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Abstract: Software quality is the fundamental need of industry and also for a user. And the future business and reputation of the company 

depends on the quality of the product. It is need of today to develop quality product.  Software quality of system can be measured in terms of 

fault-proneness of data. Effective prediction for the fault-proneness class early in software development plays a very important role in the 

analysis of the software quality and balance of software cost. 

For the effective prediction of fault-proneness the Pareto Principle will be helpful because it implies that 80% of all errors uncovered 

during testing will be likely be traceable to 20% of all program components. The problem of course is to isolate these suspected components and 

thoroughly test them. In this paper, we proposed fault-prone and not-fault-prone class using discriminant   analysis , neural network and logistic 

regression and prediction accuracy was measured and compared for each prediction system. 

 

Keywords: Object-oriented, Reliability, Artificial Neural Networks, Fault, and Failure. 

I. INTRODUCTION 

Object–oriented technique of software development is 

becoming de facto standard  in software development 

community. This is due to a variety of claims by many 

software researchers and practioners that an object oriented 

approach leads to better productivity, reliability, 

maintainability and reusability. Object-Oriented systems 

emphasize three software design fundamentals that are 

useful in controlling software complexity: polymorphism, 

encapsulation, and inheritance.  

A software complexity model of object-oriented 

systems was proposed by Tegarden et al. [9]. According to 

Tegarden software complexity of Object Oriented systems 

can be described at four levels: variable, method, object, and 

system. At each level, measures are identified to account for 

the cohesion (intra) and coupling (inter) aspects of the 

system at that level. 

Software complexity is the difficulty to maintain, 

change and understand software. It deals with the 

psychological complexity of programs. Three specific types 

of psychological complexity that affect a programmer’s 

ability to comprehend software are problem complexity, 

system design complexity, and procedural complexity. 

Design complexity has been conjectured to play a strong 

role in the quality of the resulting software system in Object 

Oriented development environments [10]. Prior research on 

software metrics for Object Oriented systems suggests that 

structural properties of software components influence the 

cognitive complexity for the individuals (e.g., developers, 

testers) involved in their development [11]. This cognitive 

complexity is likely to affect other aspects of these 

components, such as fault-proneness and maintainability. 

Design complexity in traditional development methods 

involved the modeling of information flow in the 

application. Hence, graph-theoretic measures [12] and 

information-content driven measures [13] were used for 

representing design complexity. In the Object Oriented 

environment, certain integral design concepts such as 

inheritance, coupling, and cohesion have been argued to 

significantly affect complexity. Hence, Object Oriented 

design complexity measures proposed in literature have 

captured these design concepts [6], [14], [15.  

Since we all know  very well about the Pareto Principle 

which will be more  effective for the prediction of fault-

proneness because it implies that 80% of all errors 

uncovered during testing will be likely be traceable to 20% 

of all program components. The problem of course is to 

isolate these suspected components and thoroughly test 

them.The rest of the paper has been organized as follows. In 

section 2 we show the related work by different researches. 

In section 3 we present fault-proneness prediction models. 

Section 4 discusses software reliability, attributes and faults. 

In section 5, we discuss confounding effect of class size. 

Section 6 presents research objectives. Description of the 

empirical study is presented in Section 7. Results and 

discussion of the analysis are presented in Section 8. Section 

9 concludes the discussion. 

II. RELATED WORK 

A number of papers have investigated the relationships 

between design metrics and the detection of faults in object-

oriented software ([1], [2], [3], [4], [5], [6]). Many 

organizations want to predict the number of defects (faults) 

in software systems, before they are deployed to gauge the 

likely delivered quality and maintenance effort [4]. As our 

understanding of the software development process 

improves, it is becoming clear that embedded faults are not 

placed in the software by random processes known only to 

nature. The location of these faults is clearly related to 

measurable software design metrics [7]. Briand, L.C. et al. 

[2] build a fault-proneness prediction model based on a set 

of Object oriented measures using data collected from a mid 
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sized Java system, and then apply the model to a different 

Java system developed by the same team. Fioravanti, F. and 

Nesi, P. [5] report a research study of more than 200 

different object-oriented metrics extracted from the 

literature with the aim of identifying suitable models for 

fault proneness class detection. Munson, J.C. [7] describes 

the processes whereby software complexity metrics may be 

used to identify regions of software that are fault prone. This 

information is then exploited to develop a model of dynamic 

program complexity for the identification of failure prone 

software. Over the years, increasing importance has been 

attached to the search of effective models for predicting 

software faults.  

Bingbing, Y. et al. [31] have proposed a new clustering 

method called affinity propagation is investigated for the 

analysis of two software metric datasets extracted from real 

world software projects. The numerical experiment results 

show that the affinity propagation algorithm can be applied 

well in software quality prediction in the very early stage 

and it is more effective on reducing Type-II errors. 

Loh, C. H. et al. [32] introduced a software quality model, 

namely QUAMO (QUAlity Model) which is based on 

divide-and-conquer strategy to measure the quality of object 

oriented system through a set of object-oriented design 

metrics and data mining techniques. 

Hribar. L. et al.[34] have proposed about fuzzy logic 

and KNN (K-nearest-neighbour)[33] classification method 

approaches are used to predict Weibull distribution 

parameters shape, slope and total number of faults in the 

system based on the software components individual 

contribution. 

A wide range of prediction models have been proposed 

in the literature. Fenton, N. E. et al. [4] provide a critical 

review of state-of-the-art of models for predicting software 

defects. Most of the wide range of prediction models uses 

size and complexity metrics to predict defects. The authors 

claim that there are a number of serious theoretical and 

practical problems in many studies. The authors 

recommended holistic models for software defect prediction, 

using Bayesian Networks, as alternative approaches to the 

single-issue models used at present. Cartwright, M. et al. [8] 

construct useful prediction systems for size and number of 

defects based upon simple counts as the number of states 

and events per class. The authors claimed that the prediction 

system is possible, even in the absence of the suits of 

metrics that have been advocated by researchers into Object 

Oriented technology. 

To produce high quality object-oriented applications, a 

strong emphasis on design aspects, especially during the 

early phases of software development, is necessary. Design 

metrics play an important role in helping developers 

understand design aspects of software and, hence, improve 

software quality and developer productivity [6].  

Fault-proneness models can be built using many 

different methods that mainly belong to few main classes: 

machine learning principles, probabilistic approaches, 

statistical techniques, and mixed techniques. Machine 

learning principles, probabilistic approaches, statistical 

techniques, and mixed techniques. Machine learning 

techniques have been investigated by Porter and selby, who 

studied the use of decision trees [16], [17], and by 

Khoshgoftaar, Lanning, and Pandya, who applied neural 

networks [18]. Probabilistic approaches have been exploited 

by Fenton and Neil, who propose the use of Bayesian Belief 

Networks[4]. Statistical techniques have been investigated 

by Khoshgoftaar, who applied discriminant analysis with 

Munson [19] and logistic regression with Allen, Halstead, 

Trio, and Flass[20]. Mixed techniques have been suggested 

by Briand, Basili, and Thomas, who applied optimized set 

reduction[21], and by Morasca and Ruhe, who worked by 

combining rough set analysis and logistic 

regression[22],[23]. 

III. FAULT-PRONENESS PREDICTION 

MODELS 

A wide range of prediction models have proposed in the 

literature. We briefly describe few of the popular methods. 

A. Decision Trees 

Decision trees are able to identify classes of objects 

based on a set of local decisions. Each node of a decision 

tree is associated with an explanatory variable. When a node 

is reached, the actual value of the associated explanatory 

variables identifies an output edge that leads to another 

node. During the classification, the tree is traversed, starting 

from the root node, until a leaf node is reached. Leaf nodes 

are associated with classification values. Decision trees can 

be automatically built from sets of historical observations 

and are particularly useful when the explanatory variables 

are discrete, although they can be adapted to handle 

continuous explanatory variable (in this case intervals are 

considered) [19]. 

B. Discriminant Analysis 

Discriminant analysis is a statistical modeling technique 

for estimating classification. It can determine with some 

accuracy to what extent separation into predefined classes is 

possible for an observation sample with given metrics, or it 

can assess the adequacy of a particular classification: it can 

be predictive or descriptive [24]. 

The statistical technique of discriminant analysis is 

basically a classification procedure. The underlying 

principle of the technique is that an operational hypothesis is 

formulated that there exists an a priori classification of 

multivariate observations into two or more groups or sets of 

observations. Further, the membership in one of these 

supposed groups is mutually exclusive. A criterion variable 

will be used for this group assignment. Thus a program, for 

example, might be classified with a code of zero if it has 

been found to have no faults or with a code of 1 if it has 

more than 1 fault [25]. 

C. Neural Networks 

Neural networks are sets of interconnected neurons, 

each having a number of inputs, an output, and a 

transformation function. Neural networks are commonly 

organized in a sequence of layers (at least three), and the 

neurons of each layer receive as inputs the weighted sum of 

the outputs of the previous layer. The first layer receives as 

inputs the explanatory variables and the last layer outputs 

the resulting classification value. Neural networks natively 

handle continuous explanatory variables [19]. 

D.  Optimized Set Reduction  

Optimized set reduction attempts to determine which 

subsets of observations from the historical data set provide 
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the best characterizations of the objects to be assessed. Each 

of the optimal subsets is then characterized by a set of 

predicates (a pattern), which can be applied for classifying 

new objects. Optimized set reduction can handle either 

continuous or discrete explanatory variables and provides 

the expected value of the dependent variable [19]. 

E. Logistic Regression 

Logistic regression has been used in empirical software 

engineering for a number of goals, including estimation of 

software fault-proneness. Recently, the multivariate logistic 

regression analysis, whose inputs are several metrics, has 

been frequently used to evaluate the fault-proneness of the 

program. A multivariate logistic regression model is based 

on following relationship equation: 

P(X1, …, Xn)=1 / { 1+ exp(-(C0+C1X1+ …+CnXn))} 

Where P is the probability that an error is found in a class 

and Xi s are metrics of the class. If given metrics values 

make P greater than 0.5, the class is predicted to have faults 

(fault prone) [26]. 

IV. SOFTWARE RELIABILITY, ATTRIBUTES 

AND FAULTS 

Software reliability is a major component of software 

quality. The IEEE defines reliability as “The ability of a 

system or component to perform its required functions under 

stated conditions for a specified period of time”. According 

to ANSI, software reliability is defined as the probability of 

failure free software operation for a specified period of time 

in a specified environment. A failure is the unacceptable 

departure of a program operation from program 

requirements. A software fault is a defect in the code that 

may cause a failure. It is well known that system reliability 

is inversely proportional to the number of unfixed defects in 

the system. Fixing defects may not necessarily make the 

software more reliable. On the contrary, the process of fault 

removal may introduce some new faults as it involves 

modification or writing of new codes. The number of faults 

remaining in the software at any time is the difference 

between the number introduced and the number removed. 

The most effective evaluator of software reliability is a 

combination of software size and software complexity. It is 

generally accepted that more complex modules are more 

difficult to understand and have a higher probability of 

defects than less complex modules. Given the association 

between module complexity and errors, it follows that the 

modules with both a high complexity and large size tend to 

have the risk because they tend to have code that is very 

terse making it difficult to either change or modify [7]. 

There is now sufficient evidence to support the 

conclusion that there is a distinct relationship between 

software faults and measurable design attributes and that 

this information will yield specific guidelines for the design 

of reliable software. If a software component/module is 

measured and found to be complex, then it will have a large 

number of faults. These faults may be detected by analytical 

methods, e.g. program inspections. The faults may also be 

identified based on the failures that they induce when the 

software is executing. Software may preserve a number of 

latent faults over its lifetime in that the particular manner 

that it is used may never cause the complex code sequences 

to execute and thus never expose the faults [7].  

The primary objective of modeling the relationship 

between software design metrics and software faults is that 

the design metrics may be measured early in the software 

development life cycle. If we are able to create an 

appropriate measure of software metrics that is highly 

correlated with software faults, we may then use this 

measure of metrics as a surrogate for fault measures in 

subsequent reliability modeling efforts. 

V. CONFOUNDING EFFECT OF CLASS SIZE 

A typical empirical validation of object-oriented metrics 

proceeds by investigating the relationship between each 

metric and the outcome of interest. In this chapter, we will 

consider only fault-proneness as an outcome. We define 

fault-proneness class as the class having at least 1 fault and  
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Figure 1: Path diagram illustrating the confounding effect of size. 

 

not-fault-proneness class as the class having no fault. If this 

relationship isfound to be statistically significant, then the 

conclusion is drawn that the metric is empirically validated 

[27]. Resent studies used the bivariate correlation between 

object-oriented metrics and the number of faults to 

investigate the validity of the metrics [28]. Also, uni-variate 

logistic regression models are used as the basis for 

demonstrating the relationship between object-oriented 

product metrics and fault-proneness in [29].  

However, this approach completely ignores the 

confounding effect of class size. This can be illustrated with 

reference to Figure 3. Path (a) is the main hypothesized 

relationship between the metric and fault-proneness. Here 

we see that class size (for example, measured in terms of 

SLOC) is associated with the object-oriented metric (path 

(c)). Evidence supporting this for many contemporary 

metrics is found in [29], [30]. Also, class size is known to be 

associated with the incidence of faults in object-oriented 

systems, path (b), and is supported in [29], [30]. The pattern 

of relationships shown in Figure 1 exemplifies a classical 

confounding effect. This means that the relationship 

between the object-oriented metric and fault-proneness will 

be inflated due the effect of size. This also means that 

without controlling for the effect of size, previous validation 

studies have been optimistic about the validity of the metrics 

that they have investigated [27]. 
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VI. RESEARCH OBJECTIVES 

In the recent years, Object-oriented approach to 

software development is becoming very popular in today’s 

software development environment. The importance of 

deletion and removal of defects prior to customer delivery 

has received increased attention due to its potential role in 

influencing customer satisfaction and the overall negative 

economic implications of shipping defective software 

products [6]. In the realm of object-oriented systems, one 

approach to identify faulty classes early in development is to 

construct prediction models using object-oriented metrics. 

Such models are developed using historical data, and can be 

applied for identifying potentially faulty-classes in future 

applications or future releases. The usage of design metrics 

allows the organization to take mitigating actions early such 

as a redesign and consequently avoid costly rework [2]. To 

achieve the objectives, the present study aims to elucidate; 

(i) the relationship between object-oriented metrics and the 

number of faults present in the class, (ii) the confounding 

effect of class size on the relationship between metrics and 

fault prediction, (iii) to derive fault prediction model and 

(iv) to identify fault-prone and not-fault-prone classes in the 

object oriented system.  

VII. DESCRIPTION OF THE EMPIRICAL STUDY 

A. Description of the System Study 

One of the goals of this study is to analyze empirically 

the object oriented metrics for the purpose of evaluating 

whether or not these metrics are useful for predicting the 

probability of detecting faulty classes. The system and raw 

data used in this study has been taken from [8]. The system 

studied is a subsystem of a much larger industrial real-time 

telecommunications system which is comprised of several 

million lines of code (LOC) and has been evolving  over the 

past 10 years. Its success is central to the Organization’s 

financial health. The subsystem is written in C++ and has 

been designed using the Shlaer-Mellor method. It consists of 

32 classes which correspond to slightly over 133,000 LOC 

[8]. Figure 2 shows the distributions of the analyzed metrics 

based on 32 classes present in the studied system. Figure 3 

shows the distribution of defect over the 32 classes of the 

studied system.  

B. Dependent and Independent Variables 

The dependent variable (Metric) is the number of faults 

(DEFECT) in a class. The independent variables (Metrics) 

used in this study are ATTRIB, STATE, EVNT, WRITES, 

DELS, RWD, DIT, NOC, LOC, LOC_B, and LOC_H. 

These dependent and independent variables are described 

below.  

[a] Attributes (ATTRIB): It is defined as the count of     

attributes per class from the information model. 

[b] States (STATE): State variable is defined as the count 

of states per class in the state model. 

[c] Events (EVNT): Events variable is defined as the count 

of events per class in the state model. 

[d] Writes (WRITES): It is defined as the count of all write 

accesses by a class contained in the CASE tool. 

[e] Deletes (DELS): It is defined as the count of all delete 

accesses by a class contained in the case tool. 

[f] Read/write/deletes (RWD): It is defined as the count of 

synchronous accesses (i.e. the sum of READS, 

WRITES and DELS) per class from the CASE tool. 

[g] Depth of Inheritance Tree (DIT) : It is defined as the 

depth of a class in the inheritance tree where the root 

class is zero. 

[h] Number of Children (NOC) : It is defined as the number 

of child classes. 

[i] Lines of code (LOC) : It is defined as the number of 

lines of code per class. 

[j] Lines of code (body)(LOC_B): It is defined as the body 

file lines of code per class. 

[k] Lines of code (header)(LOC_H): It is defined as the 

header file lines of code per class. 

[l] Defects (DEFECT) : It is defined as the count of defect 

per class. 

C. Data Analysis Procedure 

The procedure used to analyse the data for achieving 

the aim of the chapter is described in 4 stages.  

[a] Descriptive Statistics 

The distribution and variance of each measure is 

examined to select those with enough variance for further 

analysis. 

[b] Correlation Analysis 

A correlation coefficient measures the strength of a 

linear association between two variables. 

[c] Univariate Analysis 

Univariate regression analysis looks at the relationship 

between each of the independent variables and dependent 

variable under study. This is a first step to identify types of 

independent variables that are significantly related to 

dependent variable and thus are potential predictors to be 

used in the next step. 

[d] Multivariate Analysis 

Multivariate analysis also looks at the relationships 

between independent variables and dependent variable, but 

considers the former in combination, as covariate in a 

multivariate model, in order to better explain the variance of 

the dependent variable and ultimately obtain accurate 

prediction. 

In this study, we use univariate and multivariate 

regression analysis for making fault prediction model for 

estimating no. of fault at a class level of object oriented 

system using structural design measures. In this paper fault 

proneness is defined as the probability of detecting a fault in 

a class. We choose three classification technique 

discriminant analysis (described in section 3.2), neural 

networks (described in section 3.3) and logistic regression 

(described in section 3.5) for classifying the fault-prone and 

not-fault prone classes of object-oriented system and we 

also compared the predictability of these methods. We 

introduce the following three criterion (goodness of fit) to 

evaluate the result of the prediction [26], [27].  

[e] Best Overall Completeness 

Overall completeness is defined as the proportion of 

modules (classes) that are classified correctly: 

overall completeness= (CPFM+CPNFM)/M 

where, CPFM is the number of correctly predicted 

faulty modules, CPNFM is the number of correctly 
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predicted non-faulty modules and M is the total number of 

modules. This parameter measures the ability of modules to 

correctly classify the target software modules (classes), 

regardless of the category in which the models have been 

classified. 

[f] Best Faulty Module (Class) Completeness 

Faulty module completeness is defined as the 

proportion of faulty modules that are correctly classified as 

faulty by the model. 

faulty module completeness=CPFM/FM 

where, CPFM is the number of correctly predicted 

faulty modules and FM is the total number of actual faulty 

modules. This parameter measures the ability of the models 

to identify the most fault-prone part (class) of the target 

software. 

[g] Best Faulty Module (Class) Correctness 

Faulty module (class) correctness is defined as the 

proportion of faulty modules (classes) within the set of 

modules that are classified as faulty by the model. 

faulty module correctness=CPFM/PFM 

where, CPFM is the number of correctly predicted 

faulty modules (classes) and PFM is the total number of 

predicted faulty modules (classes). This parameter measures 

the efficiency of a model, in terms of the percentage of 

actually faulty modules (classes) among the ones that are 

candidates for further verification. 

VIII. RESULTS AND DISCUSSION 

A. The first step of the analysis was to produce descriptive 

statistics (Table-1) of all the variables (independent and 

dependent). The Table1 shows mean, median, Std. dev., 

IQR (inter-quartile range), and the number of 

observations that are not equal to zero. It is noticeable 

that, since the median value is, in all cases, lower than 

the mean, each variable exhibits some tendency to skew 

positively. This is the consequence of a few very large 

classes. Skewness value ranges from  .997 to 3.049 

with Std. Error .414. 

B. The second analysis step was to calculate spearman 

rank correlation coefficient of object oriented metrics 

and number of defect of a class. Results (Table-2) 

revealed that ATTRIB, and NOC are not significantly 

correlated to number of  defect of a class. 

Therefore, they were excluded from further analysis. 

But DEL, DIT, EVNT, READ, WRITE, RWD, LOC, 

LOC_B and LOC_C emerged to be significantly 

positively correlated (each at �= .01 level) to number of 

defect of a class. 

C. The third analysis step was to look the confounding 

effects of size. Table-3 depicts confounding effects of 

size (LOC) on the metrics. All seven selected variables 

are significantly correlated with number of defect of a 

class. Therefore, the relationship between the first and 

the second variable by the theory include the variation 

due to third variable; hence the probable influences 

(effect) of the third variable was partially out to 

estimate the true relationship between the first and the 

second variables. Analyses (Table-3) disclosed the fact 

that seven predictors (DEL, DIT, EVNT, READ, 

STATE, WRITE and RWD) without size control made 

their significant contributions, and when controlling for 

size was estimated, DEL, DIT, EVNT, WRITE, and 

RWD at  level .01  and READ at .05 level demonstrated 

their significant contributions except STATE metrics. 

D. The next analysis step was to investigate the 

relationship of design metrics and number of fault in a 

class. Table-4 shows the R2, Adjusted R square, F-ratio 

and  Std. Error of estimate of the system described in 

section 6. Here, we show individual relationship of 

design metrics (DEL, DIT, EVNT, READ, STATE, 

WRITE AND RWD), and size metrics (LOC, LOC_B, 

LOC_H) to number of fault in a class. Results (Table-4) 

demonstrated that each predictor individually emerged 

to show their significant contribution (p<.001 level) to 

number of defect (fault) in a class, and that all the 

predictors together, emerged to  explain a  total  of  

94% of variance. Here one crucial observation deserves 

mention that EVNT explained a total of 87% of 

maximum variance among all of the independents 

variables under observations. At the end of 

implementation, the LOC, LOC_B and LOC_H 

distributively explained 62%, 62% and 58% of 

variance. Still further, at the implementation level of the 

system, when all the metrics and LOC metric (leaving 

LOC_B and LOC_H because of orthoganality) were 

taken together, a total of 94% could be  explained. 

These observations would provide a tentative idea about 

number of defect may be encountered in the class of 

object-oriented system at the time of testing the system. 

E. Keeping in view the observations, and the one of the 

objectives of  the study, the  early fault prediction 

model was attempted. The regression equation to 

predict the number of fault in a class using regression 

coefficients was found as given below: 

defect=-2.24+.19 DEL + 4.47 DIT + .358 EVNT - .06 

STATE + .116 WRITE - .126 READ     -----(1) 

defect=-.58+.42 EVNT  -----(2) 

The regression model (equation(1)) suggests that     

Metrics DEL, DIT, EVNT, STATE, WRITE and READ      

are known, the number of defect(fault) in a class could  

be estimated at 94% of total variance.  The regression  

equation (2)  suggests that  if  EVNT  is known,    the  

number of defect of a class could be estimated at 88%  

of total variance. 

F. Table 5 shows the obtained fault-prone class prediction 

model by the discriminant analysis. For example, in 

Table 5, 13 classes are predicted to be not-faulty and 

actually not-faulty. Two classes are predicted to be not-

faulty but actually faulty. The overall completeness and 

faulty module (class) completeness are respectively 

93.8 % and 89.5%. The Table 6 shows the cross-

validation  results. The cross-validation is done only 

for those cases in the analysis. In cross validation, each 

case is classified by the functions derived from all cases 

other than that case. Results (Table-6) demonstrated 

that 12 classes out of 13 are predicted to be not-faulty 

and actually not-faulty. Four classes are predicted to be 

not-faulty but actually faulty. The overall completeness 

and faulty module (class) completeness are respectively 

78.9% and 84.4%. 

G. Table 7 shows the obtained fault-prone class prediction 

model by the multivariate logistic regression. For 

example, in Table 7, 13 classes are predicted to be not-

faulty and actually not-faulty. One class is predicted to 
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be not-faulty but actually faulty. The overall 

completeness and faulty module (class)  completeness 

are respectively 96.68% and 94.74% greater than the 

fault-prone class prediction model using discriminant 

analysis. 

H. Table 8 shows the obtained fault-prone class prediction 

model by the Neural Network. For example, in Table 8, 

12 classes are predicted to be not-faulty and actually 

not-faulty. One class is predicted to be not-faulty but 

actually faulty. The overall completeness and faulty 

module (class) completeness are respectively 93.75 % 

and 94.74. 

IX. SUMMARY AND CONCLUSIONS 

Cartwright and shepperd (2000) data was reanalyzed to 

find early indices of predictability of fault-prone classes and 

number of faults in modules (classes) of object-oriented 

system. The results may summarily concluded as follows: 

(i) the DEL, DIT, EVNT, READ, WRITE, STATE and 

RWD metrics emerged to be significantly correlated to the 

number of defect (fault) in the class, (ii) each predictor 

individually emerged to show their significant contribution 

to the number of fault(defect) in a class, and all predictors 

together emerged to explain a total of 94% of variance. 

EVNT metrics individually explained 87% of variance 

among all of the independents variables under observations. 

The size metrics (LOC) explained 62% of variance, (iii) the 

individual predictor DEL, DIT, EVNT, READ, STATE and 

WRITE without size control made their significant 

contributions, and when controlling for size (LOC) was 

estimated DEL, DIT, EVNT and WRITE at p-level .01 and 

READ at .05 level demonstrated their significant 

contributions except STATE metrics, (iv) the early fault-

prone class prediction model was derived using discriminant 

analysis, multivariate logistic regression technique and 

Neural Network with overall completeness and faulty class 

completeness 93.8% , 96.88 and 93.75 and 89.5%, 94.74% 

and 94.74% respectively. 

Our results indicate that DIT (CK-suite metric) and 

other metrics DEL, EVNT, READ, STATE and WRITE 

available by the design stage were strongly associated with 

fault-proneness. Furthermore, the prediction model that we 

constructed with these metrics has good accuracy. Further 

extended studies are desirable in support of the findings. 

 
Table 1 :Descriptive Statistics 
 Mean Median Std. Dev. IQR NOBS<>0 

Attrib 8.656 4.500 8.8340 10.750 32 

DELS 1.500 1.000 1.3912 2.000 24 

DIT 0.438 0.000 0.7156 1.000 10 

EVNT 20.531 10.500 26.2948 30.500 27 

NOC 0.313 0.000 0.8958 0.000 4 

READ 16.250 11.500 19.9192 26.250 24 

STATE 18.031 13.000 22.9368 22.250 27 

WRITE 14.219 8.500 14.4507 20.500 26 

RWD 31.969 22.000 33.6917 47.000 27 

LOC 4178.500 3254.500 3981.3226 4055.750 32 

LOC_B 3427.594 2775.5 3427.1528 3502.50 32 

LOC_H 750.906 707.00 556.9252 552.26 32 

 

 

 

 

Table 2 : Spearman Rank Correlation 
 ATT

RIB 

DEL

S 

DIT EVN

T 

NO

C 

READS STATE

S 

WRI

TES 

ATTRIB 1.00        

DELS -0.12 1.00       

DIT -0.34 0.46 1.00      

EVNT 0.32 0.53 0.38 1.00     

NOC 0.26 -0.41 0.09 0.34 1.00    

READS 0.49 0.50 0.36 0.88 0.18 1.00   

STATES 0.56 0.50 0.10 0.90 0.25 0.87 1.00  

WRITES 0.53 0.57 0.38 0.81 0.09 0.94 0.82 1.00 

DEFECT 0.17 0.62 0.58 0.84 0.18 0.76 0.75 0.77 

LOC 0.56 0.48 0.14 0.91 0.31 0.86 0.97 0.80 

LOC_B 0.56 0.48 0.14 0.91 0.31 0.87 0.97 0.80 

LOC_H 0.62 0.48 0.10 0.88 0.26 0.87 0.98 0.80 

  

 DEFECT LOC LOC_B LOC_H 

DEFECT 1.00    

LOC 0.76 1.00   

LOC_B 0.76 1.00 1.00  

LOC_H  0.76 0.99 1.00  

 

Table-3 : Confounding Effect of Class Size 
S. No. 

 

Metrics Without Size Control Controlling for size (LOC) 

Correlation p-value Correlation p-value 

1. DEL .619 .000 .5732 .001 

2. DIT .580 .000 .8545 .000 

3. EVNT .838 .000 .8691 .000 

4. READ .764 .000 .4083 .023 

5. STATE .751 .000 -.1069 .567 

6. WRITE .770 .000 .6674 .000 

7. RWD .769 .000 .6219 .000 

 
Table-4 : Regression Models: 

Model Metrics Rsquare Adjusted 

Rsquare 

Fvalue P-value Std. Error 

of Estimate 

M1 DEL .246 .220 9.767 .004 10.472 

M2 DIT .307 .283 13.265 .001 10.039 

M3 EVNT .876 .872 212.612 .000 4.240 

M4 READ .658 .646 57.632 .000 7.054 
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M5 STATE .583 .569 41.905 .000 7.788 

M6 WRITE .753 .745 91.598 .000 5.988 

M7 RWD .761 .753 95.304 .000 5.900 

M8 LOC .622 .609 49.328 .000 7.414 

M9 M1-M6  .948 .935 75.789 .000 3.01 

M10 M9+M8 .948 .933 62.972 .000 3.06 

 

Table-5 : Faulty (class) Prediction in Confusion matrix (Using 

discriminant analysis) 

Prediction Not-faulty Faulty  Predictio

n % 

Actual Not-

Fault 

13 0 13 100 % 

Faulty 2 17 19 89.5 % 

  15 17 32  

Overall 93.8 % 

 

Model with all metrics, cut off to .05. The reported numbers 

are related to faulty classes and not to the number of faults 

identified. 
 
Table-6 : Fault (class) Prediction in Confusion matrix (Using 

discriminant analysis) 

Prediction Not-

faulty 

Fault

y 

 Predictio

n % 

Cross-

validated 

Not-Fault 12 1 13 92.31 % 

Faulty 4 15 19 78.9 % 

  16 16 32  

Overall 84.4 % 

 

Model with all metrics, cut off to .05. The reported numbers 

are related to faulty classes and not to the number of faults 

identified. 

 
Table-7 : Fault (class) Prediction in Confusion matrix (Using logistic 

regression) 

 
Prediction Not-

faulty 

Faulty  Predictio

n % 

Actual Not-Fault 13 0 13 100 % 

Faulty 1 18 19 94.74 % 

  14 18 32  

Overall 96.88 % 

 
Model with all metrics, cut off to .05. The reported numbers 

are related to faulty classes and not to the number of faults 

identified. 
 

 

 

 

 

Table-8 : Fault (class) Prediction in Confusion matrix (Using Neural 

Network) 

Prediction Not-

faulty 

Faulty  Prediction 

% 

Actual Not-Fault 12 1 13 92.31 % 

Faulty 1 18 19 94.74 % 

  13 19 32  

Overall 93.75 % 

 

Model with all metrics, cut off to .05. The reported numbers 

are related to faulty classes and not to the number of faults 

identified. 
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Figure 2: Distribution of the analyzed software metrics. The X-axes 

represents the value of the metric. The Y-axes represents the number of 

class. 

 

0

2

4

6

8

10

12

14

0 2 6
1
0

2
5

2
7

4
7

DEFECT

N
o

. 
o

f 
C

la
s
s

 
 
Figure 3: Distribution of the defect metric. The X-axis represents the value 

of the defect metric. The Y axis represents the number of class. 
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