
Volume 6, No. 8, Nov-Dec 2015

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 61

ISSN No. 0976-5697

Parallelism through Graphics Processor Unit using MATLAB : A Survey

Divya Kundra
Assistant Professor, Deen Dayal Upadhyaya College

Delhi, India

Abstract: While a CPU has handful number of cores, Graphics Processor Unit (GPU) has a large number of cores along with dedicated high
speed memory. GPU allows hundreds of threads to run parallel on different cores thus accelerating algorithm by many folds. Many algorithms
are speed up by GPU nowadays. Programs can be accelerated by GPU while using MATLAB more easily than by learning low level
programming languages like C or Forton. This paper presents a survey study for using GPU through MATLAB. It discusses the high level
programming language MATLAB, concept of parallelism, Parallel Computing Toolbox, GPU and the parallelism through GPU with help of
MATLAB.

Keywords: Parallelism; Parallel Computing Toolbox, GPU, CPU, MATLAB Distributed Computing Server

I. INTRODUCTION

 MATLAB1 is a high level programming language used for
various scientific and engineering calculations that is developed
by MathWorks. It provides interactive environment for
problem exploration and design, offers various mathematical
functions and development tools for improving code and
features for integrating program with programs written in other
languages
 Due to presence of microprocessors having multicore,
MATLAB has evolved to provide feature of parallelism.
MATLAB supports 3 kinds of parallelism: multithreaded,
explicit parallelism and distributed computing. In multithreaded
parallelism, some of MATLAB's inbuilt functions implicitly
provide multithreading. A single MATLAB process generates
multiple instruction streams. CPU cores execute these streams
while sharing the same memory. In explicit parallelism,
multiple instances of MATLAB run on separate processors
often each with its own memory and simultaneously execute
the code that externally invokes these instances. In distributed
computing, multiple instances of MATLAB run independent
computations on each computer, each with its own memory. In
explicit parallelism, MATLAB also supports parallelism
through Graphics Processor Unit (GPU). Multiple independent
threads run parallel on thousands of different cores of GPU to
execute the task faster. Use of Parallel Computing Toolbox is
done in MATLAB to access the GPU.

A. Parallelism

 In sequential programming, there is an ordered relationship
of execution of instructions where only a single instruction
executes at a particular instance of time. The program is
executed over a single processor only. Serial implementation
done on a single thread provides a base for evaluating
comparisons from other models. In contrast to sequential
processing, parallel processing lets execution of multiple tasks
at the same time [1]. In parallel processing, the instructions are
distributed to different processors which work simultaneously
in order to complete the task fast. The ease and success of
parallelism depends on how much synchronization exists
between the divided tasks. Speedup will be maximum when
tasks are independent i.e. there is no communication between

tasks executing in parallel [2]. Parallel computing is done on
multi-core computers.

1 http://in.mathworks.com/products/matlab/?refresh=true

B. Parallel Computing Toolbox

Parallel Computing Toolbox2 in MATLAB lets to solve
computationally intensive and massive problems. It
provides several high-level programming constructs that
converts applications to take advantage of computers
equipped with multicore processors and GPUs. This
toolbox lets to use the full processing power of multicore
computers. This can be extended to a grid or computer
cluster with the help of MATLAB Distributed Computing
Server toolbox.

Fig1: Parallel Computing Toolbox Features

The key features provided by this toolbox as depicted in
Figure 1 are :

• Parallel for loop (parfor) for running independent
chunks of code on different cores of computer.

• It supports the access and transfer of data to and from
NVIDIA GPU.

http://in.mathworks.com/products/matlab/?refresh=true�

Divya Kundra, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,61-64

© 2015-19, IJARCS All Rights Reserved 62

• Independent tasks can also be run on independent
machines, cluster or on cloud by using Parallel
Computing Toolbox with MATLAB Distributed
Computing Server.

• It supports interactive and batch execution of parallel
applications.

2http://in.mathworks.com/products/parallel-computing/

• There is also the provision of distributed arrays and

single program multiple data (spmd) construct for
large dataset handling and data parallel algorithms

C. GPU

Graphics Processing Unit (GPU) also known as visual
processing unit (VPU) is a specialized electronic circuit which
is designed to manipulate and alter memory to accelerate
creation of images. Structure of a GPU is different from a
CPU. While a CPU has a handful number of cores, GPU has a
large number of cores along with dedicated high speed
memory [4]. GPUs have thousands of cores to process parallel
workloads efficiently. Differences between CPU and GPU
architecture can be analyzed from Figure 2 [4]. CPU has larger
cache with less number of CUs (Control Unit) and ALUs
(Arithmetic Logic Unit) and is designed for serial processing
[2]. Whereas GPU has more number of ALUs (Arithmetic
Logic Unit) and CUs (Control Unit) that helps in parallel
computing of large computation intensive problem [4]. GPU
accelerated computing is the use of a GPU together with a
CPU to accelerate scientific, analytics, engineering, consumer
and enterprise applications. In GPU accelerated computing,
the computational intensive tasks are offloaded to GPU by the
CPU, with the remaining code is executed on CPU only.

Fig2: Computational Resources of CPU and GPU [4]

The requirements of a program to execute and make use of
GPU for better speed performance are that it should be
computationally intensive and massively parallel [5]. GPUs
perform poor when given a piece of code that involves logical
branching. They are meant for doing simple scalar (addition,
subtraction, multiplication, division) arithmetic tasks by
hundreds of threads running in parallel [5]. Very small
problems lack parallelism and thus not fit for running on GPU

While working with GPU, one bottleneck can be transferring
the data to and fro from memory as there is a PCI Express
(Peripheral Component Interconnect Express) bus through
which GPU is connected to CPU, thus memory access is not
fast when compared with CPU [6].

D. Parallelism through GPU using MATLAB

Programs can be accelerated by GPU while using MATLAB
more easily than by using C or Forton. Even the CUDA GPU
computing can be accessed using MATLAB without having to
learn the intricacies of GPU architecture or low level GPU
computing libraries. Parallel Computing Toolbox provides
straightforward way to speed up MATLAB code by executing
it on a GPU.

The general system requirement to access GPU using
MATLAB are:

• CUDA-enabled NVIDIA GPU with compute
capability 2.0 or higher. For releases 14a and earlier,
compute capability 1.3 is sufficient.

• Latest CUDA driver

If these system requirements are fulfilled, then the MATLAB
command gpuDevice would return the GPU details that is
accessible to MATLAB as shown in Figure 3.

Fig3: gpuDevice command in MATLAB

The data type that works with GPU is gpuArray. An array is
created on GPU using gpuArray. In Equation 1 gpuArray
copies numeric array B to A and returns a gpuArray object.
The results are brought back to CPU in the MATLAB
workspace through gather Equation 2.

A = gpuArray(B) (1)
B = gather(A) (2)

http://in.mathworks.com/products/parallel-computing/�

Divya Kundra, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,61-64

© 2015-19, IJARCS All Rights Reserved 63

GPUs can be used with MATLAB in following manners1 :

(a) Calling some of the GPU offloaded functions
available in MATLAB like fft, filter etc.

1http://in.mathworks.com/discovery/matlab-gpu.html

Many MATLAB build in functions support datatype
that creates array on GPU (gpuArray). Whenever
any of these functions is called with at least one
gpuArray as an input argument, the function
executes on the GPU and generates a gpuArray as
the result. Inputs using both gpuArray and
MATLAB arrays in the same function call can be
mixed. MATLAB arrays of type gpuArray are
transferred to the GPU for the function execution.
Supporting functions include the discrete Fourier
transform (fft), matrix multiplication (mtimes), and
left matrix division (mldivide).

(b) By performing element wise operations through
MATLAB functions like arrayfun, bsxfun etc.

arrayfun applies the function specified in function
handle 'func' to each element of equal sized arrays.
Execution of ‘func’ happens on different cores at the
same time. Different threads execute ‘func’ at the
same time on different array elements. The order of
execution of function on the elements is not specified,
thus tasks should be independent of each other. In
Equation 3 function ‘func’ is applied to
corresponding cell elements of equal sized arrays A1,
A2,.., An and the respective result is returned in
B1,B2,…,Bm. The mechanism of arrayfun is shown
in Figure 4 where independent threads apply function
‘func’ on corresponding elements of 2 arrays A1 and
A2.

[B1,...,Bm] = arrayfun (func,A1,...,An) (3)

arrayfun is overloaded to accept arguments of
gpuArray also. So when gpuArray type arguments
are passed into arrayfun, it executes on GPU
instead of CPU.

Fig 4: arrayfun mechanism

(c) By creating and running the kernal of available
CUDA file from MATLAB.

The kernel is represented in MATLAB by a
CUDAKernal object, which can operate on
MATLAB array or gpuArray variables.

The CUDAKernal general workflow can be described
as:

1. Use compiled PTX code to create a
CUDAKernal object, which contains the
GPU executable object.

2. Set properties on the CUDAKernal object to
control its execution on the GPU.

3. Call feval on the CUDAKernal with the
required inputs, to run the kernel on GPU.

An application will only be accelerated by GPU using
MATLAB, if it fulfils the following 2 conditions:

• Computationally intensive- The problem should
involve number of computations such that time spent
on computation significantly exceeds time spend on
transferring data to and from GPU.

• Massively Parallel- The nature of problem should be
such that it should be broken into hundreds or
thousands of independent units of work.

 Thus we see that MATLAB provides a black box for doing
parallelization. It internally calls the subroutines written in C,
C++ hiding from programmer all details about data parallelism
exploration. Writing directly into C, C++ can though be
cumbersome for user but it will let user to have a better control
over the parallelization and can help in obtaining a better
speedup. Also the supported GPU parallelism through
MATLAB is suitable only while working on large matrices,
for rest of the cases GPU might incur high time than CPU.

II. CONCLUSION

This paper gives the review about the MATLAB supported
GPU parallelism. It discusses the high level programming
language MATLAB, concept of parallelism, Parallel
Computing Toolbox, GPU and parallelism through GPU with
help of MATLAB. Any novice user having no prior
experience in performing GPU parallelization using MATLAB
can make use of this study to get some useful insights about
starting with the same.

III. REFERENCES

[1] Vipin Kumar. Introduction to Parallel Computing.

Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2002.

[2] G. S. Almasi and A. Gottlieb. Highly Parallel Computing.
Benjamin-Cummings Publishing Co., Inc., Redwood City,
CA, USA, 1989

[3] Desmond J. Higham and Nicholas J. Higham, Matlab
Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2005

http://in.mathworks.com/discovery/matlab-gpu.html�

Divya Kundra, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,61-64

© 2015-19, IJARCS All Rights Reserved 64

[4] V.H. Naik and C.S. Kusur. Analysis of performance
enhancementon graphic processor based heterogeneous
architecture: A CUDA and MATLAB experiment. In
Parallel Computing Technologies (PARCOMPTECH),
2015 National Conference on, pages 1-5, Feb 2015.

[5] Jung W. Suh and Youngmin Kim. Accelerating MATLAB
with GPU Computing: A Primer with Examples. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2013.

[6] Ravi Budruk, Don Anderson, and Ed Solari. PCI Express

System Architecture. Pearson Education, 2003.

	Introduction
	conclusion
	References

