
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 740

ISSN No. 0976-5697

Basic Analysis of Docker Networking

Samyukta S Hegde

M.Tech, Department of Information Science
BMS College of Engineering

Bangalore, India

Dr. P Jayarekha
Associate Professor, Department of Information Science

BMS College of Engineering
Bangalore, India

Abstract: Containerization is virtualization at operating system level as opposed to full machine virtualization. Docker is a tool that is used to
create, ship and run applications inside containers. A single host can have multiple containers running on it. The containers may have to
communicate with each other and by using docker networking, this can be accomplished. In this paper we explore docker networking and
analyze how it is based on the concept of Linux network namespaces. We will use Cisco Packet Tracer to implement a sample network. Then the
same network will be implemented in Linux using ip tool. The same network will then be implemented using docker and the relationship
between network namespaces and docker networking will be established.

Keywords: docker; Linux; network; namespaces; containers

I. INTRODUCTION

Containerization is a lightweight alternative to complete OS
virtualization. It eliminates the need of hypervisor and virtual
machines. It basically encapsulates a run time environment.
The Linux features used are namespaces and control groups. To
achieve containerization, docker is used.

This paper demonstrates the analogy between the real world
networks and the docker networking. As docker networking is
based on Linux network namespaces, the namespace concept
and its implementation will also be touched upon. The
following will be demonstrated:

• A simple network will be set up in Cisco packet tracer.
• The same network will be implemented in network

namespace
• Docker will be used to represent the network scenario

II. LITERATURE SURVEY

Docker is platform for building, shipping and running
applications. It does not contain the whole operating system,
but just the necessary binaries and libraries. It basically
embodies a run time environment. It is run on user space on top
of the OS. There is no concept of hypervisor. Namespaces
facilitate the container to have its own network, IP etc. Control
groups manage the usage of memory and CPU [4]. It is a
platform for developing, shipping and running applications. It
is a bit like the virtual machine. But the whole OS is not
created. Docker uses the host machine’s kernel. It is
lightweight and reduces the size. The host machine is of no
concern.

Images can be pulled from the repositories or can be created
by users (e.g. by using Dockerfiles). Dockerfiles can be used to
build images. Docker registries are utilized for the purpose of
storing the images.

Docker containers get created when images are run. Data
volumes can also be shared between containers. The
containers/microservices (services that communicate with each
over a network (service oriented architecture)) can be
connected to each other using a network.

III. PROJECT SETUP

A. Network Setup using Cisco Packet Tracer
• First Cisco Packet Tracer is opened.
• Two PCs, 2 generic switches and one router are

inserted.
• PC0 is connected to Switch0 and PC1 to Switch1 using

copper Straight-through cable through Fast Ethernet
ports.

• Switch0 and Switch1 are connected to Router0 using
copper Straight-through cable through Fast Ethernet
ports fa0/0 and fa1/0 respectively.

• The network setup looks as shown in Fig 1.
• Configuration of hosts is done as given in Table I

Table I. IP Address Configurations

Host. Interface Fa0/0 Interface Fa0/1
PC0 172.19.1.2/24
PC1 172.20.1.2/24
Router0 172.19.1.1/24 172.20.1.1/24

Fig. 1. Simple network designed in Cisco Packet Tracer

• Now, on pinging PC0 from PC1 and vice versa, the
ping succeeds and the connectivity is correct.

Samyukta S Hegde et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,740-743

© 2015-19, IJARCS All Rights Reserved 741

B. Network Setup in Linux Network Namespaces
The OS used in this demonstration is Centos 7. After

logging into a Linux box, two nodes are to be created using
namespaces [1]. They are to be connected to a router which in
turn is another namespace. The two nodes belong to separate
networks. The aim is to enable connectivity between the two
nodes (i.e. namespaces) [2].

• The commands used for the creation of the namespaces
PC0, PC1 and Router0 and viewing them is shown in
Fig 2.

Fig. 2. Creation and Listing of network namespaces using ip tool

• The entries of the created namespaces are visible in the
folder /var/run/netns/ (Fig 3).

Fig. 3. /var/run/netns folder

• Virtual Ethernet (veth) pairs are created for
connectivity [2]. There will be two veth pairs for both
the PCs to connect to the Router. A veth pair is just like
a pipe. The information sent from one end comes out
from the other end [3]. Fig 4 displays the commands to
be run to create veth pairs and bind them to respective
namespaces.

Fig. 4. Creation of virtual ethernet pairs and binding to namespaces

• The next step is to log into each network namespace,
set the ip as in TABLE I and bring up the lo and veth
interfaces. The commands for Router0 are shown in
Fig 5. PC0 and PC1 also have to be configured in the
same way.

Fig. 5. Interface configuration of Router0 namespace

• The namespaces are not able to ping each other as there
is no route added. On adding the ip route [2], by
logging into each namespace, a static route is
established (Fig 6).

Fig. 6. Commands to add static routes

C. Host Setup in Docker Containers
• The first task is to pull an image from the docker hub.

The image used here is nginx:latest. Two containers are
created by using the docker run command. They are
named as PC0 and PC1 (Fig 7).

Fig. 7. Running nginx containers with host names PC0 and PC1

• The running of two images creates two network
namespaces. But these, by default are not listed in the
/var/run/netns folder. So the symlink has to be
manually created to play around with networks [8].
First the pid of the docker containers is got and then a
symlink is created as displayed in Fig 8.

Fig. 8 Creation of symlink

• It is done for both the containers and then when the
command “ip netns” is run, both the namespaces are
visible.

• The next task is to log into PC0 using the docker exec
command. The ifconfig command is run in order to
check the interfaces. The same thing is done with
container PC1. As the network is not specified during

Samyukta S Hegde et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,740-743

© 2015-19, IJARCS All Rights Reserved 742

container creation, both PC0 and PC1 are connected to
the same default bridge network. So if they ping each
other, they can communicate with each other.

D. Network Setup in Docker Containers
1) Method 1:

Two networks are created by names net1 and net2. net1 is
created as shown in Fig 9. net2 is also created in the same way
[5].

Fig. 9. Creation of a docker network

If networks are created by docker, it implies that, in reality,
network bridges are created. These can be checked by running
the command “brctl show.”

Initially the two newly created bridges will have no
interfaces listed. On association of both the containers with the
networks created, the interfaces for the bridges will be listed
[6].

The two containers belong to different networks and cannot
ping each other. On running the “brctl show” command, the
interfaces for the bridges are listed. It is because when a
container is attached to a network, a veth pair is created. One
end is inside the container and the other end is in the bridge.

In order for both the containers to ping each other, another
network is created i.e net3 [7]. Both the containers are
connected to it using the docker connect command.

Now both the containers are connected to net3. This leads
to the creation of two veth pairs. One end of both resides in
each container and the other end in the net3 bridge. The ip and
brctl commands can be run to check the veth pairs in the
containers and the bridge respectively. Now both PC0 and PC1
each belong to two networks. As both are connected to net3,
the containers can ping each other.

2) Method 2:

In order to make the containers in different networks to
communicate with each other, the ip tool needs to be used to
manipulate the interfaces.

The existing containers are removed. Two new containers
are run with names PC0 and PC1. A new network namespace
Router1 is created. There are three network namespaces now
(The method to make the namespaces of containers visible is
described in Section C of Project Setup). On doing so, Fig 10,
lists the network namespaces using the “ip netns” command.

Fig. 10. List of network namespaces

A new network namespace Router1 is created. The
containers PC0, PC1 and namespace Router1 are configured to
have ip addresses 172.19.1.2/24, 172.20.1.2/24 and router
interfaces addresses 172.19.1.1/24 and 172.20.1.1/24. The
addresses are assigned to the namespaces by following the
same steps as in Section C of Project Setup.

On doing this, it has been made possible to enable two
containers PC0 and PC1 in different networks to communicate
with each other using a third network namespace Router1
(which acts as a real world router).

IV. RESULTS AND DISCUSSIONS

This section showcases the results of different network
setups performed in the previous section. Fig 11. is a proof of
successful connectivity between PC0 and PC1 in Cisco Packet
Tracer.

Fig. 11 Successful ping in Cisco Packet Tracer

Fig 12 shows the connectivity between PC0 and PC1 for the
method followed in Section B of Project Setup.

Fig. 12 Successful ping in Cisco Packet Tracer

On association of containers PC0 and PC1 to network net3

as explained in Method 1 of Section D in Project Setup, they
are able to ping each other, as shown in Fig 13.

Fig. 13 Successful ping from PC0 to PC1 on association with network net3

The containers belonging to different networks are able to

ping each other because of their binding to Router1 network
namespace (Method 2 of Section D in Project Setup). Fig 14
displays the connectivity. Similar results are observed when
PC0 is pinged from PC1

Fig. 14 Successful ping from PC0 to PC1 on association with network
namespace Router1

V. CONCLUSION

From the study of network namespaces, we conclude that
the approach followed is helpful in having a basic
understanding about the concept of networking in docker. The
containers and their networking can further be explored in

Samyukta S Hegde et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,740-743

© 2015-19, IJARCS All Rights Reserved 743

many different ways. Some of the areas of exploration are
subnetting, NAT etc.

VI. ACKNOWLEDGMENT

I express my heartfelt gratitude to my guide Dr. P
Jayarekha for her guidance and encouragement. During the
entire duration of this project, she supported and encouraged
me in every aspect. Her valuable suggestions have helped me in
completing the project successfully.

VII. REFERENCES

[1] Simulate a LAN with Linux Network NameSpaces by
Chandan available at
https://www.youtube.com/watch?v=cWKQ7YtZUTk

[2] Simulate a Router with Linux Network NameSpaces by
Chandan, available at
https://www.youtube.com/watch?v=TlGdOx80Pqc

[3] Introducing Linux Network Namespaces, Scotts Weblog,
available at

http://blog.scottlowe.org/2013/09/04/introducing-linux-
network-namespaces/

[4] Cgroups, namespaces, and beyond: what are containers
made from? with Jérôme Petazzoni, Tinkerer
Extraordinaire, Docker, available at
https://www.youtube.com/watch?v=sK5i-N34im8

[5] Docker container networking, docker docs, available at
https://docs.docker.com/engine/userguide/networking/

[6] Customize the docker0 bridge, docker docs, available at
https://docs.docker.com/engine/userguide/networking/def
ault_network/custom-docker0/

[7] Stackoverflow Blog post on “Communicating between
Docker containers in different networks on the same host”
available at
http://stackoverflow.com/questions/36035595/communica
ting-between-docker-containers-in-different-networks-on-
the-same-host

[8] StackOverflow post available at
http://stackoverflow.com/questions/31265993/docker-
networking-namespace-not-visible-in-ip-netns

http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/�
http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/�
https://www.youtube.com/watch?v=sK5i-N34im8�
http://stackoverflow.com/questions/36035595/communicating-between-docker-containers-in-different-networks-on-the-same-host�
http://stackoverflow.com/questions/36035595/communicating-between-docker-containers-in-different-networks-on-the-same-host�
http://stackoverflow.com/questions/36035595/communicating-between-docker-containers-in-different-networks-on-the-same-host�

	Introduction
	Literature Survey
	Project Setup
	Network Setup using Cisco Packet Tracer
	Network Setup in Linux Network Namespaces
	Host Setup in Docker Containers
	Network Setup in Docker Containers
	Method 1:
	Method 2:

	Results and Discussions
	Conclusion
	Acknowledgment
	References

