
Volume 7, No. 3, May-June 2016 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved      85 

Missed Deadlines Should be Considered- Proposals for Modifying Existing Real-Time 
Disk Scheduling Algorithms 

 
Wamika Basu  

Department of Computer Science and Engineering 
Birla Institute of Technology, Mesra, Kolkata Campus 

Kolkata, India 
 
 

Subho Chaudhuri 
Department of Computer Science and Engineering 

Birla Institute of Technology, Mesra, Kolkata Campus 
Kolkata, India 

 
 

Abstract: A system is said to be a real time system if it is capable of producing the correct results within a particular time limit. This time limit is 
called deadline. Real time systems may be hard or soft. A hard real time system may be considered to have failed if it is unable to produce the 
correct results within its allotted time span. Examples of hard real time systems are pacemakers, anti-lock brakes and aircraft control systems. In 
soft real time systems, deadline misses are tolerable, but may degrade the system’s quality of service. Scheduling is the basic mechanism 
adopted by a real time system to meet the deadline. Hence, scheduling algorithms dictate the proper functioning of real time systems. This paper 
aims to propose modifications to the existing real time disk scheduling algorithms. The modifications were made to include tardiness while 
assigning priorities to the disk requests. The modified algorithms were then experimentally compared with the existing ones on several 
parameters like seek time, average waiting time and average turnaround time. 
 
Keywords: Deadline; hard and soft real time systems; disk scheduling; tardiness; seek time; average waiting time; average turnaround time. 

 

I. INTRODUCTION  

Tardiness measures how late a job completes with respect 
to its deadline. If the job completes at or before its deadline, 
then the tardiness is zero. On the other hand, if the job 
completes after its deadline, then tardiness is equal to the 
difference between its completion time and its deadline. In real 
time disk scheduling, tardiness measures how late a disk 
request is serviced with respect to its deadline.  In soft real time 
systems, the usefulness of a result produced after its deadline is 
not zero. The usefulness degrades as time passes after the 
deadline. Hence, the usefulness of a result produced after its 
deadline decreases as the tardiness increases. This implies that 
a process (in this case disk read/write) is still useful when the 
soft deadline is crossed. This concept is at the core of our 
proposed algorithms. As the number of disk read/write requests 
will tend to become larger and larger- specially with respect to 
growing number of disk servers (web servers, video-on-
demand servers, transaction servers etc), disk farms etc, and 
also with respect to increasing number of processes and 
threads, the number of disk requests missing their deadlines 
will continue to increase. So in our view, tardiness could be an 
important parameter towards optimizing real time disk 
scheduling. 

II. OVERVIEW OF DISK STRUCTURE 

A. Physical Structure 
 

A disk has several circular-shaped platters. Platters are 
made of metal or plastic and have a magnetisable coating on 
them. Each platter has two surfaces. Information is stored on 
the platters by recording it magnetically on them. Each surface 
has concentric set of magnetic paths. These paths are called 
tracks. The set of tracks across all surfaces at the same arm 
position is called a cylinder. Tracks are further subdivided into 
sectors. The data on a disk are read/written by read/write heads.  

 

 
There is one head on each surface of the platter. The disk 

arm moves the heads together from one cylinder to the other. 
 

 
 

Figure 1. Disk Structure[1] 
 

B. Working Principle 
 

The access time of a disk can be specified by random time 
and transfer time (as a function of information amount). In 
addition, there is the device queue time and channel wait time 
[2]. 

Random Time 
This has two components: Seek Time and Rotational 

Latency. 
Seek Time 
In a movable-head disk, there is only one arm to service all 

the disk tracks. The time taken by the disk arm to move from 
one track to another where the data will be read or written is 
known as seek time. For performance evaluation, normally the 
average seek time is used. 

Rotational Latency 
Once the disk arm reaches the desired track, the disk will 

rotate to position the desired sector of data to be accessed under 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      86 

the read/write head. The time spent in doing so is called 
rotational latency. For performance evaluation in general, 
average rotational latency is used, which is typically taken as 
1/2x , where x is the rpm of the disk. 

Transfer Time 
This is the time required to transfer data to or from the disk. 

This is a function of the volume of the information and transfer 
speed of the disk to host connection bus. 

Device Queue Time 
This is the amount of time a disk request waits in the device 

queue for the device to be available if it is already allocated to 
another process. 

Channel Wait Time 
If a device shares a single I/O channel or a set of I/O 

channels with other disk drives, then the amount of time a disk 
request has to wait for the channel to be available is known as 
the channel wait time. 

III. REAL-TIME DISK SCHEDULING 

A. Disk Scheduling Problem  
Disk subsystem is one of the slowest components of a 

computer system, and hence its performance is important for 
bettering the system throughput, more specifically in a real 
time environment. From this point of view, it is important to 
model the disk behavior as accurately as possible. The disk 
system uses a queue to maintain the outstanding disk requests. 
The disk relies on an appropriate scheduling algorithm for 
choosing which pending request in the queue should be 
processed next. Disk scheduling in real time systems is the 
process of ordering disk requests within the disk queue such 
that they are serviced within their deadlines with minimum 
mechanical motion of the disk arm by employing seek (and 
sometimes rotational latency) optimization techniques. 

B. Existing Algorithms 
In this section, we briefly describe five existing real time 

disk scheduling algorithms: EDF, SCAN-EDF, SSEDO, 
SSEDV and P-SCAN. 

1) EDF: It is the most popular real time scheduling 
algorithm for both process and disk scheduling, and hence 
widely used. In EDF, the disk request with the earliest deadline 
has the highest priority and is serviced first. [3]    

2) SCAN-EDF: SCAN-EDF is a combination of SCAN and 
EDF disk scheduling algorithms. It services requests with 
shorter deadlines first. In case of requests with same deadlines, 
it uses the SCAN approach. [4] 

3) P-SCAN: The P-SCAN algorithm [5] divides disk 
requests into several priority levels (usually high, medium and 
low) according to their deadlines in the following way: if 
deadline of a request is bigger than (LB+UB)/2, then it is 
assigned a low priority. On the other hand, if the deadline of a 
request is less than (LB+UB)/4, then it is assigned a high 
priority. The request is assigned a medium priority if its 
deadline lies between (LB+UB)/4 and (LB+UB)/2. Here LB 
and UB are lower bound and upper bound of the relative 
deadlines respectively. Figure 2 shows the priority assignment 
of the P-SCAN algorithm as discussed above:  

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The SCAN algorithm is then used within each level. There 
is one queue for each priority level to maintain the outstanding 
disk requests at that level. The requests are arranged in 
increasing order of track positions within a queue. The 
scheduler always starts servicing the requests in the high 
priority queue with the smallest seek time. After this queue is 
exhausted, it schedules requests from medium priority queue, 
and in a similar fashion, with the exhaustion of requests, 
schedules from the low priority queue. The disadvantage of this 
algorithm is that if the number of priority levels is increased, 
then average seek time may worsen.  

4) SSEDO: The shortest seek and earliest deadline by 
ordering algorithm (SSEDO) [6] uses a queue to store 
outstanding disk requests. Within the queue the requests are 
sorted based on their deadlines. An m size window is used to 
denote the first m requests with the smallest deadlines. Each 
request in the window is assigned a priority. Then the request 
with minimum priority value is chosen for service. The central 
idea behind this algorithm is to not only give highest priority to 
requests with earlier deadlines but to also allow a request with a 
longer deadline to get serviced if it is closer to the current disk 
arm position. 

5) SSEDV: The shortest seek and earliest deadline by value 
algorithm (SSEDV) [6] is similar to the SSEDO algorithm in 
the sense that both are window algorithms. The only difference 
is that SSEDV uses the remaining lifetime of disk requests to 
assign priorities. Remaining lifetime of a request is the length 
of time between the current time and the deadline of the 
request. 
 
C. Performance Analysis 

In order to compare the performance of the algorithms 
mentioned in III B namely: EDF, SCAN-EDF, P-SCAN, 
SSEDO and SSEDV, a series of simulation experiments were 
conducted on them. In section 1, the simulation model for the 
experiments is described and the experimental results are given 
in section 2. 

1) Simulation Model: In our model, the disk has 300 tracks. 
We have randomized the disk requests in terms of cylinder 
numbers ranging from 0-299. Each disk request has a deadline 
distributed randomly between 0 and 99 milliseconds. Disk 
service time is defined as the sum of seek time and rotational 
latency. Rotational latency is randomly distributed between 0 
and 7 milliseconds. The read/write head is initially positioned 
at any random cylinder number in the range 0-299. The total 
number of disk requests (load to the system) ranges from 10 to 
1000. For SSEDO, the window size m is taken as 3 and 
scheduling parameter β as 2. For SSEDV, the window size m is 
taken as 3 and scheduling parameter α as 0.8. For P-SCAN, 

 
Figure 2. Priority Assignment in P-SCAN 

 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      87 

three priority levels are considered- high, medium and low. 
Device Queue Time and Channel Wait Time are ignored. 

2) Simulation  Results: In this section, the experimental 
results are reported and carefully examined. The total seek time 
is plotted against the number of disk requests in Figure 3 
below. The EDF algorithm performs fairly well when the 
system is lightly loaded but degenerates when the load 
increases. EDF results in excessive seek time as compared to 
the other algorithms. SCAN-EDF degenerates to EDF when all 
the requests have different deadlines. This is observed in the 
initial parts of the curve wherein SCAN-EDF results in the 
same seek time as EDF. As the number of requests increases, 
the probability of requests having similar deadlines increases. 
Hence SCAN-EDF optimizes the total seek time when the load 
increases as is evident from the latter part of the SCAN-EDF 
curve. SSEDO and SSEDV perform essentially at the same 
level, with the SSEDV algorithm performing better at high load 
cases. P-SCAN outperforms the other disk scheduling 
algorithms and optimizes the seek time to a great extent. 

 

 
 

Figure 3. Seek Time vs Number of Disk Requests 
 
Figure 4 shows the percentage decrease in seek time of P-

SCAN with respect to EDF, SCAN-EDF, SSEDO and SSEDV. 
 

 
 

Figure 4. Percentage Decrease in Seek Time of P-SCAN 
 
 

Some representative figures (as derived from the graph) 
with respect to percentage decline in seek times of P-SCAN 
over the other disk scheduling algorithms are stated in Table I: 

 
 
 

Table I.    Percentage Decrease in Seek Time of P-SCAN 
 

Sr. No. A B C  D  E 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

10 
50 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

53.63 
81.34 
89.21 
95.18 
96.67 
97.59 
97.73 
98.53 
98.73 
98.87 
98.95 
99.02 

50.63 
80.60 
87.45 
93.97 
95.68 
96.59 
96.60 
97.77 
98.04 
98.22 
98.34 
98.40 

2.35 
73.23 
86.29 
93.82 
96.12 
97.28 
97.42 
98.36 
98.66 
98.77 
98.88 
98.96 

1.66 
72.76 
86.05 
93.57 
95.92 
97.21 
97.35 
98.31 
98.62 
98.75 
98.87 
98.96 

 
Legends in Table I: 
A: Number of disk requests 
B: % decrease in seek time of P-SCAN with respect to EDF 
C: % decrease in seek time of P-SCAN with respect to 

SCAN-EDF 
D: % decrease in seek time of P-SCAN with respect to 

SSEDO 
E: % decrease in seek time of P-SCAN with respect to 

SSEDV 
 
Waiting time is defined as the amount of time a disk request 

waits in the disk queue before it is serviced. Figure 5 shows the 
average waiting time for 10-1000 disk requests. Here again, P-
SCAN is optimal with respect to average waiting time. 

 

 
 

Figure 5. Average Waiting Time vs Number of Disk Requests 
 

Turnaround time is defined as the time from the submission 
of a request to the time it is serviced. In other words, the sum of 
the waiting time and execution time is known as the turnaround 
time. Figure 6 shows the average turnaround time for 10-1000 
disk requests. From the total seek time graph shown in Figure 
3, it is not hard to understand why requests under EDF and 
SCAN-EDF take more time to finish than SSEDO, SSEDV and 
P-SCAN. It can be observed that P-SCAN consistently 
performs better than the other algorithms. 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      88 

 
 

Figure 6. Average Turnaround Time vs Number of Disk Requests 

IV. PROPOSED ALGORITHMS 

In this section, we propose two ways in which tardiness can 
be incorporated in the five real time disk scheduling algorithms 
mentioned above. 

A. Basic idea of our Algorithms 
None of the existing algorithms in section III B have taken 

tardiness into account, although we do have disk read/writes 
missing their deadlines (as revealed by our simulation study). 
We are proposing modifications to the existing real time disk 
scheduling algorithms by taking into account the tardiness of 
the requests. 

1) Algorithm A 
In our proposed algorithms named as: Modified EDF, 

Modified SCAN-EDF, Modified SSEDO, Modified SSEDV 
and Modified P-SCAN, we assume that the scheduler has 
knowledge of which disk requests are going to miss their 
deadlines. The scheduler will gain this knowledge by doing a 
virtual scheduling (as explained below) of the incoming disk 
requests by the existing scheduling algorithms- EDF, SCAN-
EDF, SSEDO, SSEDV and P-SCAN one by one. 

The basic idea of virtual scheduling is that the requests are 
ordered as dictated by the corresponding scheduling method 
(one of EDF, SCAN-EDF, SSEDO, SSEDV and P-SCAN). 
From that ordering, calculations are obtained as to the 
individual seek times- the seek times which require crossing the 
given deadlines indicate the fact that for those requests, the 
deadline will be missed. We make a note of all such requests 
which miss their deadlines. This implies they have tardiness 
incorporated in their completion. 

After virtual scheduling, the scheduler will partition the 
requests into two distinct sets. One set will consist of the 
requests that will be serviced with given priorities (as defined 
for the corresponding scheduling policy) within their deadlines. 
The other set will include the requests that would be serviced 
after their deadlines. 

For requests in the second set, priority is assigned in the 
following way: 

a) Let Pi be the new priority of the ith request and Di be its 
deadline. 

Then: Pi α 1/Di 
This implies that requests having shorter original deadlines 

are given higher priority for scheduling considerations with 
respect to the period past the deadline. 

b) Let Ti be the tardiness of the ith request (= excess time 
over deadline). 

Then: Pi α 1/Ti 
This implies that requests having lower tardiness are also 

given higher priority for scheduling considerations with respect 
to the period past the deadline. 

c) Considering a and b, we have: 
         Pi α 1/DiTi 
or,  Pi = K.1/DiTi, where K is the constant of 

proportionality 
For simulation purpose K is taken as 1000 because of very 

small values of 1/DiTi. 
d) Scheduling for requests crossing the deadline is done in 

descending order of Pi. 
e) This priority is applied to each of the scheduling 

algorithms in turn (EDF, SCAN-EDF, SSEDO, SSEDV and P-
SCAN) 

 
2) Algorithm B 
In our proposed algorithms named as: T-EDF, TSCAN-

EDF, T-SSEDO, T-SSEDV and TP-SCAN, we assume that the 
scheduler has knowledge of which disk requests are going to 
miss their deadlines. The scheduler will gain this knowledge by 
doing a virtual scheduling (as explained below) of the incoming 
disk requests by the existing scheduling algorithms- EDF, 
SCAN-EDF, SSEDO, SSEDV and P-SCAN one by one. 

The basic idea of virtual scheduling is that the requests are 
ordered as dictated by the corresponding scheduling method 
(one of EDF, SCAN-EDF, SSEDO, SSEDV and P-SCAN). 
From that ordering, calculations are obtained as to the 
individual seek times- the seek times which require crossing the 
given deadlines indicate the fact that for those requests, the 
deadline will be missed. We make a note of all such requests 
which miss their deadlines. This implies they have tardiness 
incorporated in their completion. 

After virtual scheduling, the scheduler will partition the 
requests into two distinct sets. One set will consist of the 
requests that will be serviced with given priorities (as defined 
for the corresponding scheduling policy) within their deadlines. 
The other set will include the requests that would be serviced 
after their deadlines. 

For requests in the second set, priority is assigned in the 
following way: 

a) Let Pi be the new priority and Ti be the tardiness of the ith 
request (= excess time over deadline). 

Then: Pi α 1/Ti 
This implies that requests having lower tardiness are given 

higher priority for scheduling considerations with respect to the 
period past the deadline. 

For simulation purpose, the second set of requests is 
ordered in ascending order of tardiness (=Ti). This reflects 
descending order of priority (= Pi as indicated above). 

Note: Virtual Scheduling implies higher computational 
overhead. But with modern processors having a high clock 
frequency, deep pipelines and superscalar capability, this 
additional overhead does not add much to the overall 
scheduling overhead. 

B. Simulation Study 
1) Simulation Model: In our model, the disk has 300 tracks. 

We have randomized the disk requests in terms of cylinder 
numbers ranging from 0-299. Each disk request has a deadline 
distributed randomly between 0 and 10000 milliseconds. Disk 
service time is defined as the sum of seek time and rotational 
latency, where, rotational latency is randomly distributed 
between 0 and 7 milliseconds. The read/write head is initially 
positioned at any random cylinder number in the range 0-299. 
The total number of disk requests (load to the system) ranges 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      89 

from 50 to 300. For SSEDO, the window size m is taken as 3 
and scheduling parameter β as 2. For SSEDV, the window size 
m is taken as 3 and scheduling parameter α as 0.8. For P-
SCAN, three priority levels are considered- high, medium and 
low. Device Queue Time and Channel Wait Time are ignored. 

2) Simulation  Results: In this section, the experimental 
results are reported and carefully examined. 

a)  EDF, T-EDF and Modified EDF 
The total seek time is plotted against the number of disk 

requests in Figure 7. It can be observed from the figure that 
when the system is lightly loaded (50-100 requests), the 
performance of the three algorithms is more or less same. 
When the system is medium loaded (150-200), T-EDF 
outperforms EDF and Modified EDF as is evident from the 
middle portions of the curve. As the system load increases, 
Modified EDF optimizes the seek time to a greater extent as 
compared to T-EDF and EDF 

 

 
 

Figure 7. Comparison of seek time of EDF, T-EDF and Modified EDF 
 

Figure 8 shows the average waiting time for 50-300 
requests. Here, Modified EDF results in shorter waiting time 
when the load on the system is light as well as during high 
load condition. 

 

 
 

Figure 8. Comparison of average waiting time of EDF, T-EDF and 
Modified EDF 

 
Figure 9 shows the average turnaround time for 50-300 

requests. Here again, Modified EDF results in shorter 
turnaround time when the load on the system is light as well as 
during high load condition. 

 
 

Figure 9. Comparison of average turnaround time of EDF, T-EDF and 
Modified EDF 

 
Table II.   Summary of the results of EDF, T-EDF 

and Modified EDF 
 

Seek Time 

Algorithm 
Type of Load 

Light 
(50-100) 

Medium 
(100-200) 

Heavy 
(200-300) 

EDF Same as T-EDF Moderate Lowest 

T-EDF 
Slightly higher 
than Modified 
EDF 

Lowest Highest 

Modified   
EDF Lowest Highest Same as EDF 

Average Waiting Time 

EDF Same as T-EDF Moderate Lower than T-
EDF 

T-EDF 
Slightly higher 
than Modified 
EDF 

Lowest 
Slightly higher 
than Modified 
EDF 

Modified 
EDF Lowest Highest Lower than EDF 

Average Turnaround Time 

EDF Same as T-EDF Moderate Lower than T-
EDF 

T-EDF 
Slightly more 
than Modified 
EDF 

Lowest 
Slightly higher 
than Modified 
EDF 

Modified  
EDF Lowest Highest Lower than EDF 

 
b)  SCAN-EDF, TSCAN-EDF and Modified SCAN-EDF 
The total seek time is plotted against the number of disk 

requests in Figure 10. SCAN-EDF performs fairly well with 
respect to seek time since it is a hybrid algorithm that utilizes 
the seek optimization nature of SCAN to the fullest keeping 
intact the real time aspects using EDF. TSCAN-EDF 
optimizes the seek time when the system is medium loaded as 
can be seen from the middle section of the seek time graph. 
Modified SCAN-EDF further optimizes the seek time when 
the system is both lightly and heavily loaded. 

 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      90 

 
 

Figure 10. Comparison of seek time of SCAN-EDF, TSCAN-EDF and 
Modified SCAN-EDF 

 
Figure 11 shows the average waiting time for 50-300 

requests. Here, Modified SCAN-EDF results in shorter waiting 
time when the load on the system is light as well as during 
high load condition. 

 

 
 

Figure 11. Comparison of average waiting time of SCAN-EDF, TSCAN-
EDF and Modified SCAN-EDF 

 
Figure 12 shows the average turnaround time for 50-300 

requests. Modified SCAN-EDF results in shorter turnaround 
time when the load on the system is light as well as during 
high load condition but turnaround time increases when the 
system is medium loaded. 

 

 
 

Figure 12. Comparison of average turnaround time of SCAN-EDF, 
TSCAN-EDF and Modified SCAN-EDF 

 
 
 
 
 
 
 
 

 

Table III.  Summary of the results of SCAN-EDF, TSCAN-EDF and 
MODIFIED SCAN-EDF 

 
Seek Time 

Algorithm 
Type of Load 

Light 
(50-100) 

Medium 
(100-200) 

Heavy 
(200-300) 

SCAN-EDF Highest Moderate 
Same as 
Modified 
SCAN-EDF 

TSCAN-EDF Lowest  Lowest Highest 
Modified 
SCAN-EDF Moderate  Highest Lowest 

Average Waiting Time 

SCAN-EDF Highest Moderate 
Same as 
Modified 
SCAN-EDF 

TSCAN-EDF 
Same as 
Modified 
SCAN-EDF 

Lowest Highest 

Modified 
SCAN-EDF Lowest Highest Lowest 

Average Turnaround Time 

SCAN-EDF Highest Moderate 
Same as 
Modified 
SCAN-EDF 

TSCAN-EDF Lowest Lowest Highest 
Modified 
SCAN-EDF 

Closer to 
TSCAN-EDF Highest Lowest 

 
c)  SSEDO, T-SSEDO and Modified SSEDO 
Figure 13 shows the seek time graph of SSEDO, T-SSEDO 

and Modified SSEDO. As depicted in the graph, during light 
loads all the three algorithms initially perform at the same 
level with Modified SSEDO slightly improving the seek time. 
As the system load increases, it is observed that the original 
SSEDO algorithm performs better than our modified versions.  

 

 
 

Figure 13. Comparison of seek time of SSEDO, T-SSEDO and Modified 
SSEDO 

 
Figure 14 shows the average waiting time of SSEDO, T-

SSEDO and Modified SSEDO over 50-300 requests. Here, 
Modified SSEDO results in shorter waiting time when the load 
on the system is light. However the SSEDO algorithm 
performs better than our modified versions as the number of 
incoming requests increases. 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      91 

 
 

Figure 14. Comparison of average waiting time of SSEDO, T- SSEDO 
and Modified SSEDO 

 
Figure 15 shows the average turnaround time of SSEDO, 

T-SSEDO and Modified SSEDO over 50-300 requests. 
Modified SSEDO results in shorter turnaround time when the 
load on the system is light. However the performance of 
SSEDO algorithm is better than the modified ones when the 
load on the system is increased. 

 

 
 

Figure 15. Comparison of average turnaround time of SSEDO, T-SSEDO 
and Modified SSEDO 

 
Table IV.  Summary of the results of SSEDO, T-SSEDO and MODIFIED 

SSEDO 

Seek Time 

Algorithm 
Type of Load 

Light 
(50-100) 

Medium 
(100-200) 

Heavy 
(200-300) 

SSEDO Highest Lowest Lowest 
T-SSEDO Lowest  High Highest 
Modified 
SSEDO 

Same as T-
SSEDO 

Slightly higher 
than T-SSEDO  Moderate 

Average Waiting Time 
SSEDO Highest Lowest Lowest 
T-SSEDO Lowest  High Highest 
Modified 
SSEDO 

Same as T-
SSEDO 

Slightly higher 
than T-SSEDO Moderate 

Average Turnaround Time 
SSEDO Highest Lowest Lowest 
T-SSEDO Lowest  High Highest 
Modified 
SSEDO 

Same as T-
SSEDO 

Slightly higher 
than T-SSEDO Moderate 

 
d)  SSEDV, T-SSEDV and Modified SSEDV 
Figure 16 shows the seek time graph of SSEDV, T-SSEDV 

and Modified SSEDV. As depicted in the graph, it can be 
observed that the original SSEDV algorithm performs better 
than our proposed algorithms.   

 
 

Figure 16. Comparison of seek time of SSEDV, T-SSEDV and Modified 
SSEDV 

 
Figure 17 shows the average waiting time of SSEDV, T-

SSEDV and Modified SSEDV over 50-300 requests. Here, 
Modified SSEDV results in shorter waiting time when the load 
on the system is light. Both the SSEDV and Modified SSEDV 
algorithms perform at nearly the same level as the number of 
incoming requests increases. 

 

 
 

Figure 17. Comparison of average waiting time of SSEDV, T-SSEDV and 
Modified SSEDV 

 
Figure 18 shows the average turnaround time of SSEDV, 

T-SSEDV and Modified SSEDV over 50-300 requests. 
Modified SSEDV results in shorter turnaround time when the 
load on the system is light. However the SSEDV algorithm 
performs better than the proposed algorithms as the number of 
incoming requests increases. 

 

 
 

Figure 18. Comparison of average turnaround time of SSEDV, T-SSEDV 
and Modified SSEDV 

 
 
 
 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      92 

Table V.  Summary of the results of SSEDV, T-SSEDV and MODIFIED 
SSEDV 

 
Seek Time 

Algorithm 
Type of Load 

Light 
(50-100) 

Medium 
(100-200) 

Heavy 
(200-300) 

SSEDV Lowest Lowest Lowest 
T-SSEDV Highest Highest Highest 
Modified 
SSEDV 

Same as T-
SSEDV 

Slightly less 
than T-SSEDV 

Slightly higher 
than SSEDV 

Average Waiting Time 
SSEDV Highest Lowest Lowest 

T-SSEDV 
Same as 
Modified 
SSEDV 

Highest Highest 

Modified 
SSEDV Lowest Moderate Slightly higher 

than SSEDV 
Average Turnaround Time 

SSEDV Highest Lowest Lowest 

T-SSEDV 
Same as 
Modified 
SSEDV 

Highest Highest 

Modified 
SSEDV Lowest Moderate Slightly higher 

than SSEDV 
 

e)  P-SCAN, TP-SCAN and Modified P-SCAN 
From the graph in Figure 19, it is clear that the original P-

SCAN algorithm outperforms our proposed algorithms as far 
as seek time is concerned. Both the TP-SCAN and Modified 
P-SCAN algorithms result in high seek times. 

 

 
 

Figure 19. Comparison of seek time of P-SCAN, TP-SCAN and Modified 
P-SCAN 

 
Figure 20 shows the average waiting time of P-SCAN, TP-

SCAN and Modified P-SCAN over 50-300 requests. P-SCAN 
results in higher average waiting time. TP-SCAN and 
Modified P-SCAN perform moderately well during light 
loads, the latter being slightly better during heavy loads. 

 
 
 
 
 

 
 

Figure 20. Comparison of average waiting time of P-SCAN, TP-SCAN 
and Modified P-SCAN 

 
Figure 21 shows the average turnaround time of P-SCAN, 

TP-SCAN and Modified P-SCAN over 50-300 requests. P-
SCAN results in higher average turnaround time. TP-SCAN 
and Modified P-SCAN perform moderately well during light 
loads, the latter being slightly better during heavy loads. 

 

 
 

Figure 21. Comparison of average turnaround time of P-SCAN, TP-
SCAN and Modified P-SCAN 

 
Table VI.  Summary of the results of P-SCAN, TP-SCAN and 

MODIFIED P-SCAN 
 

Seek Time 

Algorithm 
Type of Load 

Light 
(50-100) 

Medium 
(100-200) 

Heavy 
(200-300) 

P-SCAN Lowest  Lowest  Lowest  
TP-SCAN Highest Highest Highest 
Modified 
P-SCAN 

Same as TP-
SCAN  Moderate Moderate 

Average Waiting Time 
P-SCAN Highest Highest Highest 

TP-SCAN Lowest 
Same as 
Modified  
P-SCAN 

Moderate 

Modified 
P-SCAN 

Same as TP-
SCAN Lowest Lowest 

Average Turnaround Time 
P-SCAN Highest Highest Highest 

TP-SCAN Lowest 
Slightly more 
than Modified 
P-SCAN 

Slightly more 
than Modified 
P-SCAN 

Modified 
P-SCAN 

Same as TP-
SCAN Lowest Lowest 

 



Wamika Basu et al, International Journal of Advanced Research in Computer Science, 7 (3), May-June, 2016,85-93 

© 2015-19, IJARCS All Rights Reserved      93 

V. CONCLUSION 

Tardiness is an important yardstick to measure the 
performance of a soft real time system. Keeping this in mind, 
modifications to existing algorithms have been proposed. 
Based on our simulation study, we observe that our proposed 
algorithms perform better compared to most of the existing 
algorithms even when we take tardiness into account. 
Compared to P-SCAN, which gives the best result with respect 
to existing algorithms, our algorithm outperforms it with 
respect to service time since average waiting time as well as 
average turnaround time are lower.  

VI. FUTURE WORK 

We plan to model the disk behaviour more in tune with an 
actual working environment- for example, taking device 
queuing time and channel wait time into account in our 
simulation. 

VII. REFERENCES 

[1] Celis, J.R., Gonzales, D., Lagda, E., and Rutaquio Jr., 
L.,“A Comprehensive Review for Disk Scheduling 

Algorithms”, International Journal of Computer Science 
Issues, Vol. 11, No. 1, 74-79, January 2014. 

[2] Stallings, W., Computer Organization and Architecture- 
Designing For Performance, Seventh Edition, Pearson, 
2007. 

[3] Liu, C. L., and Layland, J. W., “Scheduling Algorithms 
for Multiprogramming in a Hard-Real-Time 
Environment,” Journal of the Association for Computing 
Machinery, Vol. 20, No.1, 44-61, January 1973. 

[4] Reddy, A. L. N., and Wyllie, J.C., “Disk Scheduling in a 
Multimedia I/O System”, Proceedings of the ACM 
Multimedia Conference, 225-233, August 1993. 

[5] Carey, M.J., Jauhari, R., and Livny, M., “Priority in 
DBMS Resource Scheduling”, Proceedings of the 15th 
VLDB Conference, 397-410, August 1989. 

[6] Chen, S., Stankovic, J.A., Kurose, J.F., and Towsley, 
D.F,”Performance Evaluation of Two New Disk 
Scheduling algorithms for Real-Time Systems”, Real-
Time Systems, Vol. 3, No. 3, 307-336, 1991. 
  

 

 
 
 
 

   


	Introduction
	Overview of Disk Structure
	Real-Time Disk Scheduling
	Disk Scheduling Problem
	Existing Algorithms

	Proposed Algorithms
	Basic idea of our Algorithms
	Simulation Study

	Conclusion
	Future Work
	References

