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Abstract: In this paper, an attempt has been made to study thermoelastic response of a direct thermoelastic problem of a hollow cylinder 

occupying the space  }0,)(:),,{( 2/1223 hzbyxaRzyxD ≤≤≤+≤∈= with radiation type boundary conditions. We apply integral 
transform technique to find the thermoelastic solution.  
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INTRODUCTION 

 
       Dange et al. [1] studied Thermal Stresses of a finite 
length hollow cylinder due to heat generation. Gahane et al.  
[2] discussed Transient Thermoelastic Problem of A Semi-
infinite Cylinder With Heat Sources. Gahane et al.  [3] 
studied Transient Thermoelastic Problem of a cylinder with 
heat sources. Hiranwar et al. [4] discussed Thermoelastic 
Problem of A Cylinder With Internal Heat Sources. Jabbari 
et al. [5] studied Axisymmetric mechanical and thermal 
stresses in thick short length FGM cylinders. Jadhav et al.  
[6] discussed an Inverse Thermoelastic Problem of finite 
length thick hollow cylinder with internal heat sources. 
Kamdi et al. [7] studied Transient Thermoelastic Problem 
for a Circular Solid Cylinder with Radiation. Khobragade et 
al. [8] discussed Thermal Deflection of a Finite Length 
Hollow Cylinder due to Heat Generation. Khobragade [9] 
studied Thermal stresses of a hollow cylinder with radiation 
type conditions. Further Khobragade [10] discussed 
Thermoelastic analysis of a solid circular cylinder and 
Khobragade [11] studied Thermoelastic analysis of a thick 
hollow cylinder with radiation conditions.  
       Kulkarni et al. [12] discussed Thermal stresses of a 
finite length hollow cylinder. Lamba et al. [13] studied 
Stress functions in a hollow cylinder under heating and 
cooling processes and Lamba et al. [14] discussed Analysis 
of Coupled thermal Stresses in an Axisymmetric Hollow 
Cylinder. Lord et al. [15] developed  a generalized 
dynamical theory of thermo elasticity.  Love [16] has 
written a book entitled treatise on the mathematical theory 
of elasticity. Marchi et al. [17] studied Heat conduction in 
sector of hollow cylinder with radiation and Marchi et al.  
[18] discussed Heat conduction in hollow cylinder with 
radiation. Mehta [19] studied Interior value problem of heat 
conduction for a finite circular cylinder.  
       Noda et al. [21] discussed a three dimensional 
treatment of transient thermal stresses in a transversely 
isotropic semi infinite circular cylinder subjected to an 
asymmetric temperature on the cylindrical surface. Ozisik 
[22] studied boundary value problems of heat conduction. 
Ali et al. [23] studied Elastic–plastic stress analysis in a long 
functionally graded solid cylinder with fixed ends subjected 
to uniform heat generation. Pathak et al.  [24] discussed   

Thermoelastic Problem of a Semi Infinite Cylinder with 
Internal Heat Sources. Rama Murthy [25] studied Thermal 
stresses in an anisotropic cylinder.  
        Raut et al. [26] discussed   the plane strain and plane 
stress solutions of uniformly heated functionally graded 
solid cylinder or disc problems. Shao et al. [27] studied       
         Thermo-mechanical stresses in functionally graded 
circular hollow cylinder with linearly increasing boundary 
temperature, Composite Structures. Sherief et al. [28] 
discussed A Problem in generalized thermo elasticity for an 
infinitely long annular cylinder composed of two different 
materials. Sierakowski et al. [29] studied an exact solution 
to the elastic deformation of a finite length hollow cylinder. 
Sun et al. [30] discussed the axially symmetric deformation 
of a cylinder of finite length.  
         Takeuti et al. [31] discussed A three- dimensional 
treatment of transient thermal stresses in a circular cylinder 
due to an arbitrary heat supply and Takeuti et al. [32] 
studied Transient thermal stresses in a composite circular 
cylinder due to a band heat source. Tanigawa et al. [33] 
discussed One-dimensional transient thermal stress problem 
for non homogeneous hollow circular cylinder and its 
optimization of material composition for thermal stress 
relaxation. Yuriy et al. [34] discussed Analysis of residual 
stresses in a long hollow cylinder. Walde et al.  [35] studied 
Thermal Stresses of a Solid Cylinder with Internal Heat 
Source. Warbhe et al. [36] discussed Numerical Study of 
Transient Thermoelastic Problem of A Finite Length Hollow 
Cylinder.  

FORMULATION OF THE PROBLEM-I 
Consider a hollow cylinder as shown in the figure 1. The 
material of the cylinder is isotropic, homogenous and all 
properties are assumed to be constant. We assume that the 
cylinder is of a small thickness and its boundary surfaces 
remain traction free. The initial temperature of the cylinder 
is the same as the temperature of the surrounding medium, 
which is kept constant.  
The displacement function ),( zrφ  satisfying the differential 
equation as Khobragade [9-11] is 

Ta
zrrr t







−
+

=
∂
∂

+
∂
∂

+
∂
∂

ν
νφφφ

1
11

2

2

2

2
                             (2.1)               

with 0=φ  at ar =  and br =                                   (2.2) 

http://ojs.excelingtech.co.uk/index.php/IJLTM/article/view/257�
http://ojs.excelingtech.co.uk/index.php/IJLTM/article/view/257�
http://ojs.excelingtech.co.uk/index.php/IJLTM/article/view/257�
http://ojs.excelingtech.co.uk/index.php/IJLTM/article/view/257�
http://www.sciencedirect.com/science/journal/02638223�


N W Khobragade  et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1173-1179 

© 2015-19, IJARCS All Rights Reserved                    1174 

where ν and ta  are Poisson ratio and linear coefficient of 
thermal expansion of the material of the cylinder 
respectively and ),( zrT  is the heating temperature of the 
cylinder satisfying the differential equation as Khobragade 
[9-11] is 
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where cK ρκ /=  is the thermal diffusivity of the material 
of the cylinder, K  is the conductivity of the medium, c  is 
its specific heat  and ρ  is its calorific capacity (which is 
assumed to be constant) respectively,  
subject to the boundary conditions  

)(),,1,( 11 zFakTM r = , for all  hzh ≤≤−  ,            (2.4) 

)(),,1,( 22 zFbkTM r =     for all  hzh ≤≤−  ,           (2.5) 

)(),,1,( 33 rFhkTM z =−  for all  bra ≤≤  ,            (2.6) 

)(),,1,( 4 rGhkTM z =      for all  bra ≤≤ ,            (2.7) 

being: sfkfkskkfM /=+=/ ϑϑ )ˆ(),,,(  
where the prime (^) denotes differentiation with respect to 
ϑ ,  radiation constants are k  and k  on the curved surfaces 
of the plate respectively.  
The radial and axial displacement U and W satisfy the 
uncoupled thermoelastic equation as Khobragade [9-11]  
are  
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The stress functions are given by 
0)0,(,0),(,0),( === rzbza rzrzrz τττ                    (2.13)                                

ir pza =),(σ , or pzb −=),(σ , 0)0,( =rzσ        (2.14)                

where ip  and op  are the surface pressure assumed to be 
uniform over the boundaries of the cylinder. The stress 
functions are expressed in terms of the displacement 
components by the following relations as Khobragade [9-11] 
are 
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where )21/(2 ννλ −= G  is the lame’s constant, G is the 

shear modulus and U, W are the displacement components, 
ease of use 

 
Figure 1: Geometry of the problem 

 
SOLUTION OF THE OF THE PROBLEM 
 
Applying Marchi-Fasulo transform on equation (2.1), we get 
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Equation (2.6) is a Bessel’s equation whose solution yields 
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Applying inverse Marchi-Fasulo transform an equation (3.3) 
we get, 
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DETERMINATION OF DISPLACEMENT AND 
STRESS COMPONENTS 
 
Substituting the value of temperature distribution from (3.4) 
in equation (2.1) one obtains the thermo elastic displacement 
function ),( zrφ as 
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The stress components are 
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DETERMINATION OF STRESS FUNCTION 
 
Substituting the value of (4.2) and (4.3) in equations (2.15)-
(2.18) one obtains the thermal stresses as 
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SPECIAL CASE 
 
Set  

)()1(),( 0rretrf t −−= − δ                                          (6.1) 
Applying finite transform defined in Marchi Zgrablich [2] to 
the equation (32) one obtains 

),,()1(),( 02100 rkkSretnf n
t µ−−=                     (6.2)           

Substituting the value of (32) in the equations (21) to (31) 
one obtains 
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NUMERICAL RESULTS, DISCUSSION AND REMARKS 

To interpret the numerical computation we consider material 
properties of low carbon steel (AISI 1119), which can be 
used for medium duty shafts, studs, pins, distributor cams, 
cam shafts, and universal joints having mechanical and 
thermal properties 

]/[97.13 2smµκ =  ,29.0=υ  )]/([9.51 KmW −=λ  and 

Cmmat
0/7.14 −= µ .  

Setting the physical parameter with 5.0=a , 1=b  and 
3=h .   

 
FORMULATION OF THE PROBLEM-II 
 
Consider a hollow cylinder as shown in the figure 1. The 
material of the cylinder is isotropic, homogenous and all 
properties are assumed to be constant. We assume that the 
cylinder is of a small thickness and its boundary surfaces 
remain traction free. The initial temperature of the cylinder 
is the same as the temperature of the surrounding medium, 
which is kept constant.  
The displacement function ),,( tzrφ  satisfying the 
differential equation as Khobragade [9-11] is 
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with 0=φ  at ar =  and br =                                    (8.2) 
where ν and ta  are Poisson ratio and linear coefficient of 
thermal expansion of the material of the cylinder 
respectively and ),,( tzrT  is the heating temperature of the 

cylinder at time t satisfying the differential equation as 
Khobragade [9-11] is 
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where cK ρκ /=  is the thermal diffusivity of the material of 
the cylinder, K  is the conductivity of the medium, c  is its 
specific heat  and ρ  is its calorific capacity (which is 
assumed to be constant) respectively, subject to the initial 
and boundary conditions  

FTM t =)0,0,1,(    for all  bra ≤≤  , hzh ≤≤−      (8.4) 

),(),,1,( 11 tzFakTM r = , for all  hzh ≤≤−  , 0>t   (8.5) 

),(),,1,( 22 tzFbkTM r = ,  for all  hzh ≤≤−  , 0>t       (8.6) 

),(),,1,( 33 trFhkTM z =− , for all  bra ≤≤  , 0>t    (8.7) 

),(),,1,( 4 trGhkTM z = ,  for all  bra ≤≤  , 0>t        (8.8) 

being: sfkfkskkfM /=+=/ ϑϑ )ˆ(),,,(  
where the prime ( ^ ) denotes differentiation with respect to 
ϑ ,  radiation constants are k  and k  on the curved surfaces 
of the plate respectively.  
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The radial and axial displacement U and W satisfy the 
uncoupled thermoelastic equation as Khobragade [9-11]  are  
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The stress functions are given by 
0),,( =tzarzτ , 0),,( =tzbrzτ , 0),0,( =trrzτ       (8.14) 

ir ptza =),,(σ , or ptzb −=),,(σ , 0),0,( =trzσ       (8.15)                                                             
where ip  and op  are the surface pressure assumed to be 
uniform over the boundaries of the cylinder. The stress 
functions are expressed in terms of the displacement 
components by the following relations as Khobragade [9-11] 
are 

 
Figure 2: Geometry of the problem 
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where )21/(2 ννλ −= G  is the Lame’s constant, G  is the 
shear modulus and U, W are the displacement components. 
Equations (8.1)-(8.19) constitute the mathematical 
formulation of the problem under consideration. 

 
SOLUTION OF THE OF THE PROBLEM-II 
 
Applying transform defined in [18] to the equations (8.3), 
(8.4) and (8.6) over the variable r  having 0=p  with 
responds to the boundary conditions of type (8.5) and then 
Marchi-Fasulo transform , one obtains  
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where constants involved ),,(* sznT  are obtained by using 
boundary conditions (8.6). Finally applying the inversion 
theorems of transform defined in [18] and inverse Marchi-
Fasulo transform, one obtains the expressions of the 
temperature distribution ),,( tzrT  for heating processes as 
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where n is the transformation parameter as defined in 
appendix, m is the Marchi-Fasulo transform parameter.  
 
DETERMINATION OF DISPLACEMENT AND 
STRESS FUNCTION 
 
Substituting the value of temperature distribution from (9.2) 
in equation (8.1) one obtains the thermo elastic displacement 
function ),,( tzrφ as 
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Using (10.1) in the equations (8.11) and (8.12) one obtains 
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Substitution the value of (10.2), (10.3) in (8.16) to (8.19) 
one obtains the stress functions as 
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SPECIAL CASE 
Set )()1(),( 0rretrf t −−= − δ                                     (11.1) 
Applying finite transform defined in Marchi Zgrablich [18] 
to the equation (11.1) one obtains 
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Substituting the value of (11.2) in the equations (9.2) one 
obtains 
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NUMERICAL RESULTS 
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NUMERICAL RESULTS, DISCUSSION AND 
REMARKS 
 
To interpret the numerical computation we consider material 
properties of low carbon steel (AISI 1119), which can be 
used for medium duty shafts, studs, pins, distributor cams, 
cam shafts, and universal joints having mechanical and 
thermal properties 

]/[97.13 2smµκ =  ,29.0=υ  )]/([9.51 KmW −=λ  and 

Cmmat
0/7.14 −= µ .  

CONCLUSION 
In this paper, we modify the conceptual idea proposed by 
Khobragade et al. [174] for hollow cylinder and the 
temperature distributions, displacement and stress functions 
at the edge hz =  occupying the region of the cylinder 

,bra ≤≤ hzh ≤≤−  have been obtained with the known 
boundary conditions.  We develop the analysis for the 
temperature field by introducing the transformation defined 
by Zgrablich et al., finite Fourier sine transform and Laplace 
transform techniques with boundaries conditions of 
radiations type. The series solutions converge provided we 
take sufficient number of terms in the series. Since the 
thickness of cylinder is very small, the series solution given 
here will be definitely convergent. Assigning suitable values 
to the parameters and functions in the series expressions can 
derive any particular case. The temperature, displacement 
and thermal stresses that are obtained can be applied to the 
design of useful structures or machines in engineering 
applications. 
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Graph 1: Temperature distribution versus r 
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Graph 2: Displacement function versus r 
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Graph 3: Radial stresses versus r 
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Graph 4: Axial stresses versus r 
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Graph 5: Tangential stresses versus r 
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Graph 6: Shear stresses versus r 
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