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Abstract: Substitution boxes with thorough cryptographic strengths are essential for the development of strong encryption systems. They are the 
only portions capable of inducing nonlinearity in symmetric encryption systems. Bijective substitution boxes having both high nonlinearities and 
high algebraic complexities are the most desirable to thwart linear, differential and algebraic attacks. In this paper, a method of constructing 
algebraically complex and cryptographically potent multiple substitution boxes is proposed. The multiple substitution boxes are synthesized by 
applying the concept of rotation-k approach on the affine-power-affine structure. It is shown that the rotation-k approach inherits all the features 
of affine-power-affine structure. Performance assessment of all the proposed substitution boxes is done against nonlinearity, strict avalanche 
criteria, bits independent criteria, differential probability, linear approximation probability and algebraic complexity. It has been found that the 
proposed substitution boxes have outstanding cryptographic characteristics and outperform the various recent substitution boxes. 
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I. INTRODUCTION 

Information security is a problem that has concerned 
humans since ancient times. With the explosion of the 
information era, information security has taken the centre-
stage in today’s world. Modern cryptography can be 
typically divided into two fields; viz. symmetric-key 
cryptography and asymmetric-key cryptography. Symmetric 
key cryptography refers to the encryption method in which 
the sender and the recipient share the same key. In 
asymmetric key cryptography, the sender and the recipient 
use two different keys for the purpose of encryption and 
decryption, respectively. In symmetric-key modern block 
cipher, the plaintext is broken into n-bit ‘blocks’, each of 
which is encrypted to get a cipher text block of the same 
length. This encryption is done using a n-bit key. 
Mathematically, block cipher is a mapping from the set of n-
bit inputs onto the set of n-bit outputs, such that the 
permutation of the input-output pairs is determined by a k-bit 
key. By varying the key, a different permutation of the input-
output pairs is obtained. The requirement of an ideal block 
cipher is that the relationship between the key and the 
permutation obtained should appear to be random [1]. 

Substitution boxes are indispensable nonlinear 
component of modern day cryptographic systems, widely 
used in symmetric-key encryption algorithms like DES, 
IDEA, AES, Blowfish, KASUMI, RC5, Lucifer, GOST, etc. 
The vital role of S-box is to abstruse the relationship between 
ciphertext and the secret key, which is also called the 
Shannon’s property of confusion [2]. S-boxes are primarily 
meant to introduce nonlinearity in encryption algorithms, 
thereby making them resistant to linear and differential 
cryptanalysis [3, 4]. Thus S-box forms the core part of 
encryption algorithms. The strength of these algorithms is 
entirely dependent on the amount of confusion introduced by 
the S-box. The performance of the S-box is highly dependent 
on the area of use and also on the nature of data. Since 
Rinjdael S-box assumes to have excellent features and plays 

a critical role in the success of AES [5]. Many researchers 
have focused their research on evaluating, and assessing the 
features and strengths of AES S-box [6-9]. In [10] Cui and 
Cao designed a new S-box structure named affine-power-
affine to improve the algebraic complexity of original 
Rinjdael AES S-box and making it more stronger as 
compared to Rinjdael S-box. But, when it comes to high 
auto-correlated data, as in the case of digital media like 
images, S-boxes show poor performance despite of having 
high nonlinearity. In [10-14], many attempts have been 
designed to construct new S-boxes similar to AES S-Box. 
The availability of new S-boxes is desirable in high speed 
communication systems while keeping the level of security 
same as the AES S-Box. Efficient methods are proposed to 
synthesize large number of S-boxes with a reasonable level 
of complexity. In [15], Hussain et al. applied the S8 
permutation group to the elements of APA S-box to 
synthesize 40732 different S-boxes that inherits all the 
essential features of the APA S-box. 

In this work, we proposed a simple and effective method 
using rotation-k approach on the elements of the famous 
APA S-Box. The method synthesizes multiple substitution 
boxes that inherit all the essential characteristics of the 
original APA S-Box. In Section II, the affine-power-affine 
structure is discussed briefly. The proposed methodology is 
explained in section III. The performance analyses of all the 
seven synthesized substitution boxes are discussed in section 
IV which followed by the conclusion of the work in section 
V. 

II. APA STRUCTURE AND CHARACTERISTICS 

The AES S-box has been considered as secure against 
linear and differential cryptanalyses. However, AES has 
simple algebraic structure as S = A ◦ P and having only 9 
terms in its algebraic expression, which makes AES S-box 
susceptible to algebraic attacks [6]. Cui and Cao considered 
the problem and introduced a new structure called Affine-
Power-Affine (APA) that amplified the algebraic complexity 
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[10]. Due to the APA structure, the algebraic complexity of 
improved AES S-box increases from 9 to 253. AES S-box is 
the combination of a power function P(x) (the multiplicative 
inverse modulo the polynomial x8 + x4 + x3 + x + 1) and an 
affine transformation A(x). The affine-power-affine has the 
following structure 

APAxS =)(  

Where, A represents the affine surjection and P represents 
inverse power permutation function over GF(28). 
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Where xi’s are the coefficients of x (8-bit elements of S-

box in GF(28)). It has been shown by Cui and Cao that the 
APA structure retains the characteristics of AES S-Box as 
long as the power permutation P is a bijection. Let, S: GF(28)  
→ GF(28) is multi-output mapping and A: GF(28) → GF(28) 
is affine surjection, then we have  

N(S) = N(A ◦ S) and  

δ(S) = δ(A ◦ S) 

Let, B: GF(28) → GF(28) is also an affine surjection, then 

N(S) = N(A ◦ S ◦ B) and  

δ(S) = δ(A ◦ S ◦ B) 

where, N(S) and δ(S) denotes the nonlinearity and 
differential uniformity [10, 15]. Hence, form the above 
equations, we have 

N(A ◦ P ◦ A) = N(A ◦ P) and  

δ(A ◦ P ◦ A) = δ(A ◦ P) 

This ensures that the APA structure inherit all the 
cryptographic strengths and features of the AES S-Box. But, 
the affine operation before the power function is equivalent 
to multiplying with linear polynomials. As a result, APA 
structure improves the algebraic complexity of the S-Box, 
from 9 to 253, which is essential to mitigate the algebraic 
attacks [10]. 

III. CONSTRUCTING ROTATION-K APA S-BOXES 

The proposed multiple substitution boxes are constructed 
by applying the rotation-k operation on the elements of APA 
S-box in binary form. Firstly, all the elements of APA S-Box 
are converted into 8-bit binary form and then each 8-bit 
vector is rotated by k (0 < k < 8) number of positions. The 
same rotation operation is applied on the elements to get the 
new 8x8 substitution box. Using the proposed 
transformation, seven different substitution boxes can be 
easily synthesized and each one has the characteristics 

similar to the APA substitution box. The proposed 
transformation can be expressed as: 

f : Rotation-k(APA-SBox) → rotation-k S-Box 

This way, the 7 new 8x8 substitution boxes have been 
explored which have the algebraic complexity better than the 
AES S-Box. The statistical performance evaluation analyses 
justify this experimentally. The method of synthesizing 7 
new and different substitution boxes is illustrated in Figure 1. 

 

 

Figure 1.  Construction of rotation-k APA S-Boxes. 

IV. STATISTICAL ANALYSIS OF ROTATION-K APA S-
BOXES 

The performance of all the rotation-k S-Boxes are 
analyzed and tested against various standard statistical 
parameters discussed in the subsequent subsections. 

A. Bijectivity 
An 8x8 substitution box is said to be bijective if it has all 

the 256 unique elements in the [0, 255]. All the seven 
synthesized S-Boxes have been verified to satisfy the 
bijectiveness [16]. 

B. Nonlinearity 
Nonlinearity is an important property, which can decide 

the usability of an S-box as nonlinear component in block 
ciphers. In terms of the Walsh spectrum, it is defined as [17- 
25]: 
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Where Ng is the nonlinearity of the Boolean function and 
the Walsh spectrum of g(x) is described as:  
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Where ω belongs to GF(28) and  x.ω denotes the scalar 
product of x and ω. High nonlinearity scores of all eight 
Boolean functions in S-boxes are requisite since it diminishes 
the input-output correlation. Following the mathematics for 
proposed 8x8 S-box, the nonlinearity of eight Boolean 
functions (1 ≤ gi ≤ 8) involved are evaluated. The 
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nonlinearity performances of the seven S-boxes are tested 
and compared with some recent 8x8 S-boxes in Table II. 
Comparatively, the synthesized S-boxes have excellent 
nonlinearity strength and outperform many recent S-boxes. 

C. Strict Avalanche Criteria 
The strict avalanche criterion (SAC) was initially 

presented by Webster and Tavares [4] in 1986. 
Mathematically, a Boolean function satisfies SAC criteria if 
each of its output bits change with a probability of a half 
whenever a single input bit x is complemented. Generally, 
the dependency matrix used to test the SAC of an S-box. If 
each element and the mean value of the matrix are both close 
to the ideal value of 0.5, the S-box is said to have nearly 
fulfilled the SAC criterion [19]. The value of SAC for the 
generated S-box is 0.5007 which is very close to the ideal 
value 0.5 SAC of proposed S-boxes and others are provided 
in Table IV. Moreover, the comparisons drawn in Table 
highlight that the proposed S-box has relevant and 
comparable value with respect to strict avalanche criteria. 

D. Differential Uniformity 
A poor S-box design is easily vulnerable to the 

differential cryptanalysis. To avoid such scenarios, S-boxes 
should ideally have maximum value of differential 
uniformity as low as possible. To ensure a uniform mapping 
probability, an input differential should map uniquely to an 
output differential for each j. The differential approximation 
probability, for an S-box, is a measure of differential 
uniformity [26] which is defined as: 

( ) { }( )yxxfxfXxyxDP δδδδ =⊕⊕∈=→ )()(#  

Here, X is the set of all input values and 2n are number of 
S-box elements. The maximum value of DU should be as 
low as possible for a strong substitution-box to thwart the 
differential attacks. The maximum differential probability, 
listed in Table IV, for the proposed S-box is 4, which is best 
than the maximum DP of S-boxes investigated by Jakimoski, 
Khan, Khan and Gondal et al. in [27, 29-31]. 

Table I.  Proposed rotation-k (for k = 3) APA substitution box 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 145 27 105 184 161 138 227 107 155 185 235 129 76 158 156 215 
2 18 20 38 164 237 43 118 21 193 202 68 154 110 192 19 128 
3 59 51 182 135 172 251 125 104 122 73 97 149 121 213 127 7 
4 56 211 90 49 245 229 249 58 165 218 10 64 40 186 89 163 
5 200 24 98 57 82 91 29 47 77 1 167 2 11 220 34 195 
6 108 178 39 101 244 148 232 176 75 112 16 144 46 103 190 94 
7 106 236 141 71 222 160 74 72 136 119 67 207 238 87 187 228 
8 62 246 180 88 212 146 198 80 117 102 247 45 131 223 79 35 
9 44 173 96 205 8 115 151 248 25 60 153 14 111 210 139 86 

10 70 28 231 216 55 78 194 52 188 6 255 12 241 252 191 174 
11 162 126 169 85 189 32 37 15 230 201 140 170 243 225 217 84 
12 199 5 134 50 22 142 206 233 65 132 240 69 179 168 17 221 
13 196 4 63 41 120 53 66 92 109 203 99 36 116 133 26 123 
14 83 208 157 3 250 254 95 166 42 150 152 234 54 30 13 23 
15 242 214 209 114 175 48 147 93 124 0 224 100 239 159 177 33 
16 197 253 226 219 143 61 81 181 130 9 31 204 171 183 137 113 

Table II.  Nonlinearities of some 8x8 substitution boxes 

Substitution-Boxes 1 2 3 4 5 6 7 8 Average 
 
 

P 
R 
O 
P 
O 
S 
E 
D 
 

rotation-1 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-2 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-3 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-4 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-5 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-6 APA S-Box 112 112 112 112 112 112 112 112 112 

rotation-7 APA S-Box 112 112 112 112 112 112 112 112 112 
 
 

 
E 
X 
I 
S 
T 
I 
N 

APA S-Box [10] 112 112 112 112 112 112 112 112 112 

S8 APA S-Box [15] 112 112 112 112 112 112 112 112 112 

AES S-Box [5] 112 112 112 112 112 112 112 112 112 

Skipjack S-Box 104 104 108 108 108 104 104 106 105.75 

In [27] S-Box 98 100 100 104 104 106 106 108 103.25 

In [28] S-Box 104 100 106 102 104 102 104 104 103.25 
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Substitution-Boxes 1 2 3 4 5 6 7 8 Average 
G 
 

In [29] S-Box 108 102 100 104 104 102 98 106 103 

In [30] S-Box 100 108 106 104 102 102 106 108 104.5 

In [31] S-Box 98 100 106 104 106 100 106 104 103 

 

E. Bit Independent Criteria 
The bit independence criterion is given by Webster and 

Tavares which deals with testing an individual bit at the input 
of the cipher by performing the toggle operation. The bit 
independence criterion (BIC) analyzes all the avalanche 
variables and determines the extent of their pair-wise 
independence in reference to a given set of avalanche vectors. 
The avalanche vectors are generated by the bit patters resulting 
from complementing bit(s) at the input according to Webster & 
Tavares [4]. It is a desirable property for any cryptographic 
design. It means that all the avalanche variables should be pair-
wise independent for a given set of avalanche vectors generated 
by complementing a single plaintext bit. In order to measure 
the degree of independence between a pair of avalanche 
variables, we can calculate their correlation coefficient. For two 
variables A and B, 

)()(
),cov(),(

BA
BABA

σσ
ρ =  

Where ρ(A, B) is the correlation coefficient of A and B, 
cov(A, B) is the covariance of A and B, i.e. cov(A, B) = 
E(AB) – E(A) × E(B) and σ 2(A) = E(A2) − (E(A))/2. Suppose, 
the Boolean functions in the 8×8 S-box are f1, f2, . . . f8. It was 
pointed out that if the S-box met BIC, fj⊕ fk (j ≠ k, 1≤ j, k ≤ 8) 
should be highly nonlinear and satisfies the avalanche criterion 
[17, 28]. Therefore, BIC can be verified by calculating the 
SAC and the nonlinearity of fj ⊕ fk. The BIC nonlinearity 
scores of fj⊕ fk are depicted in Table III for the proposed S-
box. The average of BIC scores for nonlinearity are quantified 
and listed in Table III. The average of bits independent criteria 
with respect to nonlinearities is 112. The BIC scores justify the 
satisfactory performance of proposed S-box. 

Table III.  Bit independent criteria for nonlinearity for proposed substitution-
box 

- f1 f2 f3 f4 f5 f6 f7 f8 

f1 0 112 112 112 112 112 112 112 

f2 112 0 112 112 112 112 112 112 

f3 112 112 0 112 112 112 112 112 

f4 112 112 112 0 112 112 112 112 

f5 112 112 112 112 0 112 112 112 

f6 112 112 112 112 112 0 112 112 

f7 112 112 112 112 112 112 0 112 

f8 112 112 112 112 112 112 112 0 

 

F. Linear Approximation Probability 
The linear approximation probability (LAP) is the 

maximum value of the imbalance of an event. The parity of the 
input bits selected by the mask Γx is equal to the parity of the 
output bits selected by the mask Γy. A linear approximation 
probability of the likelihood (or probability bias) of the S-box 
is defined as [32]: 







 Γ•=Γ•∈

=
≠ΓΓ nyyx

xxfxxXxLAP
2

})(|{#max
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Where, Γx and Γy are input and output masks, respectively; 
X is the set of all possible inputs; and 2n is the number of its 
elements. Like DU, It should also be as small as possible for a 
strong substitution-box. The linear approximation probability 
of proposed S-boxes is found as 0.0625. Hence, it can be said 
that the proposed S-box when used for block encryption and 
can offer resistance to the linear approximation attacks, 
thereby, providing the security strength to the cryptosystem. 
 

G. Algebraic Complexity 
S-boxes are traditionally based of power mappings of the 

form xd for some exponent d. In the case of the AES, Fermat’s 
Little Theorem tells us that d = 254 = -1 over GF(28) [12]. The 
inverse power mapping inside this S-box is then augmented 
with the affine transformation. The algebraic complexity is 
defined as the number of terms in the linearized polynomial. 
So, for the AES, the algebraic complexity is equal to 9. Some 
researchers fear that this is too low and may render variations 
of interpolation attacks successful [14]. As such, there has 
been ample work done to increase the algebraic complexity to 
higher values. Here we will discuss how to apply Lagrangian 
interpolation to find algebraic complexity of an S-box [33]. As 
Daemen and Rijmen pointed out, any function from a finite 
field to itself can be expressed as a polynomial. In fact, given a 
tabular form of the function, it is possible to generate the 
Lagrange polynomial and then simplify. So let’s start with 
Lagrange polynomial [34]. 

It is experimentally verified that the algebraic complexity 
for all 7 synthesized S-boxes is comes out as 253 which is 
quite excellent than complexity 9 of AES S-box and similar to 
the features of the APA S-box and S8 APA S-boxes as listed in 
Table V. 

Table IV.  SAC, max DU, average BIC-NN and max LP of some substitution-
boxes 

S-Box SAC Max 
DU 

Average 
BIC-NN Max LP 

rotation-1 APA S-
Box 0.5007 4 112 0.0625 

rotation-2 APA S-
Box 0.5007 4 112 0.0625 

rotation-3 APA S-
Box 0.5007 4 112 0.0625 

rotation-4 APA S-
Box 0.5007 4 112 0.0625 

rotation-5 APA S-
Box 0.5007 4 112 0.0625 

rotation-6 APA S-
Box 0.5007 4 112 0.0625 

rotation-7 APA S-
Box 0.5007 4 112 0.0625 

APA S-Box [10] 0.5007 4 112 0.0625 

S8 APA S-Box [15] 0.5007 4 112 0.0625 
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S-Box SAC Max 
DU 

Average 
BIC-NN Max LP 

AES S-Box [5] 0.504 4 112 0.0625 

Skipjack S-Box 0.503 12 104.14 0.109 

In [27] S-Box 0.4972 12 104.2 0.1289 

In [28] S-Box 0.5048 10 103.7 0.1289 

In [29] S-Box 0.5012 12 104.1 0.1484 

In [30] S-Box 0.4978 12 103.6 0.1406 

In [31] S-Box NR 12 104.14 0.1484 

Table V.  Algebraic complexities 

S-Box Algebraic Complexity 

rotation-k APA S-Box (all 7) 253 

APA S-Box [10] 253 

S8 APA S-Box [5] 253 

AES S-Box [5] 9 

 

V. CONCLUSION 

In this paper, we proposed a method of constructing 
algebraically complex and cryptographically potent multiple 
substitution boxes that have strength as that of the original 
affine-power-affine S-Box. The seven substitution boxes are 
constructed using the concept of rotation-k operation on the 
elements of APA S-Box. It has been shown that all the rotation-
k approach-based seven S-Boxes inherit all the cryptographic 
features of affine-power-affine structure. Performance 
assessment of all new seven substitution boxes is carried out 
against worldwide accepted standard measures like 
nonlinearity, strict avalanche criteria, bits independent criteria, 
differential probability, linear approximation probability and 
algebraic complexity. Moreover, it has also been shown that the 
proposed substitution boxes have excellent cryptographic 
strengths and outperform various recent substitution boxes. The 
new seven substitution boxes are perfectly suitable candidates 
for the design of block encryption systems to realize secure 
communications. 
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