation of object-oriented metrics

proceeds by investigating the relationship between each

metric and the outcome of interest. In this chapter, we will

consider only fault-proneness as an outcome. We define

fault-proneness class as the class having at least 1 fault and

Legend

 Casual Relationship

 Association
Figure 1: Path diagram illustrating the confounding effect of size.

not-fault-proneness class as the class having no fault. If this

relationship isfound to be statistically significant, then the

conclusion is drawn that the metric is empirically validated

[27]. Resent studies used the bivariate correlation between

object-oriented metrics and the number of faults to

investigate the validity of the metrics [28]. Also, uni-variate

logistic regression models are used as the basis for

demonstrating the relationship between object-oriented

product metrics and fault-proneness in [29].

However, this approach completely ignores the

confounding effect of class size. This can be illustrated with

reference to Figure 3. Path (a) is the main hypothesized

relationship between the metric and fault-proneness. Here

we see that class size (for example, measured in terms of

SLOC) is associated with the object-oriented metric (path

(c)). Evidence supporting this for many contemporary

metrics is found in [29], [30]. Also, class size is known to be

associated with the incidence of faults in object-oriented

systems, path (b), and is supported in [29], [30]. The pattern

of relationships shown in Figure 1 exemplifies a classical

confounding effect. This means that the relationship

between the object-oriented metric and fault-proneness will

be inflated due the effect of size. This also means that

without controlling for the effect of size, previous validation

studies have been optimistic about the validity of the metrics

that they have investigated [27].

Fault-Proneness

Size

Product Metric

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 60

VI. RESEARCH OBJECTIVES

In the recent years, Object-oriented approach to

software development is becoming very popular in today’s

software development environment. The importance of

deletion and removal of defects prior to customer delivery

has received increased attention due to its potential role in

influencing customer satisfaction and the overall negative

economic implications of shipping defective software

products [6]. In the realm of object-oriented systems, one

approach to identify faulty classes early in development is to

construct prediction models using object-oriented metrics.

Such models are developed using historical data, and can be

applied for identifying potentially faulty-classes in future

applications or future releases. The usage of design metrics

allows the organization to take mitigating actions early such

as a redesign and consequently avoid costly rework [2]. To

achieve the objectives, the present study aims to elucidate;

(i) the relationship between object-oriented metrics and the

number of faults present in the class, (ii) the confounding

effect of class size on the relationship between metrics and

fault prediction, (iii) to derive fault prediction model and

(iv) to identify fault-prone and not-fault-prone classes in the

object oriented system.

VII. DESCRIPTION OF THE EMPIRICAL STUDY

A. Description of the System Study

One of the goals of this study is to analyze empirically

the object oriented metrics for the purpose of evaluating

whether or not these metrics are useful for predicting the

probability of detecting faulty classes. The system and raw

data used in this study has been taken from [8]. The system

studied is a subsystem of a much larger industrial real-time

telecommunications system which is comprised of several

million lines of code (LOC) and has been evolving over the

past 10 years. Its success is central to the Organization’s

financial health. The subsystem is written in C++ and has

been designed using the Shlaer-Mellor method. It consists of

32 classes which correspond to slightly over 133,000 LOC

[8]. Figure 2 shows the distributions of the analyzed metrics

based on 32 classes present in the studied system. Figure 3

shows the distribution of defect over the 32 classes of the

studied system.

B. Dependent and Independent Variables

The dependent variable (Metric) is the number of faults

(DEFECT) in a class. The independent variables (Metrics)

used in this study are ATTRIB, STATE, EVNT, WRITES,

DELS, RWD, DIT, NOC, LOC, LOC_B, and LOC_H.

These dependent and independent variables are described

below.

[a] Attributes (ATTRIB): It is defined as the count of

attributes per class from the information model.

[b] States (STATE): State variable is defined as the count

of states per class in the state model.

[c] Events (EVNT): Events variable is defined as the count

of events per class in the state model.

[d] Writes (WRITES): It is defined as the count of all write

accesses by a class contained in the CASE tool.

[e] Deletes (DELS): It is defined as the count of all delete

accesses by a class contained in the case tool.

[f] Read/write/deletes (RWD): It is defined as the count of

synchronous accesses (i.e. the sum of READS,

WRITES and DELS) per class from the CASE tool.

[g] Depth of Inheritance Tree (DIT) : It is defined as the

depth of a class in the inheritance tree where the root

class is zero.

[h] Number of Children (NOC) : It is defined as the number

of child classes.

[i] Lines of code (LOC) : It is defined as the number of

lines of code per class.

[j] Lines of code (body)(LOC_B): It is defined as the body

file lines of code per class.

[k] Lines of code (header)(LOC_H): It is defined as the

header file lines of code per class.

[l] Defects (DEFECT) : It is defined as the count of defect

per class.

C. Data Analysis Procedure

The procedure used to analyse the data for achieving

the aim of the chapter is described in 4 stages.

[a] Descriptive Statistics

The distribution and variance of each measure is

examined to select those with enough variance for further

analysis.

[b] Correlation Analysis

A correlation coefficient measures the strength of a

linear association between two variables.

[c] Univariate Analysis

Univariate regression analysis looks at the relationship

between each of the independent variables and dependent

variable under study. This is a first step to identify types of

independent variables that are significantly related to

dependent variable and thus are potential predictors to be

used in the next step.

[d] Multivariate Analysis

Multivariate analysis also looks at the relationships

between independent variables and dependent variable, but

considers the former in combination, as covariate in a

multivariate model, in order to better explain the variance of

the dependent variable and ultimately obtain accurate

prediction.

In this study, we use univariate and multivariate

regression analysis for making fault prediction model for

estimating no. of fault at a class level of object oriented

system using structural design measures. In this paper fault

proneness is defined as the probability of detecting a fault in

a class. We choose three classification technique

discriminant analysis (described in section 3.2), neural

networks (described in section 3.3) and logistic regression

(described in section 3.5) for classifying the fault-prone and

not-fault prone classes of object-oriented system and we

also compared the predictability of these methods. We

introduce the following three criterion (goodness of fit) to

evaluate the result of the prediction [26], [27].

[e] Best Overall Completeness

Overall completeness is defined as the proportion of

modules (classes) that are classified correctly:

overall completeness= (CPFM+CPNFM)/M

where, CPFM is the number of correctly predicted

faulty modules, CPNFM is the number of correctly

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 61

predicted non-faulty modules and M is the total number of

modules. This parameter measures the ability of modules to

correctly classify the target software modules (classes),

regardless of the category in which the models have been

classified.

[f] Best Faulty Module (Class) Completeness

Faulty module completeness is defined as the

proportion of faulty modules that are correctly classified as

faulty by the model.

faulty module completeness=CPFM/FM

where, CPFM is the number of correctly predicted

faulty modules and FM is the total number of actual faulty

modules. This parameter measures the ability of the models

to identify the most fault-prone part (class) of the target

software.

[g] Best Faulty Module (Class) Correctness

Faulty module (class) correctness is defined as the

proportion of faulty modules (classes) within the set of

modules that are classified as faulty by the model.

faulty module correctness=CPFM/PFM

where, CPFM is the number of correctly predicted

faulty modules (classes) and PFM is the total number of

predicted faulty modules (classes). This parameter measures

the efficiency of a model, in terms of the percentage of

actually faulty modules (classes) among the ones that are

candidates for further verification.

VIII. RESULTS AND DISCUSSION

A. The first step of the analysis was to produce descriptive

statistics (Table-1) of all the variables (independent and

dependent). The Table1 shows mean, median, Std. dev.,

IQR (inter-quartile range), and the number of

observations that are not equal to zero. It is noticeable

that, since the median value is, in all cases, lower than

the mean, each variable exhibits some tendency to skew

positively. This is the consequence of a few very large

classes. Skewness value ranges from .997 to 3.049

with Std. Error .414.

B. The second analysis step was to calculate spearman

rank correlation coefficient of object oriented metrics

and number of defect of a class. Results (Table-2)

revealed that ATTRIB, and NOC are not significantly

correlated to number of defect of a class.

Therefore, they were excluded from further analysis.

But DEL, DIT, EVNT, READ, WRITE, RWD, LOC,

LOC_B and LOC_C emerged to be significantly

positively correlated (each at �= .01 level) to number of

defect of a class.

C. The third analysis step was to look the confounding

effects of size. Table-3 depicts confounding effects of

size (LOC) on the metrics. All seven selected variables

are significantly correlated with number of defect of a

class. Therefore, the relationship between the first and

the second variable by the theory include the variation

due to third variable; hence the probable influences

(effect) of the third variable was partially out to

estimate the true relationship between the first and the

second variables. Analyses (Table-3) disclosed the fact

that seven predictors (DEL, DIT, EVNT, READ,

STATE, WRITE and RWD) without size control made

their significant contributions, and when controlling for

size was estimated, DEL, DIT, EVNT, WRITE, and

RWD at level .01 and READ at .05 level demonstrated

their significant contributions except STATE metrics.

D. The next analysis step was to investigate the

relationship of design metrics and number of fault in a

class. Table-4 shows the R2, Adjusted R square, F-ratio

and Std. Error of estimate of the system described in

section 6. Here, we show individual relationship of

design metrics (DEL, DIT, EVNT, READ, STATE,

WRITE AND RWD), and size metrics (LOC, LOC_B,

LOC_H) to number of fault in a class. Results (Table-4)

demonstrated that each predictor individually emerged

to show their significant contribution (p<.001 level) to

number of defect (fault) in a class, and that all the

predictors together, emerged to explain a total of

94% of variance. Here one crucial observation deserves

mention that EVNT explained a total of 87% of

maximum variance among all of the independents

variables under observations. At the end of

implementation, the LOC, LOC_B and LOC_H

distributively explained 62%, 62% and 58% of

variance. Still further, at the implementation level of the

system, when all the metrics and LOC metric (leaving

LOC_B and LOC_H because of orthoganality) were

taken together, a total of 94% could be explained.

These observations would provide a tentative idea about

number of defect may be encountered in the class of

object-oriented system at the time of testing the system.

E. Keeping in view the observations, and the one of the

objectives of the study, the early fault prediction

model was attempted. The regression equation to

predict the number of fault in a class using regression

coefficients was found as given below:

defect=-2.24+.19 DEL + 4.47 DIT + .358 EVNT - .06

STATE + .116 WRITE - .126 READ -----(1)

defect=-.58+.42 EVNT -----(2)

The regression model (equation(1)) suggests that

Metrics DEL, DIT, EVNT, STATE, WRITE and READ

are known, the number of defect(fault) in a class could

be estimated at 94% of total variance. The regression

equation (2) suggests that if EVNT is known, the

number of defect of a class could be estimated at 88%

of total variance.

F. Table 5 shows the obtained fault-prone class prediction

model by the discriminant analysis. For example, in

Table 5, 13 classes are predicted to be not-faulty and

actually not-faulty. Two classes are predicted to be not-

faulty but actually faulty. The overall completeness and

faulty module (class) completeness are respectively

93.8 % and 89.5%. The Table 6 shows the cross-

validation results. The cross-validation is done only

for those cases in the analysis. In cross validation, each

case is classified by the functions derived from all cases

other than that case. Results (Table-6) demonstrated

that 12 classes out of 13 are predicted to be not-faulty

and actually not-faulty. Four classes are predicted to be

not-faulty but actually faulty. The overall completeness

and faulty module (class) completeness are respectively

78.9% and 84.4%.

G. Table 7 shows the obtained fault-prone class prediction

model by the multivariate logistic regression. For

example, in Table 7, 13 classes are predicted to be not-

faulty and actually not-faulty. One class is predicted to

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 62

be not-faulty but actually faulty. The overall

completeness and faulty module (class) completeness

are respectively 96.68% and 94.74% greater than the

fault-prone class prediction model using discriminant

analysis.

H. Table 8 shows the obtained fault-prone class prediction

model by the Neural Network. For example, in Table 8,

12 classes are predicted to be not-faulty and actually

not-faulty. One class is predicted to be not-faulty but

actually faulty. The overall completeness and faulty

module (class) completeness are respectively 93.75 %

and 94.74.

IX. SUMMARY AND CONCLUSIONS

Cartwright and shepperd (2000) data was reanalyzed to

find early indices of predictability of fault-prone classes and

number of faults in modules (classes) of object-oriented

system. The results may summarily concluded as follows:

(i) the DEL, DIT, EVNT, READ, WRITE, STATE and

RWD metrics emerged to be significantly correlated to the

number of defect (fault) in the class, (ii) each predictor

individually emerged to show their significant contribution

to the number of fault(defect) in a class, and all predictors

together emerged to explain a total of 94% of variance.

EVNT metrics individually explained 87% of variance

among all of the independents variables under observations.

The size metrics (LOC) explained 62% of variance, (iii) the

individual predictor DEL, DIT, EVNT, READ, STATE and

WRITE without size control made their significant

contributions, and when controlling for size (LOC) was

estimated DEL, DIT, EVNT and WRITE at p-level .01 and

READ at .05 level demonstrated their significant

contributions except STATE metrics, (iv) the early fault-

prone class prediction model was derived using discriminant

analysis, multivariate logistic regression technique and

Neural Network with overall completeness and faulty class

completeness 93.8% , 96.88 and 93.75 and 89.5%, 94.74%

and 94.74% respectively.

Our results indicate that DIT (CK-suite metric) and

other metrics DEL, EVNT, READ, STATE and WRITE

available by the design stage were strongly associated with

fault-proneness. Furthermore, the prediction model that we

constructed with these metrics has good accuracy. Further

extended studies are desirable in support of the findings.

Table 1 :Descriptive Statistics
 Mean Median Std. Dev. IQR NOBS<>0

Attrib 8.656 4.500 8.8340 10.750 32

DELS 1.500 1.000 1.3912 2.000 24

DIT 0.438 0.000 0.7156 1.000 10

EVNT 20.531 10.500 26.2948 30.500 27

NOC 0.313 0.000 0.8958 0.000 4

READ 16.250 11.500 19.9192 26.250 24

STATE 18.031 13.000 22.9368 22.250 27

WRITE 14.219 8.500 14.4507 20.500 26

RWD 31.969 22.000 33.6917 47.000 27

LOC 4178.500 3254.500 3981.3226 4055.750 32

LOC_B 3427.594 2775.5 3427.1528 3502.50 32

LOC_H 750.906 707.00 556.9252 552.26 32

Table 2 : Spearman Rank Correlation
 ATT

RIB

DEL

S

DIT EVN

T

NO

C

READS STATE

S

WRI

TES

ATTRIB 1.00

DELS -0.12 1.00

DIT -0.34 0.46 1.00

EVNT 0.32 0.53 0.38 1.00

NOC 0.26 -0.41 0.09 0.34 1.00

READS 0.49 0.50 0.36 0.88 0.18 1.00

STATES 0.56 0.50 0.10 0.90 0.25 0.87 1.00

WRITES 0.53 0.57 0.38 0.81 0.09 0.94 0.82 1.00

DEFECT 0.17 0.62 0.58 0.84 0.18 0.76 0.75 0.77

LOC 0.56 0.48 0.14 0.91 0.31 0.86 0.97 0.80

LOC_B 0.56 0.48 0.14 0.91 0.31 0.87 0.97 0.80

LOC_H 0.62 0.48 0.10 0.88 0.26 0.87 0.98 0.80

 DEFECT LOC LOC_B LOC_H

DEFECT 1.00

LOC 0.76 1.00

LOC_B 0.76 1.00 1.00

LOC_H 0.76 0.99 1.00

Table-3 : Confounding Effect of Class Size
S. No.

Metrics Without Size Control Controlling for size (LOC)

Correlation p-value Correlation p-value

1. DEL .619 .000 .5732 .001

2. DIT .580 .000 .8545 .000

3. EVNT .838 .000 .8691 .000

4. READ .764 .000 .4083 .023

5. STATE .751 .000 -.1069 .567

6. WRITE .770 .000 .6674 .000

7. RWD .769 .000 .6219 .000

Table-4 : Regression Models:

Model Metrics Rsquare Adjusted

Rsquare

Fvalue P-value Std. Error

of Estimate

M1 DEL .246 .220 9.767 .004 10.472

M2 DIT .307 .283 13.265 .001 10.039

M3 EVNT .876 .872 212.612 .000 4.240

M4 READ .658 .646 57.632 .000 7.054

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 63

M5 STATE .583 .569 41.905 .000 7.788

M6 WRITE .753 .745 91.598 .000 5.988

M7 RWD .761 .753 95.304 .000 5.900

M8 LOC .622 .609 49.328 .000 7.414

M9 M1-M6 .948 .935 75.789 .000 3.01

M10 M9+M8 .948 .933 62.972 .000 3.06

Table-5 : Faulty (class) Prediction in Confusion matrix (Using

discriminant analysis)

Prediction Not-faulty Faulty Predictio

n %

Actual Not-

Fault

13 0 13 100 %

Faulty 2 17 19 89.5 %

 15 17 32

Overall 93.8 %

Model with all metrics, cut off to .05. The reported numbers

are related to faulty classes and not to the number of faults

identified.

Table-6 : Fault (class) Prediction in Confusion matrix (Using

discriminant analysis)

Prediction Not-

faulty

Fault

y

 Predictio

n %

Cross-

validated

Not-Fault 12 1 13 92.31 %

Faulty 4 15 19 78.9 %

 16 16 32

Overall 84.4 %

Model with all metrics, cut off to .05. The reported numbers

are related to faulty classes and not to the number of faults

identified.

Table-7 : Fault (class) Prediction in Confusion matrix (Using logistic

regression)

Prediction Not-

faulty

Faulty Predictio

n %

Actual Not-Fault 13 0 13 100 %

Faulty 1 18 19 94.74 %

 14 18 32

Overall 96.88 %

Model with all metrics, cut off to .05. The reported numbers

are related to faulty classes and not to the number of faults

identified.

Table-8 : Fault (class) Prediction in Confusion matrix (Using Neural

Network)

Prediction Not-

faulty

Faulty Prediction

%

Actual Not-Fault 12 1 13 92.31 %

Faulty 1 18 19 94.74 %

 13 19 32

Overall 93.75 %

Model with all metrics, cut off to .05. The reported numbers

are related to faulty classes and not to the number of faults

identified.

0

2

4

6

8

10

1 3 5 7
1
1

1
4

1
7

2
4

3
2

ATTRIB

N
o

.
o

f
C

la
s
s

0

2

4

6

8

10

12

14

0 1 2 3 5

DEL

N
o

.
o

f
C

la
s

s

0

5

10

15

20

25

0 1 2DIT

N
o

.
o

f
C

la
s
s

0

1

2

3

4

5

6

0 2 5
1
0

1
2

2
3

3
1

3
9

5
3

7
1

EVNT

N
o

.
o

f
C

la
s

s

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 64

0

5

10

15

20

25

30

0 2 4

NOC

N
o

.
o

f
C

la
s

s

0

2

4

6

8

10

0 2 4 9
1
1

1
3

1
6

2
1

3
2

3
5

8
3

READ

N
o

.
o

f
C

la
s

s

0

1

2

3

4

5

6

0 3 6 9
1
5

1
7

2
1

2
6

3
3

3
7

6
0

STATE

N
o

.
o

f
C

la
s

s

0

2

4

6

8

0 5 7
1
1

1
4

1
7

2
7

3
4

3
7

5
6

WRITE

N
o

.
o

f
C

la
s
s

Figure 2: Distribution of the analyzed software metrics. The X-axes

represents the value of the metric. The Y-axes represents the number of

class.

0

2

4

6

8

10

12

14

0 2 6
1
0

2
5

2
7

4
7

DEFECT

N
o

.
o

f
C

la
s
s

Figure 3: Distribution of the defect metric. The X-axis represents the value

of the defect metric. The Y axis represents the number of class.

X. REFERENCES

[1] Briand, L.C., Wust, J., Daly, J.W. and Porter, D.V.,

“Expolring the Relationships between Design Measures

and Software Quality in Object-Oriented Systems”, The

Journal of Systems and Software, Vol. 51, 2000, pp.

245-273.

[2] Briand, L.C., Melo, W.L. and Wust, J., “Assessing the

Applicability of Fault-Proneness Models Across

Object-Oriented Software Projects”, ISERN Report No.

ISERN-00-06, Version 2.

[3] EI-Emam, K. El and Melo, W.,“The Prediction of

Faulty Classes Using Object-Oriented Design Metrics ”,

National Research Counsil Canada, Nov. 1999.

[4] Fenton, N.E. and Neil, M., “A Critique of Software

Defect Prediction Models”, IEEE Transactions on

Software Engineering, Vol. 25, No. 5, September /

October 1999, pp. 675-688.

[5] Fioravanti, F. and Nesi, P., “A Study on Fault-

proneness detection of Object-Oriented Systems”,

Department of Systems and Informatics, University

of Florence, Internet.

[6] Subramanyam, R. and Krishnan, M.S., “Empirical

Analysis of CK Metrics for Object-Oriented Design

Complexity: Implications for Software Defects”, IEEE

Transactions on Software Engineering, Vol. 29, No. 4,

April 2003, pp. 297-310.

[7] Munson, J. C., “Software faults, software failures, and

software reliability modeling”, Information and

Software technology Vol. 38, 1996, pp.687-699.

[8] Cartwright, M. and Shepperd, M., “An Empirical

Investigation of an Object-Oriented Software System”,

IEEE Transactions on Software Engineering, Vol. 26,

No. 8, August 2000, pp. 786-796.

[9] Tegarden, D.P., Sheetz, S.D., Monarchi, D.E., “A

Software complexity model of object-oriented

systems”, Decision Support Systems, Vol. 13, 1995, pp.

241-262.

[10] Booch, G., “Object-Oriented Analysis and Design”,

Second Edition, Benjamin Cummings.

[11] Briand, L. C., Wuest, J., Ikonomovski, S. and Lounis,

H.,“Investigation of Quality Factors in Object-

Oriented Designs: An Industrial Case Study,” Proc.

Int’l Conf. Software Engineering, 1999, pp. 345-354.

[12] McCabe, T.J., “A Complexity Measure”, IEEE

Transactions on Software Engineering, Vol. SE-2, Dec.

1976, pp. 308-320.

[13] Halstead, M. H., “Elements of Software Science”, New

York: Elsevier North- Holland, 1977, pp. 84-91.

 Dharmendra Lal Gupta et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 57-65

© 2010, IJARCS All Rights Reserved 65

[14] S.R. Chidamber and C.F. Kemerer, “Towards a Metric

Suite for Object Oriented Design,” Proc. conf. Object

Oriented Programming Systems, Languages, and

Applications (OOPSLA ’91) Vol. 26, no. 11, 1991, pp.

197-211.

[15] Chidamber, S.R. and Kemerer, C.F., “A metrics Suite

for Object Oriented Design”, IEEE Transactions on

Software Engineering, Vol. 20, No.6, June 1994, pp.

476-493.

[16] Selby, R.W. and Porter, “Learning from examples:

Generation and Evaluation of Descision Trees for

Software Resources Analysis”, IEEE Transactions on

 Software Engineering, Vol. 14, No. 12, Dec. 1988,

1743-1757.

[17] Witten, I.H. and Frank, E., “Data Mining: Practical

Machine Learning Tools and Techniques with Java

Implementa tions”, Morgan Kaufman Publishers, 2000.

[18] Khoshgoftar, T.M., Lanning, D.H. and Pandya, A.S.,

“A Comparative-Study of Patter-Recognition

Techniques for Quality Evaluation of Tele

communications Software”, IEEE Journal on Selected

Areas In Communications, Vol. 12, No. 2, 1994, pp.

279-291.

[19] Denaro, G. and Pezze, M., “Towards Industrial

Relevant Fault-Proneness Models”, International

Journal of Software Engineering and Knowledge

Engineering, Vol. 0, No. 0 (1994) 000-000, © World

Scientific Publishing Company.

[20] Khoshgoftar, T.M., Allen, E.B., Halstead, R., Trio, G.P.

and Flass, R. M., “Using Process History to Predict

Software Quality”, Computer, Vol. 31, No.4, Apr.

1998, pp.66-72.

[21] Briand, L., Basili, V., and Thomas, W., “A Pattern

Recognition Approach for Software Engineering Data

analysis”, IEEE Transactions on Software Engineering,

Vol. 18, No.11, 1992, pp.931-942.

[22] Denaro, G. and Pezze, M., “An Empirical Evaluation of

Fault-Proneness Models”, Internet.

[23] Morasca, S. and Ruhe, G., “A Hybrid Approach to

Analyze Empirical Software Engineering Data and its

Application to Predict Module Fault-proneness in

Maintenance”, The Journal of System and software,

Vol. 53, No.3, Sep. 2000, pp.225-237.

[24] Hochman, R. and Hudepohl, J. P., “Evolutionary Neural

Networks: A Robust Approach to Software Reliability

Problems”, Internet.

[25] Munson, J. C. and Khoshgoftaar, T.M., “The Detection

of Fault-Prone Programs”, IEEE transactions on

Software Engineering, Vol. 18, No.5, May 1992, pp.

423-433.

[26] Kamiya, T., Kusumoto, S. and Inoue, K., “Prediction of

Fault-Proneness at Early Phase in Object-Oriented

Development”, Internet.

[27] Benlarbi, S., Eman, K.E., Goel, N., “Issues in

Validating Object-Oriented Metrics for Early Risk

Prediction”, ISSRE Copyright, 1999 Internet.

[28] Binkley, A. and Schach, S., “Validation of the Coupling

Dependency Metric as a Predictor of Run-Time

Fauilures and Maintenance Measures”, In Proceedings

of the 20th International Conference on Software

Engineering”, 1998, pp. 452-455.

[29] Briand, L. Wuest, J., Ikonomovski. S. and Lounis, H.,

“A Comprehensive Investigation of Quality Factors in

Object Oriented Designs: An Industrial Case Study”,

International Software Engineering Research Network

technical report ISERN-98-29, 1998.

[30] Schlesselman, J., “Case-Control Studies: Design,

Conduct, Analysis”, Oxford University Prss, 1982.

[31] Yang. Bingbing, Yin. Qian, Xu Shengyong, and Guo

Ping, “2008 International Joint Confrence on Neural

Networks (IJCNN 2008)”.

[32] Loh. Chuan Ho, Lee Sai Peck, “2009 International

Conference on Information Management and

Engineering”.

[33] Leif E. Peterson, “K-nearest neighbor”, Scholarpedia,

4(2):1883.(2009),

http://www.scholarpedia.org/article/k-nearest_neighbor.

[34] Haribar Lovre, Duka Denis,“Software Component

Quality Prediction using KNN and Fuzzy Logic”,

International Conference MIPRO 2010,May 24-

28,Opatija,Croatia.

About Authors:

Dr. Anil Kumar Malviya is an Associate Professor in

Computer Science & Engineering

Department at Kamla Nehru Institute of

Technology, (KNIT), Sultanpur. He

received his B.Sc. & M.Sc. both in

Computer Science from Banaras Hindu

University, Varanasi respectively in 1991

and 1993 and Ph.D. degree in Computer

Science from Dr. B.R. Ambedkar University, Agra in 2006.

He is Life Member of CSI, India. He has published about 23

papers in International/National Journals, conferences and

seminars. His research interests are Data mining, Software

engineering, Cryptography & Network Security.

D. L. Gupta is currently working as an Assistant Professor

in the Department of Computer Science

& Engineering at KNIT, Sultanpur

(U.P.) India. And he is also pursuing

his Ph.D. in Computer Science &

Engineering form Mewar University ,

Chittorgarh (Rajasthan). He Received

B.Tech. (1999) from Kamla Nehru Institute of Technology

Sultanpur (KNIT) in Computer Science & Engineering,

M.Tech.(2003) in Digital Electronics and systems from

Kamla Nehru Institute of Technology Sultanpur(KNIT). His

research interests are Software Engineering, Cryptography

and Network Security.

