
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 650

ISSN No. 0976-5697

Implications of Dependency Changes in Component Based Systems

Nisha Ratti
Department of CSE, Rayat Group of Institutions,

Near Ropar, S.B.S.Nagar, Punjab, India

Parminder Kaur
Department of CSE, Guru Nanak Dev University,

Amritsar, Punjab, India

Abstract: Software does evolve over a period of time. Various studies have been conducted to study this phenomenon. One of the important
developments on software platform has been the emergence of Component Based Systems (CBSs). While studying the evolution of CBSs, it is
suggested that their evolution cannot be studied without noticing the corresponding changes in the dependencies. Our study tries to measure
quantitatively these changes over a period of time along with the usual changes in development aspects like coupling, cohesion etc.

Keywords: Software Evolution, Component Based Systems, Open Source Environment, Component Dependencies.

INTRODUCTION

Software ages with time [1]. Software aging may be due to
the result of poor maintenance of the software or the non-
requirement of updates by product’s owner. With the
passage of time, software maintenance should be given high
priority. If it is not done at the priority basis, then it is
required to identify the completely obsolete systems. In this
case, the maintenance cost of such systems become too high
as compared to the benefit gained from them. The service
provider has two options, either it discards the software
completely and starts the development again from the
scratch or recognize the obsolete part and then try to replace
only that part by the newer one. It is often suggested to go
by second option. Mcllroy [10] coined the concept of
component based software development. Component-ware
allows the user to develop the software system using off -
the-shelf components or third-party components. Software
reuse is one of the major benefits derived from component
based software development. Software reuse is not only
dependent on choosing the right component, but it also
emphasizes the way components are combined. The
architecture style plays a vital role in it. The architecture
style of a component is composed of three terms i.e. a
collection of components, their interconnection and the
communications among them [13][14]. A component is
expected to encapsulate every information relating to it i.e.
Composition of the services going to provide, Behavior of a
system and Properties of a system that can be developed
using these components. After specifying every important
service they can provide, it further specifies its own
implementation & documentation on dependencies of the
system. All these attributes help them to be specified as self-
contained entities. These self-contained entities act as legacy
parts for many software systems being developed. So, the
software systems which are developed using such legacy
parts are better termed as Continuous Software Engineering
Systems (CSESs) [2]. Clements [4] has described many
benefits of working with component-based systems as
follows:
• Reduced development time: Developing the
component from scratch takes obviously more time than
buying or selecting the appropriate component- "assuming

that the search for a suitable component does not consume
inordinate time"[4].
• Increased reliability of systems: System reliability

increases as the user try to use the component which
tried and tested by many people rather than the custom
made component.

• Increased flexibility: A user can make a better choice
among the available components from various suppliers
which in turn results in better software design.

Nitty – Gritty of Component-Based Development

Every rose has its thorns. So, benefits too bring a number of
vulnerabilities related to the supplier, i.e. obsolescence and
performance. In order to handle these hazards, it is required
that decision of selecting the components and its supplier is
very important and should not be done in isolation[5].One of
the two approaches may be used while dealing with
components, i.e. working on components and working with
components. The former approach emphasizes on the
development of components. \Working with components
often relieves the developer from the development instead it
make them work on integration. The most basic problem
with component-based Integration is that there is a need to
keep the record of the software components and their
associations. This problem gets severe when components are
updated. During up gradations, components which need
updates are to be identified and its associations are to be
managed. In one word, it can be termed as Component
Configuration Management (CCM)[3]. During CCM, the
main responsibility is to study the dependencies & their
behavior. Various tasks related to CCM are: Version
Management, Change Management, Build Management,
Release Management and Workspace Management [17].We
are primarily concerned with the version management for
now. Version Management comes into the force when the
amendments in the software artifacts result in the newly
created versions. These amendments may be the result of
inter-module dependencies and intra-module dependencies.
Inter-module Dependencies are often handled with the help
of version management systems. And Intra-Module
Dependencies can be handled with the help of some
software like Dependency Analyzer.

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 651

In our research work `, a framework has proposed to study
the dependencies between components, consists of three
phases. For management of dependencies. Version
management goes hand by hand. In the first phase,
dependencies for various versions of the same files are
generated. The tool responsible for this framework has been
designated as Source Code Dependency Analyzer (SCDA).
It will basically parse the source code of the file and
generate the report regarding which files are dependent on
which other files. In the second phase, a comparative
analysis of the dependency reports of different versions is

done. This comparison is done on the basis of the selection
process. The entities to be analyzed may be class, assembly
and namespace. In the third phase, a number of metrics are
used to compute the complexity, dependency and
coupling/cohesion features of a software artifact [11].
Component-Based Software Development Model
Brown [12] has identified a reference model for component-
based development. A component moves from one stage to
another describing its state and activities as described in
figure 1.

Fig1: A Reference Model for Architectural Assembly of Components

• Component qualifications: In order to initiate the
working with a component, one has to decide the
qualifying criteria for a component to be selected. The
qualifying criteria may also include the capabilities of the
component and the interfaces of the component.

• Component selection: Component selection solely relies
on the fulfillment of the component qualification criteria.
If the component is having minimum conflicts with the
new environment, it means that the component can adapt
itself with the new product.

• Assembling component: Selected components are further
brought together to complete the development process.
The success rate such development also depends on the
integration process.

• Systems evolution: System Evolution is important for the
survival of the system. If the system components are not
updated in-time then it may result in malfunctioning of the
system.

COMPONENT DEPENDENCIES

In Component-based Systems (CBSs), components provide
system functionalities by the means of communication and
sharing information with each other. Each component in a
CBS's structure contributes a specific function towards the
services provided by the system. So, a number of the
system’s functionalities are related with more than one
component which in turn needs composition. This
composition creates interactions that promote dependencies.
Therefore, when a new component evolves, it can bring
change in composite functionality as it reflects in different
components. Also, installation of a new version of a specific
component involves the replacement of components on
which it depends in order to keep the integrity of system
[19].

The structural design of a component involves a set of
application-level components, their structural relationships
and their behavioral relationships [15]. Structural
relationships refer to the associations and inheritance
between component specifications and component
interfaces, and component relationships between
components. Behavioral relationships refer to dependency
amongst various components, between components and
interfaces and amongst interfaces as shown in figure 2.

Fig. 2: Dependencies in Component

Architecture [15]

In general, “a software component is built to be self-
sufficient, but this does not mean that an individual
component will not have any type of dependencies. An
externally independent component offers a set of services
and has no need of services or resources provided by
external sources. In this way, its surrounding environment
will not affect it. Some components in a CBS are able to
perform under such conditions whereas others will depend
on certain dependencies.”[16]

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 652

RESEARCH GAPS

While working with component based development, an
important issue is dealing with dependencies, particularly
inter-module dependencies. They actually results in highly
coupled systems. So, as to make an estimate of the
dependencies, a technique has been proposed i.e.
Dependency Structure Matrix (DSM) [7]. DSM is such a
technique that gives all the information regarding inter-
module dependencies in matrix type structure. Rows and
column represent the interaction among the components. An
interaction or dependency among two components is
represented by an off-diagonal matrix(X) in the relevant
matrix entry [7] [8]. But this technique has some flaws like
the information using this technique can’t be extracted so
easily and as the database increases, the information
retrieval seems impossible.
Another way to manage dependencies is by using
Dependency Walker (DW) [9].But it can manage
dependencies of one version only. This dependency
management analysis can’t be done in isolation. To study
the evolution of Open Software Systems (OSSs), this
dependency management analysis is not sufficient. Version
Control System (VCS) is another solution. But VCS will
only be able to track the changes; it cannot give the
dependency management analysis. In order to get these tasks
done, a framework, SCDA, is developed, which is able to
perform the responsibilities of DSM and provide the data in
tree type structure. The tree type structure is a better choice
as the data grows in size. This tool generates the dependency
report in XML format which can be analyzed for multiple
versions. The quantitative analysis of the evolution of OSSs
will be prepared, using this tool, with the help of a metrics
suite.

EXPERIMENTAL SETUP

Component Integration techniques play a vital role in the
development of software with components. The
components, which are to be integrated, may have effect on
many components already working with the current system.
Another issue is that those already employed component
may depend on the newly added components for various
tasks. In order to handle all such kind of uncertainties, there
is a need to identify the affected components at the time of
inclusion of the new component. Two crucial tasks are
associated with the inclusion of the new component in the
system:
•To identify the affected component along with its various
versions.
•To identify the associations of the affected component.
To configure the component in the most effective manner,
the developed Analyzer, SCDA, first parses the assemblies
existing in the system, then shows the assemblies dependent
on each other in two manners:
•Files dependent on other files
•Files used by other files
The developed Analyzer saves the dependency report in
XML files. Dependencies, in tree type structure, are shown
as in Figure 3. Metrics like Number of Classes and Number
of total Dependencies can be calculated. While working
with associations, Coupling and cohesion are the two terms
which can’t be left behind. Coupling defines the dependence
of one software component on other while cohesion is
independence of one component from the other. In the other
words, coupling and cohesion are contrary to each other. As
the number of dependencies increases, coupling increases
and cohesion decreases. It is expected that there should be
less coupling and high cohesion. As coupling is less, it
means that if we try to update the system, it will have very
minimal harmful effect on the normal functioning of the
system. The output given by the analyzer during phase 1
becomes the input of phase 2 of the framework1. The output
of phase 1 is depicted in Figure 3.

Fig 3: Snapshot of the output of SCDA

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 653

CASE STUDY

In phase 2 of the framework, multiple versions of same
component are considered for comparison. For this purpose,
an open source software namely JSON.net [18] is
considered. In order to evaluate the evolution in open source
software, 50 versions of the software from
www.codeproject.com, an online repository of open source
software, are selected. From comparative analysis of the
various versions of the software, following are the metrics
which are suggested for the quantitative analysis of open
software:
•LOC: It defines the total Lines of Code in the software.
• Number of Dependencies: It defines how many

assemblies are dependent on other assemblies.
• Number of Classes: This number specifies the total

number of classes defined in the source code of a
particular version.

• Number of Methods: It specifies the total number of
methods defined in the source code of a particular
version.

• Percentage Change in LOC (P_LOC): It depicts the
changes in LOC in percentage terms not in absolute
manner.

• Percentage Change in Dependencies (P_DEP): It
depicts the changes in No. of dependencies across
various versions in percentage terms not in absolute
manner.

• Percentage Change in number of classes (P_CLS): It
depicts the changes in No. of dependencies across
various versions in percentage terms not in absolute
manner.

•Percentage Change in the Number of Methods
(P_MET): It depicts the changes in No. of methods
across various versions in percentage terms not in
absolute manner.

• Overall Variation in the system (VAR): This factor
specifies the overall change in the system.

• Percentage Overall Variation (P_VAR): This factor
specifies the overall change in the system in percentage
manner.

•Average percentage churn (A_P_VAR): This factor
specifies the average overall change in the system in
percentage manner.

In this paper, it is not possible to demonstrate the full data
set, therefore we are including a part of the complete
data set to demonstrate the results of phase2 as shown
in table 1with the help of following proposed metrics:

1. P_LOC:P_LOC can be defined as percentage change in
LOC. Following formula is used to compute it.

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 =
(𝑋𝑋2− 𝑋𝑋1)

𝑋𝑋2
× 100

 {Where X1 & X2 are LOC values of two successive
versions}

2. P_DEP: P_DEP can be defined as percentage change in
the number of dependencies. Following formula is used
to compute it.

𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃 =
(𝑋𝑋2− 𝑋𝑋1)

𝑋𝑋2
× 100

 {Where X1 & X2 are number of dependencies values of
two successive versions}

3. P_CLS: It can be defined as percentage change in the
number of classes. Following formula is used to
compute it.

𝑃𝑃𝐿𝐿𝐿𝐿𝐶𝐶 =
(𝑋𝑋2 − 𝑋𝑋1)

𝑋𝑋2
× 100

 {Where X1 & X2 are number of classes values of two
successive versions}

4. P_MET: It can be defined as percentage change in the
number of methods. Following formula is used to
compute it.

𝑃𝑃𝑀𝑀𝐷𝐷𝑀𝑀 =
(𝑋𝑋2 − 𝑋𝑋1)

𝑋𝑋2
× 100

 {Where X1 & X2 are number of methods values of two
successive versions}

5. VAR: If X1 and Xn are the two extreme values of
every parameter, then the formulae to compute VAR is:

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑋𝑋𝑋𝑋 − 𝑋𝑋1
 6. P_VAR: Percentage Overall change can be calculated as

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 =
(𝑋𝑋𝑋𝑋 − 𝑋𝑋1)

𝑋𝑋𝑋𝑋
× 100

 7. A_P_VAR: Average percentage Overall Change can be
calculated as:

𝑉𝑉𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉
𝑁𝑁

:

Table 1: depicting the values of various parameters for first ten versions.
S.NO. VERSION

NO.
LOC No of

Classes
P_CLS No. of

Dependencies
P_DEP P_LOC No. of

Methods
P_MET

1 1.0.1 991 27 674 417
2 1.1 1676 36 33 1108 64 69 263 -59
3 1.2 1553 33 -8 1064 -4 -7 214 -23
4 1.3.0 2059 42 27 793 -25 33 302 29
5 1.3.1 2095 43 2 1338 69 2 424 29
6 2 2994 79 84 3369 152 43 715 41
7 2.0b1 2763 57 -28 1890 -44 -8 579 -23
8 2.0 b2 3514 65 14 2671 41 27 736 21
9 2.0b3 4282 78 20 3347 25 22 900 18
10 3 5017 86 10 4133 23 17 1056 15

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 654

Overall Variation in
the system (VAR)

12258 77000 13470 1461

%age overall
variation(P_VAR)

1236 2852 1999 124

Average %age
variation(
A_P_VAR)

22 53 37 2

OBSERVATIONS & INTERPRETATIONS

The graph in Figure 4 & 5 shows the relationship between
all the four parameters i.e. P_DEP, P_LOC, P_CLS,
P_MET. When the comparison is performed between the
values of parameters listed above across the various
versions, these are the few points which need further
discussion.
• With the rise in change in LOC, there is consistent

change in dependencies (as shown in Table 1 w.r.t. each
successive version in ascending order). It means as the
length of the source code increases, correspondingly
number of dependencies also rises. It is believed that
with the rise in LOC value, the unstructured code also
increases, which results in higher coupling levels. This
also means that this type of tightly coupled systems
cannot be used for reusability.

• With the drop in change in LOC, there is consistent
change in dependencies (as shown in Table 1 w.r.t. each
successive version in descending order). It means that
as the source code is removed for some reason,
correspondingly level of dependencies decrease too.
This scenario again doesn’t favor much for component-
ware because of tightly coupled system.

• In few cases, there are some inconsistencies in the
changes. For example, there is a significant change in

dependencies but corresponding change in LOC is not
visible (For example, in Table 1, when we move from
version 1.3.0 to version 1.3.1, change in LOC is 36
whereas change in dependencies is 545). In such cases,
it is possible that some source code is
added/removed/modified keeping the level of LOC
stable but results in the change of dependencies. We
suspect that code is replaced with structured code which
results in loose coupling thereby can enhance the
reusability level of said component-ware.

• When we study total 50 versions, One exceptional case
is worth noticing, in which change in number of classes
is massive whereas change in LOC & dependencies is
very nominal. It can be illuminated that code is
restructuring which may result in more organized
structure because of rise in the number of classes (as
shown in Table 2). When we move from version 6.0r5
to version 6.0r6, change in classes is 689 whereas
change in dependencies is 693 and change in LOC is
132 which is very nominal as compare to other cases.

• While considering the case of methods and LOC,
(except the case version 1.0.1 and version 1.1) there is a
direct relationship between Number of Methods and
LOC. It indicates that code is reasonably structured and
cohesive.

Fig4: Graph depicting relationship between P_DEP, P_CLS, P_LOC

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 655

Fig5: graph depicting the relationship between P_methods and P_loc.

Table 2: depicting the values of various parameters for different versions.

S.NO VERSI
ON
NO.

LOC No of
Classes

P_C
LS

No. of
Dependenci
es

P_D
EP

P_L
OC

No.
of
Met
hods

P_ME
T

Observations

1 1.0.1 991 27 674 417 Increase in Loc, no. of
dependencies increases too 2 1.1 1676 36 33 1108 64 69 263 -59

3 4.0r3 1824
6

390 3 7120 5 5 3726 5 Decrease in LOC, no. of
dependencies decreases too

4 4.0r4 8865 180 -54 3680 -48 -51 2025 -84
5 1.3.0 2059 42 27 793 -25 33 302 29 significant change in

dependencies but
corresponding change in
LOC is not visible

6 1.3.1 2095 43 2 1338 69 2 424 29

7 6.0r5 1278
3

75 -90 12868 1 1 2584 0 Change in number of
classes is massive whereas
change in LOC &
dependencies is very
nominal.

8 6.0r6 1291
5

764 919 13561 5 1 2596 0

CONCLUSION

In this paper, an effort is made to study the quantitative
analysis of the evolution of open source software using
software metrics. As the evolution proceeds, dependency
management in configuring the component based systems is
the key issue. A framework (SCDA) has already been
proposed in our earlier publication [11]. In this paper, a
case study is performed by taking the source code of open
source software using the framework. The output of SCDA
is useful in studying the evolution of components over
multiple versions. It helps in studying the behavior of the
system over time.

REFERENCES

[1] Parnas. D.L., 1994. Software aging. In Proc. of the 16th Intl.

Conf. on Software Engineering (ICSE-16), Sorrento, Italy,
May 1994

[2] Kumar, V., A. Sharma, R. Kumar and P.S. Grover, 2012.
Quality aspects for component-based systems: A metrics
based approach. Software Practice Experience, 42: 1531–
1548. doi:10.1002/spe.1153

[3] Larsson, M., 2000. Applying configuration management
techniques to component-based systems, Licentiate Thesis
Dissertation 2000-007, Department of Information
Technology, Uppsala University.

[4] Clements, P.C., 2001. "From Subroutines to Subsystems:
Component-Based Software Development." In Councill, WT,
Heineman, GT, (eds.): Component-Based Software
Engineering: Putting the Pieces Together. Addison Wesley,
2001.

[5] Hutchinson, J., and G. Kotonya, 2006. A Review of
Negotiation Techniques in Component Based Software
Engineering. In Software Engineering and Advanced
Applications, 2006. SEAA'06. 32nd EUROMICRO
Conference on (pp. 152-159). IEEE.

[6] Khan, S.A., and W. Hussain, 2008. Component Based Software
Development with EJB and .NET, Malardalen University,
Department of computer science and electronics, Vasteras –
Sweden, 2008.

Nisha Ratti et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,650-656

© 2015-19, IJARCS All Rights Reserved 656

[7] Sangal N., E. Jordan, V. Sinha and D. Jackson, 2005. Using
dependency models to manage complex software architecture.
In: Proceedings of the 20th annual ACM SIGPLAN
conference on object oriented programming, systems,
languages, and applications, San Diego

 [8] Sullivan K., Y. Cai, B. Hallen and W. Griswold, 2001. The
Structure and Value of Modularity in Software Design,
Proceedings of the 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2001

[9] Available from http://www.dependencywalker.com [Accessed
2 March 2017].

[10] McIlroy, M., 1969. Mass produced software components:
Software engineering concepts and techniques. In Proceedings
of NATO Conference on Software Engineering, pp: 88–98.

[11] Ratti, N. and P. Kaur, 2016. Conceptual Framework for
Analyzing the Source Code Dependencies, Advances in
Intelligent Syst., Computing, Vol. 554, Sanjiv K. Bhatia et al.
(Eds): Advances in Computer and Computational Sciences,
978-981-10-3772-6, 430542_1_En, (33)[under publication]

[12] Brown, A.W. and K.C. Wallnau, 1996. Engineering of
component-based systems, In Proceedings of the 2ndInt.
Conference on Engineering of Complex Computer Systems,
Montreal, Canada, Oct 1996.

[13] Rakic, M. and Medvidovic N., 2001. Increasing the
confidence in off-the-shelf components: A software
connector-based approach. ACM SIGSOFT Software
Engineering Notes, 26(3), pp: 11-18.

[14] SHAW M., 1995. Architectural issues in software reuse: It's
not just the functionality, it's the packaging. Symposium on
Software Reusability, Seattle, Washington, USA, April, pp: 3-
6.

[15] Cheesman, J. and J. Daniels, 2001. UML Components, a
Simple Process for Specifying Component-Based Software,
Addison-Wesley, 2001.

[16] Szyperski, C., Gruntz, D. and S. Murer, 2008. Component
Software: Beyond Object-Oriented Programming, Addison-
Wesley Professional, Boston, First Edition 1997. ISBN 0-201-
17888-5.

[17] Belguidoum, M. and F. Dagnat, 2007. Dependency
management in software component deployment, Electronic
Notes in Theoretical Computational Sciences 182: 17–32.

[18] Available from https://json.codeplex.com/[Accessed 2 March
2017].

[19] Richardson, D., 2002. "The role of dependencies in
component-based systems evolution", Proceedings of the
international workshop on Principles of software evolution -
IWPSE 02

