
Volume 6, No. 8, Nov-Dec 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 81

ISSN No. 0976-5697

Selection of a Suitable Partitioning Strategy for Multidimensional Database

Dr Anil Rajput
Professor Computer Science & Mathematics

Govt.C.S.A.P.G.College, Sehore, Madhya Pradesh

Kshmasheel Mishra
Former Reader Computer Science

Vikram University,Ujjain,Madhya Pradesh

Vaibhav Khanna*

Assistant Professor Dezyne E'cole College,
Civil lines, Ajmer, Rajasthan

Purushottam sharma
A-35,Vidhya Nagar, Hosangabad Road,

Bhopal(M.P.)

Abstract: Taking into consideration the business and practical point of view, a partitioning strategy is normally recognized with a practical goal-
seeking perspective. Therefore it needs to be mapped to an Oracle partitioning technical recommendation or specific partitioning strategy
matching those business requirements, regulatory compliance, or systems platform. A persisting challenge is the determination of a suitable
number of partitions in each dimension.
Assumptions and limitations of current data partitioning and placement in database machines have been discussed. A new formula defining the
number of partitions accessed by range queries in a single dimension when the number of partitions is small has been derived. A model relating
analytics savings due to partitioning and the resultant costs to transaction processing from the partitioning has been presented which shows how
to determine the columns to partition, and to what level. Both single and multi-column partitioning has been considered.

Keywords: Partitioning Strategies, performance, partitioning, interval partitioning, range partitioning, hash partitioning, database performance
experiments.

I. INTRODUCTION

Modern enterprises recurrently run mission-critical
databases containing upwards of several hundred gigabytes,
and often several terabytes of data. These enterprises are
challenged by the support and maintenance requirements of
very large databases (VLDB), and must devise methods to meet
those challenges. Data used to be just data. Now there’s “big
data,” real-time data, multi-structured data, analytic data, and
machine data. Likewise, user communities have swollen into
thousands of coexisting users, reports, dashboards, scorecards,
and analyses. The rising popularity of advanced analytics has
driven up the number of power users with their titanic ad hoc
queries and analytic workloads. And there are still brave new
worlds to explore, such as social media and sensor data.

Partitioning addresses key issues in supporting very large
tables and indexes by decomposing them into smaller and more
manageable pieces called partitions, which are entirely
transparent to an application. SQL queries and Data
Manipulation Language (DML) statements do not need to be
modified to access partitioned tables. However, after partitions
are defined, Data Definition Language (DDL) statements can
access and manipulate individual partitions rather than entire
tables or indexes. This is how partitioning can simplify the
manageability of large database objects.

This research paper focuses on partitioning strategy options
and their fitment for use. The experiments were conducted for
actual data sets for real life partitioning option as included in
commercial databases. The broad areas of this set of
experiments included various strategies to Table Partitioning
and Sub partitioning.

Partitioning offers several advantages at various stages of
data management operations such as data loads, index creation
and rebuilding, and backup and recovery at the partition level,
rather than on the entire table. As a result of this there is a
significant reduction in times for these operations. On the core

it is a “Divide and Conquer” technique which can be applied at
maintenance level[7]. Through careful selection of partitioning
strategy we can have more granular storage allocation options
including online, offline, rebuild, reorganize and object level
backup/restore options. Partitioning works at the optimizer
level and the optimizer eliminates (prunes) partitions that do
not need to be scanned (Partition Pruning). Similarly join
operations can be optimized to join “by the partition”
(Partition-Wise Joins). Also the partitions can be load-balanced
across physical devices and this significantly reduces the
impact of scheduled downtime for maintenance operations.

Partition independence for partition maintenance operations
can help us in performing coexisting maintenance operations
on different partitions of the same table or index.

A partition can be divided at a user-defined value and can
isolate subsets of rows that must be treated individually. This
means that SELECT, UPDATE, INSERT and DELETE
operations can be applied on a partition level instead of a table
level, which results in huge performance improvements. One
can also run coexisting SELECT and DML operations against
partitions that are unaffected by maintenance operations. It
increases the availability of mission-critical databases if critical
tables and indexes are divided into partitions to reduce the
maintenance[5]. Parallel execution provides specific
advantages to optimize resource utilization, and minimize
execution time. Parallel execution against partitioned objects is
key for scalability in a clustered environment. Parallel
execution is supported for queries and for DML and DDL.

A table is defined by specifying one of the following data
distribution methodologies, using one or more columns as the
partitioning key:

• Range Partitioning
• Hash Partitioning
• List Partitioning

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 82

An important factor affecting query performance in
multidimensional datasets / tables is the partitioning strategy
which determines the tables to be partitioned and the
partitioning attribute. For evaluation purposes, we categorized
query optimizers into three categories—Basic, Intermediate,
and Advanced—based on how they exploit partitioning
information to perform optimization[2]. The intermediate query
optimisers can conduct per-table partition pruning and one-to-
one partition-wise joins (like Oracle and SQLServer).

II. PARTITIONING STRATEGY EXPERIMENTS

We conducted several experiments to evaluate the effectiveness
of partitioning techniques across a wide range of factors that
affect table partitioning. We used the TPC-H benchmark with
scale factors ranging from 10 to 40, with 30 being the default
scale. We closely followed directions from the TPC-H
Standard Specifications for multidimensional database
partitioning. To align to the specification guideline we
partitioned tables only on primary key, foreign key, and/or date
columns. The following section present the experimental
results for a representative set of TPC-H queries. The
experimental readings were taken several times and the results
presented are averaged over five to ten query executions
readings.

The Intermediate optimizer is implemented as a variant of
the Advanced optimizer that checks for and creates one-to-one
partition wise join pairs in place of the regular matching and
clustering phases. The advanced optimizers can execute
multiple joins and creates one-to-one partition wise join pairs.
Given the capabilities of the query optimizer, the DBA has
multiple choices regarding the partitioning strategy. In one
extreme, the DBA can partition tables based on attributes
appearing in filter conditions in order to take maximum
advantage of partition pruning. At the other extreme, the DBA
can partition tables based on joining attributes in order to take
maximum advantage of one-to-one partition-wise joins;
assuming the optimizer supports such joins (like the
Intermediate optimizer). This enable the creation of
multidimensional partitions to take advantage of both partition
pruning and partition-wise joins. The experiments utilised the
following partitioning scheme for TPC-H.

We will refer to the three schemes as:

• partitioning pruning strategies (PS-P),
• partitioning join strategies for joins (PS-J),
• and for both pruning and join strategies (PS-B).

 Figure 1 Partitioning scheme for TPC-H

Many companies have built data warehouses and have
embraced business intelligence and analytics solutions. Even as
companies have accumulated huge amounts of data, however, it
remains difficult to provide trusted information at the correct

time and in the correct place. The amount of data to mine,
cleanse, and integrate throughout the enterprise continues to
grow even as the complexity and urgency of receiving
meaningful information continues to increase. Before
information can become available in a dashboard or a report,
many preceding steps must take place: the collection of raw
data; integration of data from multiple data stores, business
units, or geographies; transformation of data from one format
to another; cubing data into data cubes; and finally, loading
changes to data in the data warehouse[9].

III. QUERY EXECUTION TIME FOR VARIOUS STRATEGIES

Figure 2 shows the execution times for the plans selected by
the three query optimizers for the ten TPC-H queries running
on the database with the PS-J scheme. The Intermediate and
Advanced optimizers are able to generate a better plan than the
Basic optimizer for all queries, providing up to an order of
magnitude benefit for some of them. Note that the Intermediate
and Advanced optimizers produce the same plan in all cases,
since one-to-one partition-wise joins are the only join
optimization option for both optimizers for the PS-J scheme.

Figure 2 Query Execution time for PS-J Strategy

Figure 3 presents the corresponding execution times for the
queries after optimization using partitioning strategies. The
Intermediate optimizer introduces some overhead 12% and
worst case of 21% due to the creation of child-join paths. The
additional overhead introduced by the Advanced optimizer is
due to the matching and clustering algorithms. Overall, the
optimization overhead introduced by Advanced is low, and is
most definitely gained back during execution.

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 83

Figure 3 Query Execution time for after partitioning changes

Query performance is related directly to the optimizer

capabilities and the partitioning scheme used in the database.
Figure 4 shows the performance results for TPC-H queries 5
and 8 for the three optimizers over databases with different
partitioning schemes. (Results for other queries are similar.)
Since a database using the PS-P scheme only allows for
partition pruning, all three optimizers behave in an identical
manner. A PS-J scheme on the other hand, does not allow for
any partition pruning since join attributes do not appear in filter
conditions in the queries. Hence, the Basic optimizer performs
poorly in many cases, whereas the Intermediate and Advanced
optimizers take advantage of partition-wise joins to produce
better plans with very low overhead.

Figure 4 Query Execution time for three optimisers

The presence of multidimensional partitions in a PS-B
scheme prevents the Intermediate optimizer from generating
any one-to-one partition-wise joins, but it can still perform
partition pruning like the Basic optimizer. The Advanced
optimizer utilizes both partition pruning and partition-wise
joins to find better-performing plans. Consider the problem of
picking the best partitioning scheme for a given query
workload. The best query performance can be obtained either
from
(a) partition pruning (PS-P is best for query 8 in Figure 4), or
(b) from partition-aware join processing (PS-J is best for query
5 in Figure 4), or
(c) from a combination of both due to some workload or data
properties. In all cases, the Advanced optimizer enables finding
the plan with the best possible performance[1].

IV. SELECTION OF SUITABLE PARTITIONING STRATEGY

The study is aimed at discovering suitable partitioning
strategies / new partitioning options for enhancing performance
of multidimensional databases. Therefore, fundamental
strategies— such as range, hash and list—, composite
partitioning strategies including all possible combinations of
Basic strategies, and Partition Extensions such as Reference
and Interval partitioning strategies are covered.

4.1 Range partitioning
Range partitioning maps data to partitions based on ranges of
values of the partitioning key that you establish for each
partition. Partition by Range is used to establish ranges within
the domain used as partitioning key. It is the most widespread
type of partitioning and is often used with dates.

For a table with a date column as the partitioning key, the
January-2010 partition would contain rows with partitioning
key values from 01-Jan-2010 to 31-Jan-2010.

For Example the following sample code creates a table with
four partitions and enables row movement on a University
database[10].

CREATE TABLE credit evaluations
(evaluationid VARCHAR2(16) primary key
, graduation_id VARCHAR2(12)
, graduation_date DATE
, degree_granted VARCHAR2(12)
, degree_major VARCHAR2(64)
, college_id VARCHAR2(32)
, final_gpa NUMBER(4,2))
PARTITION BY RANGE (graduation_date)
(PARTITION graduation_date_70s
VALUES LESS THAN (TO_DATE('01-JAN-1980','DD-

MON-YYYY')) TABLESPACE T1
, PARTITION graduation_date_80s
VALUES LESS THAN (TO_DATE('01-JAN-1990','DD-

MON-YYYY')) TABLESPACE T2
, PARTITION graduation_date_90s
VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-

MON-YYYY')) TABLESPACE T3
, PARTITION graduation_date_2000s
VALUES LESS THAN (TO_DATE('01-JAN-2010','DD-

MON-YYYY')) TABLESPACE T4)
ENABLE ROW MOVEMENT;

4.2 List partitioning
List Partitioning provides a list of values matching one partition
in the partition key domain and a default partition for those not
matched[11]. List partitioning enables you to unambiguously
control how rows map to partitions by specifying a list of
discrete values for the partitioning key in the description for
each partition. The advantage of list partitioning is that you can
group and organize unordered and unrelated sets of data in a
natural way. A PARTITION BY LIST clause is used in the
CREATE TABLE statement to create a table partitioned by list,
by specifying lists of literal values, (the discrete values of the
partitioning columns qualifying rows matching the partition’s
single column partitioning key.)

4.3 Hash partitioning
Hash partitioning is used to transform the partitioning key
value and maps it to given partition. Hash partitioning maps
data to partitions based on a hashing algorithm that Oracle
applies to the partitioning key that you identify. The hashing
algorithm evenly distributes rows among partitions, giving
partitions approximately the same size[11]. Hash partitioning is

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 84

the ideal method for distributing data evenly across devices.
Hash partitioning is also an easy-to-use alternative to range
partitioning, especially when the data to be partitioned is not
historical or has no obvious partitioning key[10].

CREATE TABLE college_directory
(stid NUMBER PRIMARY KEY,
lname VARCHAR2 (50),
fname VARCHAR2 (50),
phone VARCHAR2(16),
email VARCHAR2(128),
class_year VARCHAR2(4))
PARTITION BY HASH (stid) PARTITIONS 4 STORE IN

(t1, t2, t3, t4);
The PARTITION BY HASH clause of the CREATE

TABLE statement identifies that the table is to be hash-
partitioned. The PARTITIONS clause can then be used to
specify the number of partitions to create, and optionally, the
tablespaces to store them in. Otherwise, PARTITION clauses
can be used to name the individual partitions and their
tablespaces . The only attribute needed to specify for hash
partitions is TABLESPACE. All of the hash partitions of a
table must share the same segment attributes (except
TABLESPACE), which are inherited from the table level[4].
Figure 5 offers a graphical view of the basic partitioning
strategies for a single-level partitioned table[11].

Figure 5 List Range and Hash Partitioning

4.4 Composite Range Partitioning
Composite partitioning is a combination of the basic data
distribution methods; a table is partitioned by one data
distribution method and then each partition is further
subdivided into sub partitions using a second data distribution
method. All sub partitions for a given partition represent a
logical subset of the data.
The research covers both middle-to-large-size and big data
styled databases with significant implications for consolidation,
systems integration, high-availability, and virtualization
support etc. All the experiments conducted emphasize
subsequent performance tuning by partitioning and composite
partitioning choices.
Composite partitioning supports historical operations, such as
adding new range partitions, but also provides higher degrees
of potential partition pruning and finer granularity of data
placement through sub partitioning. Figure 6 offers a graphical
view of range-hash and range-list composite partitioning.

Figure 6 Composite Partitioning

Composite range-range partitioning enables logical range
partitioning along two dimensions; for example, partition by
order_date and range subpartition by shipping_date.

4.5 Composite Range-Hash Partitioning
Composite range-hash partitioning partitions data using the
range method, and within each partition, subpartitions it using
the hash method. Range-Hash partitioned tables are probably
the most widespread type among the composite partitioning
strategies. In general, to create a composite partitioned table,
use the PARTITION BY RANGE LIST clause of a CREATE
TABLE statement. Next, you specify a SUBPARTITION BY
RANGE LIST HASH clause that follows similar syntax and
rules as the PARTITION BY RANGE LIST HASH clause.

The partitions of a range-hash partitioned table are logical
structures only, as their data is stored in the segments of their
subpartitions. As with partitions, these subpartitions share the
same logical attributes. Unlike range partitions in a range-
partitioned table, the subpartitions cannot have different
physical attributes from the owning partition, but they can
reside another tablespace. Attributes specified for a range
partition apply to all subpartitions of that partition.

4.6 Composite Range-List Partitioning

Composite range-list partitioning partitions data using the
range method, and within each partition, subpartitions it using
the list method. Composite range-list partitioning provides the
manageability of range partitioning and the explicit control of
list partitioning for the sub partitions[10].
Range-List partitioned tables are subject to range rules at the
first partitioning level and list rules at second, list partitioning
level, accordingly.

The Case study for oracle SH schema was also used to
study the impact of partitioning on datatbase query
performance[6].

CREATE TABLE q_territory_sales
(divno VARCHAR2(12), depno NUMBER,
itemno VARCHAR2(16), accrual_date DATE,
sales_amount NUMBER, state VARCHAR2(2),
constraint pk_q_dvdno primary key(divno,depno)
) TABLESPACE t8 PARTITION BY RANGE
(accrual_date) SUBPARTITION BY LIST (state)
(PARTITION q1_2000 VALUES LESS THAN
(TO_DATE('1-APR-2000','DD-MON-YYYY'))
(SUBPARTITION q1_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q1_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q1_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q1_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q1_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q1_2000_sc VALUES ('TX', 'LA‘)),
PARTITION q2_2000 VALUES LESS THAN
(TO_DATE('1-JUL-2000','DD-MON-YYYY'))
(SUBPARTITION q2_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q2_2000_sw VALUES ('CA', 'NM'),

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 85

SUBPARTITION q2_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q2_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q2_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q2_2000_sc VALUES ('TX', 'LA‘)
), PARTITION q3_2000 VALUES LESS THAN
(TO_DATE('1-OCT-2000','DD-MON-YYYY'))
(SUBPARTITION q3_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q3_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q3_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q3_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q3_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q3_2000_sc VALUES ('TX', 'LA')
), PARTITION q4_2000 VALUES LESS THAN (
TO_DATE('1-JAN-2001','DD-MON-YYYY'))
(SUBPARTITION q4_2000_nw VALUES ('OR', 'WY'),
SUBPARTITION q4_2000_sw VALUES ('CA', 'NM'),
SUBPARTITION q4_2000_ne VALUES ('NY', 'CT'),
SUBPARTITION q4_2000_se VALUES ('FL', 'GA'),
SUBPARTITION q4_2000_nc VALUES ('SD', 'WI'),
SUBPARTITION q4_2000_sc VALUES ('TX', 'LA')));

4.7 Composite List-X Partitioning
Composite list-range partitioning enables logical range
subpartitioning within a given list partitioning strategy; for
example, list partition by country_id and range subpartition by
order_date[10]. Composite list-hash partitioning enables hash
subpartitioning of a list-partitioned object; for example, to
enable partition-wise joins. Composite list-list partitioning
enables logical list partitioning along two dimensions; for
example, list partition by country_id and list subpartition by
sales_channel.

V. ADVANCED PARTITIONING STRATEGIES

5.1 Reference Partitioning
Reference Partitioning strategy normally uses the referential
integrity constraint between to table, and uses the key in the
details table to attain partition on the referenced key, which
points to a candidate primary key in another partitioned table,
the master table. The referential integrity constraint must be
enabled and enforced. Reference partitioning enables the
partitioning of two tables that are related to one another by
referential constraints. The partitioning key is resolved through
an existing parent-child relationship, enforced by enabled and
active primary key and foreign key constraints[3].
The benefit of this extension is that tables with a parent-child
relationship can be logically equipartitioned by inheriting the
partitioning key from the parent table without duplicating the
key columns. The logical dependency also automatically
cascades partition maintenance operations, thus making
application development easier and less error-prone[11].

Reference partitioning enables the partitioning of two tables
that are related to one another by referential constraints. The
partitioning key is resolved through an existing parent-child
relationship, enforced by enabled and active primary key and
foreign key constraints[8].

The benefit of this extension is that tables with a parent-
child relationship can be logically equipartitioned by inheriting
the partitioning key from the parent table without duplicating
the key columns. The logical dependency also automatically
cascades partition maintenance operations, thus making
application development easier and less error-prone.
REF Partitioning allows to partition a table by leveraging an
existing parent-child relationship. The partitioning strategy of
the parent table is inherited to its child table without the
necessity to store the parent’s partitioning key column in the
child table. Transparently inherits all partition maintenance

operations that change the logical shape of a table from the
parent table to the child table (for example when we
drop/add/split partitions). This automatically enables partition-
wise joins for the equal-partitions of the parent and child table.
This is also perfect for star schemas in data warehouses as we
can partition the fact table according to the dimension tables.
5.2 Interval partitioning
Interval partitioning is an extension of range partitioning which
instructs the database to automatically create partitions of a
specified interval when data inserted into the table exceeds all
of the existing range partitions. We can create single-level
interval partitioned tables and also composite partitioned tables:
Interval-range, Interval-hash, Interval-list. The INTERVAL
clause of the CREATE TABLE statement sets interval
partitioning for the table. At least one range partition must be
specified using the PARTITION clause[10]. The range
partitioning key value determines the high value of the range
partitions (transition point) and the database automatically
creates interval partitions for data beyond that transition point.
For each interval partition, the lower boundary is the non-
inclusive upper boundary of the previous range or interval
partition. The partitioning key can only be a single column
name from the table and it must be of NUMBER or DATE
type. The optional STORE IN clause lets you specify one or
more tablespaces. At least one range partition must be specified
using the PARTITION clause. The range partitioning key value
determines the high value of the range partitions (transition
point) and the database automatically creates interval partitions
for data beyond that transition point. For each interval partition,
the lower boundary is the noninclusive upper boundary of the
previous range or interval partition. The partitioning key can
only be a single column name from the table and it must be of
NUMBER or DATE type.
5.3 Virtual Column Partitioning
Virtual Column Partitioning option permits to partition of a
column on a virtual column, which is usually the outcome of a
mathematical operation on two or more actual columns on the
same table. This option extends every basic partitioning
strategy. Virtual columns remove that restriction and enable the
partitioning key to be defined by an expression, using one or
more existing columns of a table. The expression is stored as
metadata only. In the context of partitioning, a virtual column
can be used as any regular column. All partition methods are
supported when using virtual columns, including interval
partitioning and all different combinations of composite
partitioning. There is no support for calls to a PL/SQL function
on the virtual column used as the partitioning column[6, 10].

Virtual Column based partitioning allows the partitioning
key to be defined by an expression, using one or more existing
columns of a table and storing the expression as metadata only.
This enables a more comprehensive match of the business
requirements.This is supported with all basic partitioning
strategies and can also be used with interval partitioning as well
as the partitioning key for REF partitioned tables. Virtual
columns are treated as real columns except no DML operations
are allowed[10].

CREATE TABLE SALES
(PROD_ID NUMBER NOT NULL,
CUST_ID NUMBER NOT NULL,
TIME_ID DATE NOT NULL,
CHANNEL_ID NUMBER NOT NULL,
PROMO_ID NUMBER NOT NULL,
QUANTITY_SOLD NUMBER(10,2) NOT NULL,
AMOUNT_SOLD NUMBER(10,2) NOT NULL,
PROD_TYPE NUMBER(1) AS
(TO_NUMBER(SUBSTR(TO_CHAR(PROD_ID),1,1))))
TABLESPACE USERS

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 86

PARTITION BY RANGE (PROD_TYPE) INTERVAL (1)
(PARTITION p1 VALUES LESS THAN (1));

VI. RECOMMENDATIONS FOR PARTITIONING STRATEGIES

Range partitioning is a convenient method for partitioning
historical data. The boundaries of range partitions define the
ordering of the partitions in the tables or indexes. Interval
partitioning is an extension to range partitioning in which,
beyond a point in time, partitions are defined by an interval.
Interval partitions are automatically created by the database
when data is inserted into the partition. Range or interval
partitioning is often used to organize data by time intervals on a
column of type DATE. Thus, most SQL statements accessing
range partitions focus on timeframes.
Range partitioning is also ideal when we periodically load new
data and purge old data, because it is easy to add or drop
partitions. For example, it is widespread to keep a rolling
window of data, keeping the past 36 months' worth of data
online. Range partitioning simplifies this process. To add data
from a new month, we load it into a separate table, clean it,
index it, and then add it to the range-partitioned table using the
EXCHANGE PARTITION statement, all while the original
table remains online. After we add the new partition, we can
drop the trailing month with the DROP PARTITION statement.
The alternative to using the DROP PARTITION statement can
be to archive the partition and make it read only, but this works
only when partitions are in separate tablespaces. We can also
implement a rolling window of data using inserts into the
partitioned table[1].

With hash partitioning, a row is placed into a partition
based on the result of passing the partitioning key into a
hashing algorithm. Using this approach, data is randomly
distributed across the partitions rather than grouped. As a
general rule, hash partitioning is useful to enable partial or full
parallel partition-wise joins with likely equisized partitions. It
is also useful for distributing data evenly among the nodes of
an MPP platform that uses Oracle Real Application Clusters.
Consequently, we can minimize interconnect traffic when
processing internode parallel statements. Hash partitioning is
very useful in partition pruning and partition-wise joins
according to a partitioning key that is mostly constrained by a
distinct value or value list and to randomly distribute data to
avoid I/O bottlenecks if we do not use a storage management
technique that stripes and mirrors across all available devices.
We should use list partitioning when we want to specifically
map rows to partitions based on discrete values. For instance all
the customers for one states are stored in one partition and
customers in other states are stored in other partitions. Account
managers who analyze their accounts by region can take
advantage of partition pruning.

Composite partitioning offers the benefits of partitioning on
two dimensions. From a performance perspective we can take
advantage of partition pruning on one or two dimensions
depending on the SQL statement, and we can take advantage of
the use of full or partial partition-wise joins on either
dimension[9].
We can take advantage of parallel backup and recovery of a
single table. Composite partitioning also increases the number
of partitions significantly, which may be beneficial for efficient
parallel execution. From a manageability perspective, we can
implement a rolling window to support historical data and still
partition on another dimension if many statements can benefit
from partition pruning or partition-wise joins.
Composite range-hash partitioning is particularly widespread
for tables that store history, are very large consequently, and

are recurrently joined with other large tables. For these types of
tables (typical of data warehouse systems), composite range-
hash partitioning provides the benefit of partition pruning at the
range level with the opportunity to perform parallel full or
partial partition-wise joins at the hash level. Specific cases can
benefit from partition pruning on both dimensions for specific
SQL statements.
Interval partitioning can be used for every table that is range
partitioned and uses fixed intervals for new partitions. The
database automatically creates interval partitions as data for
that partition is inserted. Until this happens, the interval
partition exists but no segment is created for the partition. We
should consider using interval partitioning unless we create
range partitions with different intervals, or if we always set
specific partition attributes when we create range partitions.

Reference partitioning is useful if we have denormalized, or
would denormalize, a column from a master table into a child
table to get partition pruning benefits on both tables. If two
large tables are joined recurrently, then the tables are not
partitioned on the join key, but we want to take advantage of
partition-wise joins. Reference partitioning implicitly enables
full partition-wise joins. If data in multiple tables has a related
life cycle, then reference partitioning can provide significant
manageability benefits.

Virtual column partitioning enables we to partition on an
expression, which may use data from other columns, and
perform calculations with these columns. PL/SQL function
calls are not supported in virtual column definitions that are to
be used as a partitioning key.
Virtual column partitioning supports all partitioning methods,
plus performance and manageability features. To get partition
pruning benefits, consider using virtual columns if tables are
recurrently accessed using a predicate that is not directly
captured in a column, but can be derived. Traditionally, to get
partition pruning benefits, we would have to add a separate
column to capture and calculate the correct value and ensure
the column is always populated correctly to ensure correct
query retrieval.

VII. CONCLUSION

Multi-column partitioning to reduce the scan time of large
multidimensional database queries is a viable proposition.
However, there are many constraints and practical
considerations and large number of partitions does not aid the
resolution of large queries, but does increase the cost. The
semantics of the database must be considered when
determining the number of partitions in each dimension. The
work indicated how partitioning is beneficial to reduce wasted
work.

VIII. REFERENCES

[1] A. Papadopoulos, P. Rigaux and M. Scholl, A
performance evaluation of spatial join processing
strategies, Proceedings of the 6th International
Symposium on Advances in Spatial Databases, p.286-307
(1999).

[2] Bellatreche, L., Woameno, K.Y.: Dimension Table Driven
Approach to Referential Partition Relational Data
Warehouses. In: ACM 12th International Workshop on
Data Warehousing and OLAP (DOLAP), pp. 9–16 (2009)

[3] Eadon, G., Chong, E.I., Shankar, S., Raghavan, A.,
Srinivasan, J., Das, S.: Supporting Table Partitioning By
Reference in Oracle. In: Proceedings of SIGMOD’08, pp.
1111–1122 (2008).

Vaibhav Khanna et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,81-87

© 2015-19, IJARCS All Rights Reserved 87

[4] Legler, T., Lehner, W., Ross, A.: Query Optimization For
Data Warehouse System With Different Data Distribution
Strategies, In BTW, pp. 502–513 (2007).

[5] Maria Halkidi, Michalis Vazirgiannis. Clustering Validity
Assessment: Finding the Optimal Partitioning of a Data
Set. In ICDM, 2001.

[6] Sanjay, A., Narasayya, V.R., Yang, B.: Integrating
Vertical and Horizontal Partitioning Into Automated
Physical Database Design. In: Proceedings of
SIGMOD’04, pp. 359–370 (2004)

[7] Simon, E.: Reality check: a case study of an EII research
prototype encountering customer needs. In Proceedings of
EDBT’08, pp. 1 (2008)

[8] Swami, A.N., Schiefer, K.B.: On the Estimation of Join
Result Sizes. In: Proceedings of EDBT’04, pp. 287–300
(1994).

[9] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAAI Press,
1996.

[10] http://noriegaaoracleexpert.blogspot.in/2009/06/comprehe
nsive-guide-to-oracle_16.html

[11] http://docs.oracle.com/cd/B28359_01/server.111/b32024/
partition.htm

http://noriegaaoracleexpert.blogspot.in/2009/06/comprehensive-guide-to-oracle_16.html�
http://noriegaaoracleexpert.blogspot.in/2009/06/comprehensive-guide-to-oracle_16.html�

	Introduction
	Partitioning Strategy Experiments
	Query Execution time for various strategies
	Selection of suitable partitioning strategy
	Advanced partitioning strategies
	Recommendations for partitioning strategies
	conclusion
	References

