
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

SURVEY REPORT

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 72

ISSN No. 0976-5697

A Comparative Study of Tuple Timestamped Data Models

Dr. Shailender Kumar
Department of Computer Science and Engineering
Ambedkar Institute of Advanced Communication

Technologies & Research, Geeta Colony,
Delhi, India

Disha Aggarwal

Department of Computer Science and Engineering
Ambedkar Institute of Advanced Communication

Technologies & Research, Geeta Colony,
Delhi, India

I. INTRODUCTION

The current interest in the relational approach to
database is because of the Codd, who presented the
relational model which includes the relational structure and
its associated advantages. But this relational model does not
consider the temporal dimension as it does not keep a track
of past or future aspects of time in database but only focuses
on the bivalent Boolean logic. Applications like banking,
inventory management, healthcare management, reservation
systems, insurance applications, weather monitoring, etc.
involves the data that changes with time and it is important
to keep record of all that information.

A database which stores different time aspects (past,
present and/or future) of the data is known as temporal
database. In this section we discuss the basic database
concepts and how the conventional databases are different
from the temporal databases.

A. Basic Conventional Database Concepts
A database management system (DBMS) is a collection

of program that enables users to create and maintain a
database. A database is a collection of related data. By data,
we mean known facts that can be recorded and that have an
implicit meaning [2]. So the main objective of DBMS is to
provide a convenient and effective method of defining,
storing, retrieving and manipulating the data contained in
the database.

Data can be divided into: Past Data, Present data and

Future Data. The data about the past events and
circumstances which existed before in the database is
referred as Past Data.

The data that is valid for current time is known as

Present Data and sometimes denoted with “now” keyword.
The data which is generated over a specific time range, let

say, a day or week ahead of the current time is known as
Future Data.

To structure this data, data models are needed. Data

Model can be defined as an integrated collection of concepts
for describing and manipulating data, relationships between
data, and constraints on the data in an organization. Data
Model includes two types of schema: Physical Schema
andLogical Schema. Physical Schema describes the database
design at the physical level, while the Logical Schema
describes the database design at the logical level [2].

These data model schemas must exhibit data

independence. Data Independence is the ability to change
the schema at one level of the database system without
having to change the schema at the other levels [11]. Data
Independence is of two types: Physical Data Independence
and Logical Data Independence. Physical Data
Independence is the ability to change the internal schema
without affecting the conceptual or external schema. Logical
Data Independence is the ability to change the conceptual
schema without affecting the external schemas or
application programs.

Conventional Database Data Models can be classified

as:

i. Hierarchical Database Model: This data model
organizes the data in a tree-like structure in which each
child node can have one parent node only and is
connected to one another through links.

ii. Relational Model: This data model maintains data in
the form of tables, also known as relations, consisting
of rows and columns.

iii. Network Model: This data model organizes the data in
the form of graphs and all the nodes are linked to each
other, without any hierarchy, using links.

iv. Entity-Relationship Model: This data model is
composed of entity types (objects) and specifies
relationships that can exist among those objects.

Abstract:Time is one of the most challenging facet to handle in real world applications. Most applications access or manipulate temporal data
so such applications rely on temporal databases which records the time varying data. The objective of this paper is to provide a concise
overview on concepts of temporal database and review the work in the field of tuple timestamping data models. The paper introduces the
basic of conventional database and then compares it with the temporal database. The paper evaluates different time dimensions and query
languages along with them. A comparative analysis of different temporal models is done based on some parameters. Finally, all the temporal
models are summarized and a conclusion is given with the future work in the field of temporal database.

Keywords: database; temporal database; attribute timestamping; tuple timestamping; transaction time; valid time; data models

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 73

v. Object-Based Data Model: This data model extends
the E-R model with concepts of encapsulation,
methods and object identity.

B. Relational Databases
In the last two decades, the relational data model has gained
popularity because of its simplicity and solid mathematical
foundation. However, the relational data model as proposed
by Codd does not address the temporal dimension of data. It
represents the state of an endeavour at a single moment of
time. The variation in the contents of the database can be
seen as a modification, as new information is added,
deleting the old, out-of-date data from the database.

As can be seen from Figure 1, the Employee Table consists
of columns EmpID, Count, Ename, Sal from which (EmpID,
Count) acts the primary key of the table. Count column
stores the number of transactions performed on the
Employee table. In Figure 2, the table is modified by adding
new information, with the previous data in the same table, as
a new tuple.This increases the size of the relational database
with the increase in the number of tuples, added with each
modification.

EMPLOYEE TABLE
EmpID Count Ename Sal

E123 0 Rajiv 30000

E234 0 Simran 35000

(BEFORE MODIFICATION)

Figure. 1

EMPLOYEETABLE

EmpID Count Ename Sal
E123 0 Rajiv 30000
E123 1 Rajiv 35000
E234 0 Simran 35000
E234 1 Simran 40000

(AFTER MODIFICATION)

Figure. 2

The current data is captured as a snapshot and discards the
time aspect of past data. Also, transactions are done
according to their arrival order providing no guarantee of
their completion time.This is not satisfactory for
applications that require past, present, and/or future data
values to be dealt with by the database. This arises the need
to use temporal database which can store the time-variant
data without discarding past values [19].

In the following sections: Section 2 will introduce the
temporal database concepts considering the time dimensions
and types of timestamping. Section 3 discusses about the
work done in the area of the tuple timestamped data models.
Also, it gives a comparative study with the research criteria

of different data models. Section 4 states the conclusion with
the future work.

II. TEMPORAL DATABASE CONCEPTS

A. Time Dimensions
Temporal database supports three types of time dimensions,
which exhibits independencefrom each other: user-defined,
valid and transaction time. User-defined time is a time
representation designed to meet the specific needs of users.

Valid time specifies when certain conditions in the real
world are, were or will be valid. Valid time can be
represented with single-chronon identifiers (event
timestamps), with intervals (as interval timestamps), or as
valid-time elements, which are finite set of intervals [4].

Transaction time automatically captures changes made to
the state of time-variant data in a database. This time
dimension represents the time period during which an
instance is recorded in the database. Transaction time is
mostly used to support versioning, which generally implies
an object-oriented data model [14].

There is also another form of time-variant data, called
bitemporal data. Bitemporal data are union of valid time and
transaction time data. Several data models concerning
bitemporal data are known in the literature: The Bitemporal
Conceptual Data Model (BCDM) is a very simple model
capturing the essential semantics of time-variant relations.
Another example of a bitemporal model is Nested
Bitemporal Relation Data Model (NBRDM). The model, as
the name implies, is based upon a nested relational schema.

B. Timestamping
The temporal relational data models are categorized
according to the timestamps attached and the time
dimension they support. The data that have time-related
information are known as temporal data.
A timestamp is a time value associated with a data value that
might be a temporal element, time interval, or time point
[18].
There are two types of timestamping:

1. Attribute Timestamping:

 In this type of timestamping, value of timestamp is
attached with the attributes of the database table. The
various characteristics of attribute timestamping:

i. It uses non-first normal form to store time-variant data.

ii. It avoids redundancy and is more expressive because it
doesn’t contain the repetition of the multiple rows in the
table due to change in the attribute values over the time.

iii. It uses single relation/tuple to store time varying
attributes. It doesn’t splits the time-variant and time-
invariant data into several tuples.

iv. It may not be capable of efficiently using existing
storage structure. Hence, it cannot use high effective
relational techniques, such as Query Evaluation.

v. It performs better for queries with low levels of nesting
because as the nesting increases, it will be more

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 74

complex to apply timestamp values with those attributes
that are divided further in more sub-attributes.

vi. Attribute Timestamping is more suitable to execute
valid time queries as it executes them faster.

vii. This timestamping is least suitable for bitemporal
queries as it executes them slowly.

EMPLOYEE TABLE

EmpID

Ename

Sal

T Value T Start T End
E123 Rajiv 30000

35000
12/02/2012
15/02/2014

15/02/2014
20/02/2016

E234 Simran 35000
40000

15/03/2013
20/03/2015

20/03/2015
25/03/2016

Figure 3. Attribute Timestamping

2. Tuple Timestamping:
 In this type of timestamping, value of timestamp is
attached with the tuples of the database table. The various
characteristics of tuple timestamping:

i. It is based upon the first normal form (1NF) to store

time-variant data.
ii. It contains high data redundancy because of the

repetition of multiple rows of a table due to change in
attribute values over the time.

iii. It uses relational tables to represent time-invariant as
well as time-variant data. It splits both time-variant and
time-invariant data into several tuples.

iv. It is capable of efficiently using existing storage
structure. Hence, it can use high effective relational
techniques.

v. It performs better for more complex nesting structure of
the query as it adds the timestamp value to the row of
the table. So, it results in less complex structure after
adding timestamp value.

vi. Tuple Timestamping is less suitable to execute valid
time queries as it executes them slowly.

vii. This timestamping is more suitable for bitemporal
queries as it executes them three times faster than
attribute timestamping does.

EMPLOYEE TABLE

EmpI
D

Cou
nt

Ena
me

Sal T Start T End

E123 0 Rajiv 30000 12/02/2012 15/02/2014

E123 1 Rajiv 35000 15/02/2014 20/02/2016

E234 0 Simra
n

35000 15/03/2013 20/03/2015

E234 1 Simra
n

40000 20/03/2015 25/03/2016

Figure 4. Tuple Timestamping

III. TEMPORAL DATA MODELS

A. Introduction
The temporal models are used to manage both types of data:
time-variant as well as non-time variant. Time can be added
to any of the data model like entity-relationship model,
semantic data models, knowledge based data models and
deductive databases. But most of the work has been done on
relational data models and object-oriented data models only.
That’s why in this paper, temporal aspects of relational and
object-oriented data models are discussed only.

In conventional database systems, the management of time-
variant data is done entirely at the level of user-defined time
in which the attribute values are drawn from a temporal
domain. The SQL-92 Date, which is a tuple calculus-based
language, has granularity of a day; a Time has a granularity
of a second, having a range of 100 hours only. A Timestamp
combines the range of the Date with the granularity of a
second (there are Timestamp variants with a granularity of
fractions of a second) [3].

1. Valid Time: Temporal Data Models can be compared

on the basis of the valid time dimension. This can be
done as there are three ways to represent the valid time
in any temporal data model. These are: single chronon
(event timestamp), intervals (interval timestamp), or as
valid-time elements (finite set of intervals) [4]. In
temporal data models the valid time can be associated in
three ways i.e. with the values of individual attributes,
attribute groups, or with the entire tuple [1]. Some of
the examples of valid time models are: Ariav, HDM,
Lum, Sadeghi, Jones, Navathe, Snodgrass, Sarda, and
Yau.

2. Transaction Time: Object oriented data models are

generally identified by implementing versioning on it
and transaction time supports the versioning [1]. These
data models allow arbitrary, user-defined identifiers to
be associated with versions. An entire version hierarchy
can also be associated with a version if required by a
data model. Some of the examples of transaction time
models are: BCDM, Ben-Zvi, Lomet, ADM, Snodgrass,
and Postgres.

3. Set of Temporal Data Models:A temporal data model

should meet the certain goals, which can lead to the best
possible outcomes. The application which is going to be
modelled should have its semantics captured clearly and
precisely. It should extend the already existing data
model, like relational model, so that it will produce
more consistent and accurate outcomes. It must
represent all the time-variant and time-invariant
behaviour of the objects logically. But, this is probably
not possible to have all these features while designing a
temporal data model.
There exists an extension of SQL i.e. TSQL2 which
uses Bitemporal Conceptual Data Model as its
underlying data model which is used to capture the
essential semantics of time-varying relations. A
different model i.e. representational data model is
utilized for implementation with assured high

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 75

performance. Another data model i.e. presentational
data model depicts the time-varying behaviour to the
user. So, no single data model can achieve all the goals
that is why a set of data models should be used in order
to fulfil all the desired requirements with best possible
outcomes.

B. Query Languages

A data model also contains a set of operations on
objects, in combination with set of objects having
structures and a set of constraints on those objects. This
set of operations is known as the temporal query
language which is used to access, modify, and record
the objects in data model [10]. Some of the query
languages are: ILs, an intensional logic devised in
computational linguistics [3]; Quel, defined for Ingres
relational DBMS, is a tuple calculus-based query
language; relational algebra is a procedural language,
denoting relations as objects; SQL, a language of
conventional relational database, is a tuple calculus-
based language.

1. User- Defined Time:This time aspect supports both the
data models and query languages. Most of the
commercial relational DBMSs supports user-defined
time. Time can be treated as an abstract data type with
the help of its own predefined set of operations.
Postgres, being an object-oriented query language,
supports this approach.

2. Valid Time: As valid time supports the future aspects of

certain data besides the past values of that data, it has
greater influence than the user-defined time. Valid-time
can be added to the data models and on the query
languages with few different approaches.
The foremost approach is to directly utilize the
extensively responsive ability of relational or object-
oriented data model. This approach is the easiest one as
it will not require any changes to the existing data
model or the query languages. But, there occurs one
problem in this approach that it makes the query
optimization extremely more difficult. This happens
because of the lack of suggestions provided by the
query language, whether the access methods that are
concerned with time-varying values should be
employed or not.

In the next approach, data models and query languages
can be extended with the required needs by showing
their support to the time-varying figures. This approach
cannot be used for relational data query languages. The
problem of query optimization is still present in this
approach as user-defined functions do all the
manipulations related to time values.
The former approach is used widely by temporal
relational query languages. According to this, the
usageof distinctive data model concept and query
languages can support the information related to
variation of the valid time to the great extent.

3. Transaction Time:Transaction Time defines the state of

time when the fact is logically entered in the database. It

does not indicate the validity of the fact in either respect
of past or future time.
It is used when one wants to roll back to the time when
a particular fact was stored in the database irrespective
of its validity.
Transaction time supports the following type of
versioning:

i. Extensive Versioning

In this type, versioning of tuples, object instances or
attributes is done by themselves. In support of this
versioning, there are different approaches same as with
the valid time. In the first one, data models are used
directly without doing any changes in them or in the
query languages. Transaction time can be adapted
irrespective of the time semantics in the database.The
next approach extends the data model and query
language so that the information related to time-varying
data can be supported. In the last approach, some
modifications are done in the existing data model and
query language according to the required needs so that
it can support time-varying data.
Transaction time can be represented as a graph and not
as a tree because it consists of branching of time
whenever the objects are versioned, in addition to the
feature that new version is created by merging the two
old versions.

ii. Schema Versioning
A schema of an application can be modified according
to the variation in the application’s needs. So, multiple
schemas can be altered logically in schema versioning.
It supports the versioning of the definition of the objects
in the database. Schema versioning can be applied in
both relational databases and object-oriented databases.

The essential point that needs to be kept in mind is that if
extensive versioning is applied then support for schema
versioning may or may not be present. But, if extensive
versioning is not adopted then there exists no relevance in
using schema versioning there.

C. Data Models
In temporal data models, there exists some relational data
models and object-oriented data models. A brief study is
done on the previous data models, which get out-dated with
time, just to get an overview of the work that has been done
related to temporal data models so far.

i. Ariav proposed a data model named as Temporally

Oriented Data Model [13]. The researcher uses
relational data model as the base model, incorporating
both the time dimensions that is, valid time and
transaction time. This model uses the single chronon
(event timestamp) representation of time. It supports the
storage and retrieval of data through the use of a query
language, SQL.

ii. Ben-Zvi proposed a Time Relational Model (TRM) in
order to model the different aspects of time [15]. TRM
uses first normal form relations and supports both type
of time dimensions (valid and transaction time). This
model uses intervals, which are pairs of chronons, to
represent time in the relational data model used.

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 76

iii. There exists a model named as DATA, which is based
on relational data model. This model uses transaction
time dimension only to store the time at which data was
entered in the database. This model uses a single
chronon representation of time to timestamp the value.
It is only a proposed model which has no
implementation.

iv. Another model is DM/T which uses relational data
model as a base model. Timestamping is done using one
dimension only that is, transaction time. This model
does not deal with the future aspects of time. Time
representation is done by applying event timestamps in
database. Relational Algebra is used as a language to
retrieve the data from database.

v. There is another model, Historical Data Model, which
stores the history of data so that user can use the
previous data by rolling back it to the specific period of
time. This is done using the relational data model
having valid time as the time dimension to store the
validity of data also. Time is represented as single
chronon or event timestamp and uses a query language,
ILs (intensional logic).

vi. Postgres is another model which is based on object-
oriented data model. This model uses transaction time
dimension to store the previous data but does not stores
the future aspect of time. Time is represented in the
form of intervals (pair of chronons) and uses Postquel
language to retrieve and store the data, which is based
on a language Quel (tuple-calculus based query
language).

vii. Navathe proposed a data model named as Temporal
Relational Model, based on the relational data model.
This model can be expressed as temporal extension of
the relational data model. This model uses valid time
dimension so as to store validity of the data in near
future and the representation of this valid time is done
using the intervals of time. This model uses a temporal
extension of SQL known as TSQL.

viii. Segev presented implementation of Temporal Data
Model which is based on the relational data model [17].
It is implemented using valid time dimensions and
represented as single chronon. To access the data, this
model uses TDM language which is based on SQL.

ix. Weiderhold proposed a data model, Time Oriented
Databank Model, having relational data model as
underlying model. This model is based on valid time
dimension with the representation of time as single
chronon.

x. C.S. Jensen and R.T. Snodgrass explained a temporal
approach named as Bitemporal Conceptual Model
(BCDM) [6]. It supports both types of time dimension
(valid and transaction time) and is linear and discrete in
nature. The main advantage of this model is that it
remains simple and understandable while storing the
temporal data. But, it is not suitable to manage and
implement large number of tuples.

xi. DebabrataDey, Terence M. Barron and Veda C. Storey
suggested Temporal Event Entity Relationship Model
(TEERM) in 1995 [7][8]. It is bitemporal in nature. This
model captures the real world aspects and introduced
new relationships like static relationship, dynamic
relationship and quasi-static relationship. But,

representation of events can sometimes introduce
redundancy into tables.

xii. Nina Edelweiss, Patricia N. Hubler, Mirella M. Moro
and Giovani Demartini represented implementation of
Temporal Functionality in Objects with Roles (TF-
ORM) data model [5]. It is an object-oriented data
model but differs from other object-oriented data model
in a way that it uses a role concept to represent the
different behaviours of an object. There can be several
roles present for each class, and each role will depict a
different behaviour for the object of that class. It uses
TF-ORM query language as its language to retrieve and
access the data.

xiii. Jan Mate and Jiri Safarik presented an implementation
which uses an automatic rule based schema
transformation technique to convert relational database
to temporal database [9]. It uses schema versioning and
versioned table techniques. Implementation of this
model is done on Postgres database with SQL as query
language and PL/SQL as implementation tool language.

xiv. Vincent S. Lai, Jean-Pierre Kuilboer and Jan L. Guynes
suggested a model as an extension of Enhanced Entity
Relationship (EER) [12][8]. This model is named as
Temporal Enhanced Entity Relationship (TEER), which
uses both time dimensions (valid and transaction time)
and stores the full history of every entity and its
associated relationships. This model can easily be
mapped to an extension relational model.

xv. Gadia-3 identified a temporal extension to SQL model,
which was proposed on the basis of convention
database model given by Navathe [4] [16]. It is a valid
time model which allows both the attributes that is,
time-varying and non-time varying but they must all be
of the same type. It can cope with the multiple
occurrences of value equivalent events in the same
partition of the timeline.

D. Comparative Analysis
The tuple timestamped data models are compared as per the
following parameters:

i. Time Dimension: This characteristicdefines the

different time aspects of models whether they use valid
time, transaction time or both of them.

ii. Implementation of Model: This characteristicsdefines
that whether the model has implementation or not.

iii. New Proposed Language: This depicts if any new
language is proposed with the model.

iv. Implementation Language: This specifies a language
that was used to implement that model.

v. Extended Non-Temporal Model: This criteria will
depict that on which convention database that temporal
model is proposed.

vi. Language used to Query: This depicts a language that is
used to access and manipulate the data in the particular
model.

vii. Techniques used to manage the Data: This field
enumerates the various data management techniques
used to manage the data in the models.

viii. Advantages: This specifies the various advantages that
the model persists.

ix. Disadvantages: This specifies the different
disadvantages that the model has.

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 77

 A comparison of some prominent tuple timestamped
temporal data models is done as shown in the Table I.

TABLE 1. COMPARISON TABLE

IV. CONCLUSION AND FUTURE WORK

The research in the area of temporal database has been going
on from 20 years or more. In near 70’s Codd proposed the
relational model with its relational structure, due to which
the main focus was only on the relational model. With time
when it was required to add time with the data in an

organized way, it results in temporal relational databases.
After some decades, need arises to capture real world
entities with this time attribute which results in temporal
object-oriented data models. A discussion is done on the
following points:

Shailender Kumaret al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,72-78

© 2015-19, IJARCS All Rights Reserved 78

• A brief discussion is done on the basic conventional
databases including relational database, which is widely
used almost everywhere.

• A need of temporal database is reviewed as what
problems were prevailing in result of which we require
temporal database.

• Various time dimensions or time aspects of the temporal
models are discussed and well understood.

• A lot of research has been done on both types of temporal
data models: relational and object oriented models,
discussing about their complex nature and structural
design. But, none of the models satisfies all the desired
objectives as an individual model. So, it is recommended
to use a suite of data models for the best outcomes.

• There are various kinds of query languages exist that can
be used to access or manipulate these data models. All the
languages are easy to understand and implement.

• Many temporal data models are discussed from which
some are just conceptual models but are equally important
as they form a basis for many complex models. But there
are some models also, which has there implementation
done.

Areas that need to be addressed in near future:
• Attaining a suitable level of performance is a big task that

needs to be considered in temporal databases as it records
thevoluminous amount of data, and sometimes
heterogeneous in nature, which will take plenty of time to
get processed. There is a need to do analysis of the
temporal indexing and temporal join algorithms in order
to increase performance.

• As tuple-timestamping increases redundancy in the table,
it is needed to manage the increasing size of the table
because it will become impractical to store all the data in
main memory of one machine. Other storage options can
be explored like a distributed environment can be
implemented to resolve this.

V. REFERENCES

[1] S. Jensen, J.Clifford, R.Elmasri, S.K. Gadia, P. Hayes, and
S.Jajodia “A consensus glossaryof temporal database
concepts”, eds., TechnicalReport R 93-2035, Dept. of
Mathematics and Computer Science, Inst. for Electronic
Systems, Denmark, Nov. 1993.

[2] R. Elmasri and S.Navathe, "Fundamentals of Database
Systems", Benjamin/Cummings 1994.

[3] GultekinOzsoyoglu, Richard T. Snodgrass, “Temporal and
Real-Time Databases: A Survey”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 7, No. 4, August 1995.

[4] S.K. Gadia, “A homogeneous relational model and query
languages for temporal databases,” ACM Trans. Database
Systems, vol. 13, no. 4, pp.418-448, Dec. 1988.

[5] Nina Edelweiss, Patricia N. Hubler , Mirella M, Moro, and
Giovani Demartini, “A Temporal Database Management
System Implemented on Top of a Conventional Database”,
IEEE International Conference of the Chilean, pp. 58-67,
November 2000.

[6] C.S. Jenson and R. T. Snodgrass, “Temporal Data
Management”, IEEE Transactions on Knowledge and Data
Engineering, 11(1):36-44, January/ February 1999.

[7] DebabrataDey, Terence M. Barron, and Veda C. Storey, “A
conceptual model for the logical design of temporal databases”,
Decision Support Systems 15 (1995), pp. 305-321, Elsevier
Science B.V 1995.

[8] H. Gregersen and C. S. Jensen, “Temporal Entity-Relationship
Models-A Survey”, IEEE Transactions on Knowledge and Data
Engineering, Vol. II, Issue 3, pp. 464-497, 1999.

[9] J’anM'at'e and Ji’r’i ' Safa'r'lk, “Transformation of Relational
Databases to Transaction-Time Temporal Databases”, IEEE
Second Eastern European Regional Conference on the
Engineering of Computer Based Systems, 2011.

[10] S.B. Navathe and R. Ahmed, “A temporal relational model and
a query language;’ Information Sciences, vol. 49, pp. 147-175,
1989.

[11] AviSilberschatz, Henry F. Korth, and S.Sudarshan, “Database
System Concepts, Sixth Edition”, January 2010.

[12] Vincent S. Lai, Jean-Pierre Kuilboer and Jan L. Guynes,
“Temporal Databases: Model Design and Commercialization
Prospects”, DATABASE, Vol. 25, No. 3, August 1994.

[13] G. Ariav, “A temporally oriented data model,” ACM Trans.
Database Systems, vol. 11, no. 4, pp. 499-527, Dec. 1986.

[14] Shailender Kumar, Rahul Rishi, “Retrieval of Meteorological
Data using Temporal Data Modeling”, Indian Journal of
Science and Technology, Vol 9(37), October 2016.

[15] J. Ben-Zvi, “The Time Relational Model,” PhD thesis,
Computer Science Dept., UCLA, 1982.

[16] Christian S. Jensen, Richard T. Snodgrass, Michael D. Soo,
“The TSQL2 Data Model”, IEEE Transaction on Knowledge
and Data Engineering, 1994.

[17] A. Segev and A. Shoshani, “Logical modeling of temporal
data,” U. Dayal and I. Traiger, eds., Proc. ACM SIGMOD
International Conf. Management Data, pp. 454-466, San
Francisco, May 1987.

[18] CananAtay, “An attribute or tuple timestamping in bitemporal
relational databases”, Turk J Elec Eng& Comp Sci (2016) 24:
4305 – 4321.

[19] Shailender Kumar, Rahul Rishi, “A relative analysis of modern
temporal data models”, 3rd International Conference on
Computing for Sustainable Global Development, pp. 2851-
2855, March 2016.

	INTRODUCTION
	TEMPORAL DATABASE CONCEPTS
	TEMPORAL DATA MODELS
	CONCLUSION AND FUTURE WORK
	REFERENCES

