
Volume 1, No. 2, July‐August 2010

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserves 118

ISSN No. 0976-5697

A Complete Design & Implementation of Replica Middleware Strategy in Dmanets

Pankaj Kumar Verma*
I.T. Dept.

Haryana College of Tech. & Management
Kaithal, India

Justpankajverma@gmail.com

Dr. Vijay Lamba
E.C.E. Dept.

Haryana College of Tech. & Management
Kaithal, India

lamba_vj@hotmail.com

Abstract: Mobile Ad Hoc Network is an infrastructure less network where there is no need of any base station where Every node is responsible
to handle the data & transmit the data. The world called dense Mobile Ad-hoc NETworks (MANETs), i.e., limited spatial regions, such as shop-
ping malls and airports, where a high number of mobile peers can separately cooperate without a statically deployed network infrastructure. This
paper will provide the complete detailed study of Replica middleware strategy architecture [1] and all its functions and methods to manage, re-
trieve, and distribute replicas of resources to cooperating nodes in a dense MANET. The guideline is to exploit high node population to enable
hopeful lightweight resource replication capable of tolerating node exits/failures. In our paper we have adopted some original approximated
solutions, exclusively designed for DMANET that have confirmed good scalability and limited overhead for DMD, for RD/RR, and for RLM.

Keywords: Replica Middleware, DMANET Design, Replica Monitor, J2ME, Replica DMANET Design & Implementation, Resource Delgate.

I. INTRODUCTION

To support the operations in replication strategy, we are
designing and implementing the Replica Middleware archi-
tecture of DMANET for Entertainment Applications as
shown in above figure 1. transparently disseminates, re-
trieves, and manages replicas of common interest resources
among cooperating nodes in dense MANETs [2].

Basically we have divided this architecture in three ma-
cro-modules, according to the role of the entity they support
and all the macro contains four major components. The four
components are DMD, RD, RR and RLM.

First module discussed about the Monitor who only per-
forms RLM operations; in particular, they decide resource
replication Level as a new delegate enters the dense
MANET, and counteract Level inconsistencies, by invoking
new replications. To this end, they need a Shared Resource
Table verifier, periodically checking actual vs. established
Level. Second Module discussed about the Delegates they
perform resource dissemination and retrieval, and are also
partly responsible of Level maintenance; in fact, in case of
exit from the dense MANET, they are in charge of notifying
the Monitor, and getting free of their shared resources via
neighbor uploads. The last module is DMD who work is di-
vide in two parts Boundary identification and the Monitor
election. The rest detail will be provided in next section.

Figure 1. A DMANET Replica Middleware Strategy architecture for

Entertainment areas

II. DESIGN

In design part we will discuss the replica middleware
strategy diagram. We can see the replica strategy middleware
architecture describe in the figure 1 has not shown the com-
plete details about all the components: So in this section we
have provided the complete working of all macro-modules
(DMD, delegate and Monitor), components (RD, RR, RLM,
DMD) of the middleware architecture.

A. Monitor
Basically the role of Monitor is to manage the DMANET

replica Level. It includes three main components. RLM En-
gine, SRT Monitor & RD verifier. Figure 2 displays all the
components of first Monitor activity and all its agents.
Whenever a new delegate tries to enter in DMANET bound-
ary, then he decides the level of Resource replication & then
cancel lout the level of inconsistency. It has a RD verifier
who checks the desired Replica Level level consistency &
adds the resource into resource table.

Figure 2.Modular architecture for Replica strategy Monitor

RLM Engine performs the Monitor function it determines
the Target Replication Level and enter its value in the SRT.
Monitor operates on SRT by updating its contents periodi-

Pankaj Kumar Vermay et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1118-121

© 2010, IJARCS All Rights Reserves 119

cally by checking replication Level consistency. If Actual
Replication Level of any resource is below the target Level
then SRT Monitor invokes required Replica on REM Engine.

B. Delegate
Delegate comes in second Layer of Replication Middle-

ware architecture. It includes RD and RR components. Dele-
gate is responsible for all work of replica distribution and
replica retrieval. They also have some part of RLM as a
Monitor Notifier. When a node is leaving the DMANET then
it is the duty of Delegate through RLM to notify the exis-
tence of the leaving Monitor node. Whenever a node leaves
the DMANET then delegate relives all the resources having
by the Monitor.

Figure 3. Modular architecture for Replica strategy Delegate

Figure 3 shows the Middleware Architecture of Delegate.
This is more complex then the DMD layer. There is a Dele-
gate interface, RLM agent replica Distribution agent, Replica
retrieval agent and a Resource table. All the components of
Delegates work through their agents.

Replica distribution is divided into two parts Monitor co-
ordinator and abstract replica propagation strategy. When-
ever a new node entered in DMANET the manger coordina-
tor delivers a list of carried resource with an RDF descriptor
[3], to the network Monitor to get suitable replica Level.
When the proper replica Level is found or maintained. Then
on the basis of this maintained Level RPS (replica Propaga-
tion Strategy) agent perform the required distribution. RPS is
provided as an abstract since it is representing only the inter-
face implemented by the actual agent (Installation takes place
through factory pattern)[4]. RPS agent need to shift full re-
source along the distribution path.

Delegate Interface exports two methods of Replica Re-
trieval.

• Share (): To find a node sharing the needed resource.
• getResource (): To effectively command the down-

load.
In Replica Retrieval component we have RR agent and it

includes a Replica send/recv component. The method getRe-
source and the SendResource perform Replica download and
upload work. Both methods deals with Resource Monitor
Adapter to extract and store the resource. If a node decide on
its turn to share the downloaded resource. Method getRe-
source interface with Monitor coordinator via addResource
method.
Status Listener is only notify the entering and exiting of a
node from DMANET. To perform these activities it has
three functions.

• EnteredInDMANET()
• ExitingFromDMANET()

• ExitedFromDMANET()

C. Dense Manet Design(DMD)
DMD is the third layer of Replica Strategy Middleware

Architecture. It allows upper (RR, RD) layer to access topo-
logical information. It is the basic module for operating
DMANET. It performs two main activities Boundary Identi-
fication Protocol and Monitor Election Protocol through
SetupDMANET function.

Figure 4. Modular architecture for Replica strategy DMD

When the time expired the Density Enquiry Monitor
broadcast a discovery message and starts Monitor election
which in turn start the Farthest Node Identification. When the
operation end the new elected Monitor is stored in the table
and the control returns.

Boundary identification agent continuously performs
Monitor role maintenance operation and creates a neighbor
table via Hye Monitor which is needed in RR and RD proto-
col.

III. IMPLEMENTATION

According to the guidelines and key requirements stated
in the introduction section we have implemented our Replica
Strategy Middleware Architecture on J2ME. Here we have
discussed the main implementation issues encountered dur-
ing the development process of our architecture. But before
starting the implementation of architecture, we should first
understand about J2ME and its uses in the implementation
process of or work. How it will help us in ad hoc networking.

A. J2ME Plateform
The Java 2 Micro Edition (J2ME) platform gives devel-

opers breakthrough tools for building advanced wireless ap-
plications. Now, one of the leading wireless application con-
sultants at Sun has written a step-by-step guide to successful
wireless development using the J2ME SDK. Vartan Pirou-
mian illuminates every key feature of the J2ME platform and
every step of the development process: planning, architec-
ture, design, coding, compilation, execution, debugging, and
deployment. Wireless J2ME Platform Programming [5] cov-
ers all this, and more:

• Using the Mobile Information Device Profile's
(MIDP) high-level and low-level APIs Building ef-
fective wireless user interfaces with the J2ME plat-
form

• Leveraging the J2ME platform's facilities for persis-
tent storage

Pankaj Kumar Vermay et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1118-121

© 2010, IJARCS All Rights Reserves 120

• Managing, provisioning, and internationalizing wire-
less applications.

• Integrating complete wireless solutions: Internet por-
tal interfaces, wireless application interfaces, and the
wireless Internet environment

J2ME modular design permits to combine Designs and
Profiles, the former essentially defining virtual machines and
basic Java classes, the latter extending Designs with addi-
tional libraries. In this thesis work, we focus on CLDC, i.e.,
the Design with the lowest hardware/software requirements,
and MIDP (Mobile Information Device Profile's), providing
in particular UDP support, persistent storage access, and a
model for the development of applications (Midlet). CLDC’s
Generic Connection Framework (GCF) jointly supports
communication as well as I/O operations with a common set
of abstractions. Essentially, GCF is an API refining a generic
Connection into more specific abstractions: DatagramCon-
nection defines packet I/O; InputConnection, and Output-
Connection stream-based I/O, which is further refined in
ContentConnection. GCF does not implement any protocol;
MIDP (Mobile Information Device Profile's) extends GCF
by implementing TCP and UDP classes. GCF abstraction can
be seamlessly implemented to provide file support: FileCon-
nection [6] permits to access files stored on device filesystem
as well as removable memory cards. By exploiting MIDP’s
RecordStore. Differently from filesystem, RecordStore is
strictly tied to the instantiating application and hardly permits
resource sharing between a well-defined group of applica-
tions. RecordStore abstraction is by no means connected to
GCF, but is separately defined [7].

B. Implementation Issue
This section reports some interesting issues we encoun-

tered and solved during REPLICA IN DMANET implemen-
tation. In particular, we focus on four main areas: i) Packet
Dealing; ii) Message Passing; iii) Resource packetization; iv)
Routing protocol interactions.

1) Packet Dealing: Every packet in REPLICA IN
DMANET contains a common header including Type field,
SrcAddress/DestAddress, DatagramId etc. The actual
Sender and the receiver of the packets are identified through
SrcAddress/DestAddress. When DatagramId is combined
with the SrcAddress, then it provides a unique identifier for
the packet. As soon as a packet is received, a common
REPLICA IN DMANET Dispatcher is in charge of
determining how it should be managed by inspecting the
Type field. Different choices are possible: the Dispatcher
could sequentially elaborate the packet, or it can notify the
packet to a single waiting Thread, or it can activate a brand
new Thread for every received packet. Ideally, to maximum
parallelize the execution; the last solution would be the best;
however, constrained devices implicitly limit the maximum
number of active Threads, by degrading performance as
more Threads are activated. Thus, we choose to differentiate
packets requiring a complex (and generally blocking)
elaboration, e.g., those delegating the execution of Monitor
election or resource dissemination protocols, from those
expecting a quick reply, e.g., shared neighbors probe in SID.
The Dispatcher activates brand new Threads for the former,
while it only notifies existing Threads for the latter, by
placing the packet in the respective waiting queue.

2) Message Passing: Most packets are delivered with
local broadcasts, e.g., hyes, neighbor probes, farthest node
determination relaying. However, we found that limited

broadcast (with destination “255.255.255.255”) is not
supported on J2ME. We collected the same experience on a
number of different implementations: Palm OS and
Windows Mobile versions of IBM Websphere, and Sun and
IBM Wireless Toolkits. In particular, the limited broadcast
destination address is not recognized as a valid argument in
the Connector’s open method. This problem could be solved
by replacing limited broadcast with direct broadcast (with
destination “X.Y.Z.255”).

3) Resource Packetization: Resources are locally
accessed via FileConnection GCF APIs where a filesystem
is supported, via Record Store elsewhere. During
upload/download phases, resources need to be carried in
Datagram packets. Unfortunately, they often exceed
datagram sizes; thus, they need to be split into a sequence of
packets. REPLICA IN DMANET implements automatic
methods to fragment resources at sender, and recompose at
destination. In this case, it is important to determine the
packet size allowing the best performance. We
experimentally proved that, as expected, the biggest packet
size supported by the communication device always leads to
best performance (i.e., because this choice minimizes the
communication overhead).

4) Routing Protocol communications: Even if we have
not implemented any routing protocol yet, we realized that
some of the operations we support would be identically
repeated at the network layer. For instance, many multi-hop
routing protocols exchange Hye packets to monitor local
connectivity, and maintain a neighbor table. REPLICA IN
DMANET repeats the same operations/data structures at an
upper level. Interestingly, cross-layer design could avoid
this unnecessary communication/memory waste, by
allowing REPLICA IN DMANET to directly access
network-layer information.

IV. EXPERIMENTAL RESULT

We have earlier stated that J2ME is designed for wireless
devices, So We have tested REPLICA IN DMANET proto-
type in small PDA (personal digital assistants) and laptop
network setups, by using J2ME. CLDC and MIDP provided
by IBM J9Websphere (for PDAs) and by Sun Wireless Tool-
kit (for laptops). We utilized different types of PDAs (Com-
paq, Palm, HP) with 400MHz Intel CPU, [64MB-128MB]
RAM and PalmOS or Pocket PC operating systems. As for
the laptops, we ran REPLICA IN DMANET on Dell Lati-
tudes D600, equipped with Pentium M1.4GHz, 512MB
RAM and Windows XP operating system. Due to the limited
number of available devices, we only aimed at evaluating the
basic mechanism of REPLICA IN DMANET protocols. In
particular, we instantiated a 1 to 2-hop (i.e., 2 to 3- node)
network and evaluated latency during basic DMD operations.
Here we present only a subset of the results we obtained (we
are still working to extend our evaluation).

We measured DMD farthest node identification latency
in 1 and 2-hop networks. This step of the election algorithm
is highly influenced by two timers: one on the flooding for-
warder determining whether the node is the farthest in its
direction or not (FarthestReplyTimer), one on the current
initiator to stop the farthest identification process and pro-
claim its INvalue (StopFarthTimer). Since we were interested
only in the communication latencies, we set FarthestRe-
plyTimer = 0 to collect replies from all the few nodes, while

Pankaj Kumar Vermay et al, International Journal of Advanced Research in Computer Science, 1 (2), July-August 2010, 1118-121

© 2010, IJARCS All Rights Reserves 121

we did not take into account StopFarthTimer at all, but we
measured only the time needed to obtain all the replies. The
first row of Table 1 shows that this value is on the order of
few hundred milliseconds.

Table I. DMD Protocol Latency

Network hop diameter 1 Hop 2 Hop

Farthest Node
Determination [ms]

204.5 228.1

Monitor Election [ms] 1146.2 1871

Then, we measured the election latency in the same net-
work setup. In this case, the results are highly influenced by
StopFarthTimer, which is set equal to 500ms, and by Max-
ConsecutiveEqualSolutions, which is set equal to 2. We ob-
serve that the election latency is lower than a couple of sec-
onds for 1-hop as well as 2-hop networks (second row of
Table 1). As expected, the difference for the two cases ap-
proximates the value StopFarthTimer meaning that for the
second case one more election iteration is needed.

V. ACKNOWLEDGMENTS

I would like to thanks Dr. Vijay Lamba Associate Prof.
In ECE Deptt. HCTM, Kaithal, Haryana (INDIA) for his
gentle guidance and also thankful to my friends they prompt
me to do research work. I also thankful to all staff members
of I.T Deptt. HCTM, Kaithal who provide me help and re-
sources for my research work.

VI. CONCLUSION

In particular, middleware typically increases service port-
ability over different lower-layer communication protocols.
In this paper work, we identified two primary challenges
hampering effective remote resource access in MANET.
First, mobile nodes can leave network area without any no-
tice, disrupting availability of common interest resources.

Second, lacking centralized server authorities, resources
need to be distributed discovered and located. This issue is
aggravated in wide-scale, sparse network, such as VANET.
By applying the REPLICA IN DMANET middleware it will
possible to provide the distribution of resource replicas, to
improve their availability. In particular, it proposes effective
distributed protocols, to locate close resources and to main-
tain established replication Levels in spite of possible node
mobility outside the service area

VII. REFERENCES

[1]. A. Kumar, Pankaj Kumar Verma, Dr. Vijay Lamba
“Concept of Middleware Services in Mobile Ad-hoc
Networks” IJCA (0975 – 8887) Volume 2 – No.8, June
2010.

[2]. P. Bellavista, A. Corradi, E. Magistretti, “Lightweight
Replication Middleware for data and Service Compo-
nents in Dense MANETs”, 1st IEEE Int. Symp. on a
World of Wireless, Mobile and Multimedia Networks
(WoWMoM), June 2005.

[3]. S. Decker, P. Mitra, and S. Melnik. Framework for the
semantic web: an rdf tutorial. IEEE Internet Computing,
4(6), 2000.

[4]. E. Gamm, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Publisher, 1994.

[5]. Wireless J2ME Platform Programming
(http://books.internet.com/ books/0130449148)

[6]. Java Specification Requests75.
http://jcp.org/en/jsr/detail?id=75.

[7]. Java Record Management System.
http://developers.sun.com/techtopics/mobility/midp/arti
cles/databaserms/.

	I.
	I. Introduction
	II. Design
	A. Monitor
	B. Delegate
	C. Dense Manet Design(DMD)
	III. IMPLEMENTATION
	A. J2ME Plateform
	B. Implementation Issue
	1) Packet Dealing: Every packet in REPLICA IN DMANET contains a common header including Type field, SrcAddress/DestAddress, DatagramId etc. The actual Sender and the receiver of the packets are identified through SrcAddress/DestAddress. When DatagramId is combined with the SrcAddress, then it provides a unique identifier for the packet. As soon as a packet is received, a common REPLICA IN DMANET Dispatcher is in charge of determining how it should be managed by inspecting the Type field. Different choices are possible: the Dispatcher could sequentially elaborate the packet, or it can notify the packet to a single waiting Thread, or it can activate a brand new Thread for every received packet. Ideally, to maximum parallelize the execution; the last solution would be the best; however, constrained devices implicitly limit the maximum number of active Threads, by degrading performance as more Threads are activated. Thus, we choose to differentiate packets requiring a complex (and generally blocking) elaboration, e.g., those delegating the execution of Monitor election or resource dissemination protocols, from those expecting a quick reply, e.g., shared neighbors probe in SID. The Dispatcher activates brand new Threads for the former, while it only notifies existing Threads for the latter, by placing the packet in the respective waiting queue.
	2) Message Passing: Most packets are delivered with local broadcasts, e.g., hyes, neighbor probes, farthest node determination relaying. However, we found that limited broadcast (with destination “255.255.255.255”) is not supported on J2ME. We collected the same experience on a number of different implementations: Palm OS and Windows Mobile versions of IBM Websphere, and Sun and IBM Wireless Toolkits. In particular, the limited broadcast destination address is not recognized as a valid argument in the Connector’s open method. This problem could be solved by replacing limited broadcast with direct broadcast (with destination “X.Y.Z.255”).
	3) Resource Packetization: Resources are locally accessed via FileConnection GCF APIs where a filesystem is supported, via Record Store elsewhere. During upload/download phases, resources need to be carried in Datagram packets. Unfortunately, they often exceed datagram sizes; thus, they need to be split into a sequence of packets. REPLICA IN DMANET implements automatic methods to fragment resources at sender, and recompose at destination. In this case, it is important to determine the packet size allowing the best performance. We experimentally proved that, as expected, the biggest packet size supported by the communication device always leads to best performance (i.e., because this choice minimizes the communication overhead).
	4) Routing Protocol communications: Even if we have not implemented any routing protocol yet, we realized that some of the operations we support would be identically repeated at the network layer. For instance, many multi-hop routing protocols exchange Hye packets to monitor local connectivity, and maintain a neighbor table. REPLICA IN DMANET repeats the same operations/data structures at an upper level. Interestingly, cross-layer design could avoid this unnecessary communication/memory waste, by allowing REPLICA IN DMANET to directly access network-layer information.

	IV. Experimental Result
	V. ACKNOWLEDGMENTS
	VI. CONCLUSION
	VII. References

