
Volume 6, No. 8, Nov-Dec 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 45

ISSN No. 0976-5697

A Comparative Study of data structures for Proximity Search using Text Based
Keywords

J.Sindhu ,
MCA Department,

Vels University, Chennai.
TamilNadu, India

R.Priya M.Phil,
Assistant Professor, MCA Department,

Vels University, Chennai.
TamilNadu, India.

Abstract: Conventional abstraction queries, like range search and nearest neighbour retrieval, involve only conditions on objects’ geometric
properties. Today, several modern applications involve novel varieties of queries that aim to seek out objects satisfying each abstraction
predicate, and a predicate on their associated texts. As an example, rather than considering all the restaurants, a nearest neighbour question
would instead extract the eating house that's the highest among those whose menus contain “steak, spaghetti, brandy” all at an equivalent time.
Presently the most suitable resolution to such queries is predicated on the IR2-tree, which, as shown during this paper, features a few
deficiencies that seriously impact its potency. Motivated by this, a replacement access methodology has been developed which is known as the
abstraction inverted index that extends the standard inverted index to address flat knowledge, and comes with algorithms that may answer
nearest neighbour queries with keywords in real time. As scrutinised by experiments, the projected approaches outgo the IR2-tree in question
latent period considerably, typically by an element of orders of magnitude.

Keywords: proximity search, keyword search, spatial index,IR2-tree,GPS.

I. INTRODUCTION
A spatial database manages multidimensional objects

(like points, rectangles, circles, squares), and gives faster
access to the objects based on different selection criteria in
the user query. The importance of spatial databases is
reflected by the necessity of modelling entities of reality in a
geometric manner. For example, spots of restaurants, hotels,
hospitals and so on are mostly represented as points in a
map, while larger locations such as parks, lakes, and
landscapes are represented as a combination of symbols.
Spatial database and its functionalities are useful in many
different contexts. For instance, in a geographical
information system (GIS), range search can be deployed to
find all restaurants in a particular area, while proximity
search can find the restaurant nearest to a given address or
location.
 The advent of Internet has given rise to an increasing
amount of text data associated with multiple attributes, for
example, customer reviews in e commerce websites (e.g.,
Flipkart) are always linked with dimensions like price,
model, and rate. A traditional OLAP data cube can be easily
made to aggregate and navigate structured data together
with unstructured text data and that is called a text cube . A
cell in the text cube combines a set of documents/items with
matching attribute values in a subset of dimensions.
Keyword based query, one of the most common , popular
and easy ways to retrieve useful information from a
collection of text documents, is being extended to RDBMSs

to retrieve information from text-rich attributes. When a set
of keywords is given, traditional methods aim to retrieve
relevant data items or joins of data items that contain all or
most of the keywords.
 Spatial queries with keywords have not been widely
explored. In the past years, the community has showed
interest in studying keyword based search in relational
databases. Very recently that attention was diverted to
multidimensional data [5],[6],[8],[9].

II. PROBLEM DEFINITION

[9] Let P be a set of multidimensional points. As our aim is
to merge keyword based search with the existing
Geographical positioning services on facilities such as
hospitals, restaurants, hotels, etc., we will focus on
dimensionality two, but our technique can be extended to
any dimensionalities with no technical obstacle. We will
assume that the points in P have integer coordinates, such
that each coordinate ranges in [0, t], where t is a large
integer. This is not as restrictive as it may seem, because
even if one would like to insist on real valued coordinates,
the set of different coordinates representable under a space
limit is still finite and listable therefore, we could as well
convert everything to integers with proper scaling methods.

As said in [5] Each point p € P is associated with a set
of words, which is denoted as Wp and termed the document
of p. For example, if p stands for a restaurant, Wp can be its
menu, or if p is a hotel, Wp is the description of its services

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 46

and facilities, or if p is a hospital, Wp can be the list of its
out-patient specialities. It is clear that Wp may potentially
contain many words
 Traditional nearest neighbour search returns the data
point closest to a query point. Following [5], We expand the
problem to include predicates on objects’ texts. Formally, in
our context, a proximity search (NN) query specifies a point
q and a set Wq of keywords (we refer to Wq as the
document of the query). It returns the point in Pq that is the
nearest to q, where Pq is defined as

Pq = {p € P | Wq € Wp} (1)

In other words, Pq is the set of objects in P whose
documents has all the keywords in Wq. In the scenario
where Pq is empty, the query returns nothing. The problem
definition can be generalized to k nearest neighbour (kNN)
search, which finds the k points in Pq nearest to q; if Pq has
less than k points, the entire Pq should be returned.

For example, Let's consider that P consists of eight
points whose locations are as shown in Fig.1.a. (the black
dots), and their documents are given in Fig.1. b. Let's take a
query point q at the white dot of Fig.1.a. with the set of
keywords Wq = {c, d}. proximity search finds p6, noticing
that all points closer to q than p6 are missing either the
query keyword c or d. If k = 2 proximity neighbours are

wanted, p8 is also returned in addition. The result remains as
{p6, p8} even if k increases to 3 or higher, because only two
objects have the keywords c and d at the same time. We
consider that the data set does not fit in memory, and needs
to be indexed by productive access methods in order to
minimize the number of I/Os in answering a query

III. EXISTING SYSTEM

The advent of Internet has given rise to an ever increasing
amount of text data associated with multiple dimensions
(attributes), for example, customer reviews in shopping
websites (e.g., flipkart) are mostly associated with attributes
like cost and model of the product. A conventional OLAP
data cube can be naturally extended to summarize and
navigate structured data together with unstructured text data.
Such a cube like model is otherwise known as text cube . A
cell in the text cube sums up a set of documents/items with
matching attribute values in a subset of dimensions.
Keyword query, one of the very popular and easy-to-use
ways to get useful information from a collection of plain
documents , is being extended to RDBMSs to extract
information from text-rich attributes . Given a set of
keywords, existing methodologies aim to find appropriate
items or joins of items (e.g., linked by foreign keys) that
contain all or some of the given keywords

Figure 1 (a) Shows the locations of points and (b) Gives their associated texts.

Traditional IR methods can be used to rank documents
according to the relevance. In a huge text database,
however, the number of relevant documents to a query could
be large, and a user has to spend much time reading them.
Researchers have combined two well-known concepts: R-
tree [1], a popular spatial index, and signature file [4], an
efficient method for keyword-based document retrieval. In
this progress they developed a structure called the IR2-tree
[5] , which has the strengths of both R-trees and signature
files. Like R-trees, the IR2-tree keeps track of objects’

spatial proximity, which is the key to solving spatial queries
efficiently. On the other hand, like signature files, the IR2-
tree is able to filter a considerable part of the objects that do
not contain all the query keywords, thus significantly
reducing the number of objects to be examined.

[9] The IR2-tree, however, also incorporates a drawback
of signature files: false hits. That is, a signature file, due to
its restrictive nature, may still direct the search to some
objects, even though they do not have all the keywords. The
penalty thus caused is the need to verify an object whose

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 47

satisfying a query or not cannot be resolved using only its
signature, but also requires loading its full text description,
which is expensive due to the resulting random accesses. It
is notable that the false hit problem is not specific only to
signature files, but also exists in other methods for
approximate set membership tests with compact storage (see
[2] and the references therein).

Therefore, the problem cannot be solved by simply
replacing signature file with any of those methods. For
example, it would be fairly useful if a search engine is able
to find the nearest restaurant that offers “steak, spaghetti,
and brandy” all at the same time. Note that this is not the
“globally” nearest restaurant (which would have been
returned by a traditional proximal neighbor query), but the
nearest restaurant among only those providing all the listed
foods, drinks and other menu items.

Another method is inverted index. The inverted index
data structure is a main and central component of a typical
search engine indexing algorithm. The aim of a search
engine performance is to optimize the speed of the query:
find the documents in which the word occurs. When an
index is developed, which provisions lists of words per
document; it is next inverted to develop an inverted index.
Querying the index would require sequential iteration
through each document and to each and every word to verify
a matching document. The time memory and processing
property to run such a query are not always theoretically
realistic. Instead of enumerating the words per article in the
index, the inverted index data structure is developed which
lists the documents per word. The inverted index produced,
the query can now be identified by jumping to the word id in
the inverted index. These were effectively inverted indexes
with a small amount of additional explanation that required
an implausible amount of attempt to produce.

Figure 2 Example of an inverted index.

IV. PROPOSED SYSTEM

Spatial Inverted Index
 In this paper, based on the experiments of [7]
we propose a variant of inverted index that is optimized for
multidimensional points, and is thus named the spatial
inverted index (SI-index). This access method perfectly
incorporates point coordinates into a conventional inverted
index with small extra space, owing to a delicate compact
storage scheme. The compression removes the defect of a
conventional I-index such that an SI-index consumes much
less space.

Compression Of SI-Index
 Compression is used to decrease the size of an
inverted index where each inverted list contains only ids. In
that case, an effective approach is to record the gaps
between successive ids, as opposed to the corresponding ids.
For example, given a set S of integers {2, 3, 6, 8}, the gap-
keeping approach will store {2, 1, 3, 2} instead, where the
ith value (i >= 2) is the difference between the ith and (i-1)
th values in the original S. As the original S can be precisely
recreated, no information is lost. The only overhead is that
decompression incurs additional computation cost, but such
cost is negligible compared to the overhead of I/Os. Note
that gap- keeping will be much less useful if the integers of
S are not in a sorted order. This is because the space saving
is derived from the hope that gaps would be much smaller
(than the original values) and hence could be represented
with fewer bits. This would not be true if S is not been
sorted.

Compressing an SI-index is not that straightforward. The
difference here is that each element of a list, a.k.a. a point p,
is a triplet {idp, xp, yp}, which includes both the id and
coordinates of p. As gap-keeping requires a sorted order, it
can be extended on only one attribute of the triplet. For
example, if we decide to sort the list by ids, gap-keeping on
ids may result in good space saving, but its application on
the x- and y-coordinates would not have much effect.

To confront this problem, let us first leave out the ids
and focus on the coordinates. Even though each point
contains two coordinates, we can convert them into only one
so that gap keeping can be applied effectively. The tool
required is a space filling curve (SFC) such as Hilbert- or Z-
curve. SFC converts a multidimensional point to a 1D value
such that if two points are very close and near in the original
space, their 1D values also tend to be similar. As
dimensionality has been reduced to 1, gap-keeping works
effectively after sorting the (converted) 1D values.

Figure 3 Converted values of the points in fig.2 based on Z-curve.

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 48

 For example, based on the Z-curve, the resulting
values, called Z-values, of the points in Fig.1.a are clearly
and precisely denoted in Fig. 3 in increasing order
(ascending). With gap-keeping, we will save these 8 points
as the sequence 12, 3, 8, 1, 7, 9, 2, 7. Note that as the Z-
values of all points can be precisely restored, the exact
coordinates can be restored as well.

Let us put the ids back into focus . Now that we have
successfully dealt with the two coordinates with a 2D Space
Filling Curve (SFC) , it would be natural to consider using a
3D SFC to cope with ids too. As far as space reduction is
concerned, this 3D method may not be a bad solution. The
problem is that it will ruin the locality of the points in their
original space. Specifically, the converted values would no
maintain the spatial proximity of the points, because ids in
general have nothing to do with coordinates.

If one thinks about the purposes of having an id, it will
be clear that it essentially gives a token for us to extract
(typically, from a hash table) the details of an object, e.g.,
the text description and/or other attribute values.
Furthermore, in responding to a query, the ids also provide
the base for merging. Therefore, nothing stops us from using
a pseudo-id internally. Specifically, let us forget about the
“real” ids, and instead, associate each point to a pseudo-id
that equals its sequence number in the ordering of Z-values.
For example, as per the Fig.3, p6 gets a pseudo-id 0, p2 gets
a 1, and so on. Explicitly, these pseudo-ids can co-exist with
the “real” ids, which can still be kept along with objects’
details.

The benefit we get from pseudo-ids is that sorting them
provides the same ordering as sorting the Z-values of the
points. This means that gap-keeping will work
simultaneously on both the pseudo-ids and Z-values. As an
example that gives the full scenario, consider the inverted
list of word d in Fig.2 that has p2, p3, p6, p8, whose Z-
values are 15, 52, 12, 23 respectively, with pseudo-ids being
1, 6, 0, 2, respectively. Sorting the Z-values automatically
also keeps the pseudo-ids in ascending order. With gap-
keeping, the Z-values are stored as 12; 3; 8; 29 and the
pseudo-ids as 0, 1, 1, 4. So we can exactly capture the four
points with four pairs: {(0, 12), (1, 3), (1, 8), (4, 29)}.

Since SFC applies to any dimensionality, it is straight
forward to extend our compression scheme to any
dimensional space. As a remark, we are aware that the ideas
of space filling curves and internal ids have also been
mentioned in [3] (but not for the purpose of compression).

 Blocking An SI-Index
The SI-index described up to now applies gap keeping

capturing all points continuously in a row. In
decompressing, we must scan an inverted list from its
beginning even though the point of our interest is situated
deep down the list (remember that a point cannot be restored
without all the gaps preceding it being accumulated). This is
not a complication for a query algorithm that performs

sequential scan on the list. But in some of the significant
cases (e.g., when we would like to build an R-tree on the
list), it is very useful to restore a point anywhere in the list
much faster than reading from the beginning every time.

The above concern motivates the design of the blocked
SI-index in [7] and which differs only in that each list is
split into blocks each of which holds points where B is a
parameter to be specified later. For example, given a list of
{p1, p2, p3, p4 , p5, p6}, we would store it in two blocks
{p1, p2, p3} and {p4, p5, p6} if the block size is 3. Gap-
keeping is now implemented within each block separately.

For example, in block {p1, p2, p3}, we will store the
exact pseudo-id and Z-value of p1, the gaps of p2 (from p1)
in its pseudo-id and Z-value, respectively, and similarly, the
gaps of p3 from p2. Evidently, blocking allows restoring all
the points in a block locally, as long as the starting address
of the block is available. It is no longer mandatory to always
scan from the beginning.

Meanwhile, an SI-index keeps track of the spatial
locality of data points, and comes with an R-tree built on
every inverted list at little space overhead. Every block in
the SI-Index is a leaf node in the R-tree built on the inverted
list. As a result, it offers two competing ways for query
processing (merging and distance browsing manner). We
can (sequentially) combine multiple lists very much like
merging traditional inverted lists by ids. Alternately, we can
also leverage the R-trees to browse the points of all relevant
lists in ascending order of their distances to the query point.

V. COMPARATIVE STUDY

 A Comparative study based on the experiments in [7],
is explained below,

Competitors. The proposed SI-index comes with two query
algorithms based on merging and distance browsing
respectively. We will refer to the former as SI-m and the
other as SI-b. Our evaluation also covers the state-of-the-art
IR2-tree; in particular, our IR2-tree implementation is the
fast variant developed in [5], which uses longer signatures
for higher levels of tree.
 Furthermore, we also include the method, named index
file R-tree (IFR) henceforth, which indexes each inverted
list (with coordinates embedded) using an R-tree, and
applies distance browsing for query processing. IFR can be
regarded as an uncompressed version of SI-b.

Data. Experiments are done using both synthetic and real
data. The dimensionality is invariably 2, with each axis
containing integers from 0 to 16; 383. The synthetic data has
two data sets: Uniform and Skew, which vary in the
distribution of data points, and in whether there is a
correlation between the spatial distribution and objects’ text
documents. Specifically, each data set comprises 1 million
points. Their locations are uniformly spread in Uniform,
whereas in Skew, they maintain the Zipf distribution.3 for

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 49

both data sets, the vocabulary has 200 words, and each word
appears in the text documents of 50k points. The difference
is that the association of words with points is totally random
in Uniform, while in Skew, there is a pattern of “word-

locality”: points that are spatially proximal have almost
identical text documents.

3. We create each point exclusively by generating each of its
coordinates (again, independently) according to Zipf.

Table 1. Data Set Statistics

Figure 4. Query time versus the number of keywords |Wq|: (a) Data set Uniform, (b) Skew, (c) Census. The number k of neighbours retrieved is 10.

Our real data set, referred to as Census below, is a
combination of a spatial data set published by the US
Census Bureau,4 and the web pages from Wikipedia.5 The
spatial data set has 20,847 points, each of which represents a
county subdivision. We use the name of the subdivision to
search for its corresponding page at Wikipedia, and collect
the words there as the text description of the corresponding
data point. All the points, and their text documents, makeup
the data set Census. The main statistics of all of our data sets
are summed up in Table 1.
 Parameters.The page size always remains as 4,096 bytes.
All the SIindexes holds a block size of 200 (see Section 6.1
for the meaning of a block). The parameters of IR2-tree are
kept in exactly the same way as in [5]. Specifically, the tree
on Uniform extends ro 3 levels, whose signatures (from
leaves to the root) have respectively 48, 768, and 840 bits
each. The respective lengths for Skew are 48, 856, and 864.
The tree on Census contains two levels, whose lengths are 2,
000 and 47, 608, respectively.

4.
http://www.census.gov/geo/www/gazetteer/places2k.html,
and follow the link “County Subdivisions”.
5. http://en.wikipedia.org.

Queries.As in [5], we consider NN search with the AND
semantic. There are 2 query parameters: (i) the number k of
neighbours requested, and (ii) the number |Wq| of keywords.
Each workload contains 100 queries that have the same
parameters, and are generated independently as follows.
First, the query location is uniformly distributed in the data
space. Second, the set Wq of keywords is a random subset
(with the designated size |Wq|) of the text description of a
point randomly sampled from the underlying data set. We
will measure the query cost as the total I/O time (in our
system, on average, almost every sequential page access
time takes about 1 milli-second, and a random access is
around 10 times slower).
Results on query efficiency. Let us start with the query
performance with respect to the number of keywords |Wq|.

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 50

For this purpose, we will keep the parameter k to 10, i.e.,
each query extracts 10 neighbors. For each alternative
method, we will report its average query time in processing
a workload. The results are explained in Fig. 4, where (a),
(b), (c) are about data sets Uniform, Skew, and Census,
respectively. In each case, we provide the I/O time of IR2-
tree separately in a table, because it is significantly more
expensive than the other solutions. The experiment on
Uniform inspects |Wq| up to 4, because almost all queries

with greater |Wq| return no result at all.
The fastest approach is either SI-m or SI-b in all cases.

In particular, SI-m is especially efficient on Census where
each inverted list is relatively small (this is implicitly shown
from the column “the number objects per word” in Table 1),
and hence, index-based search is not as effective as simple
scans. The behaviour of the two algorithms on Uniform very
well confirms the intuition that distance browsing is more
suitable when |Wq| is small, but is outperformed by merging
when Wq is sizable. On Skew, SI-b is significantly better
than SI-m because of the “word-locality” pattern. As for
IFR, its behaviour in general follows that of SI-b because
they differ only in whether compression is performed. The
superiority of SI-b derives from its larger node capacity.

Figure 5.Number of false hits of IR2-tree.

Figure. 6. Query time versus the number of k of neighbours returned: (a) data set Uniform, (b) Skew, (c) Census. The number |Wq| of query keywords is 3.

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 51

IR2-tree, on the other hand, fails to give real time
answers, and is often slower than our results by a factor of
orders of magnitude, particularly on Uniform and Census
where word-locality does not exist. As analyzed earlier, the
deficiency of IR2-tree is mainly caused by the need to verify
a vast number of false hits. To explicitly demonstrate this,
Fig. 5 plots the average false hit number per query (in the
experiments of Fig. 4) as a functionality of |Wq|. We see an
rapidly increasing escalation of the number on Uniform and
Census, which explains the drastic explosion of the query
cost on those data sets. Interesting is that the number of false
hits oscilates6 a little on Skew, which explains the
fluctuation in the cost of IR2-tree in Fig. 4b.
 6. Such fluctuation is not a surprise because, as
discussed earlier, the number of false hits is determined by
two factors that may cancel each other: (i) how many data
points are in proximity than the kth NN reported, and (ii) the
false hit probability. While the former factor increases with
the growth of |Wq|, the latter actually decreases.

Next, we shift to study the other query parameter k (the
number of neighbors returned). The experiments for this
purpose are based on queries with |Wq| = 3. As before, the
average query time of each approach in handling a workload
is reported. Figs. 6a, 6b, and 6c give the results on Uniform,
Skew, and Census, respectively. Once again, the costs of
IR2-tree are segregated into tables. In these experiments, the
best method is still either SI-m or SI-b. As expected, the cost
of SI-m is not affected by k, while those of the other
solutions all increase monotonically. The relative superiority
of competing methods, in general, is similar to that exhibited
in Fig. 4. Perhaps worth noting down is that, for all
distributions, distance browsing appears to be the most
efficient approach when k is small.

Results on space consumption. We will conclude our
experiments by reporting the space cost of each method on
each data set. While four methodologies are scrutinised in
the experiments on query time, there are only three as far as
space is concerned. Remember that SI-m and SI-b actually
implement the same SI-index and hence, have the same
space cost. In the following, we will refer to them on the
wholesome as SI-index.

Fig.7 gives the space consumption of IR2-tree, SI-index,
and IFR on data sets Uniform, Skew, and Census,
respectively. As expected, IFR incurs prohibitively large
space cost, because it needs to duplicate the coordinates of a
data point p as many times as the number of unique words in
the text description of p. As for the other methods, IR2-tree
appears to be slightly more space efficient, although such a
benifit does not justify its expensive query time, as shown in
the earlier experiments.

Figure. 7. Comparison of space consumption.

Summary. Based on experiments R tree incurs prohibitively
large space cost, because it needs to duplicate the
coordinates of a data point p as many times as the number of
distinct words in the text description of p. As for the other
methods, IR2-tree appears to be slightly more space
efficient, although such an advantage does not justify its
expensive query time.
 The SI-index, accompanied by the proposed query
algorithms, has presented itself as an excellent trade-off
between space and query efficiency. Compared to IFR, it
consumes significantly less space, and yet, answers queries
much faster. Compared to IR2-tree, its superiority is
overwhelming since its query time is typically lower by a
factor of orders of magnitude.

VI. CONCLUSION

 We have seen many applications calling for a search
engine that is able to efficiently support novel forms of
spatial queries that are integrated with keyword search. The
existing solutions to such queries either incur space
consumption or are unable to give real time solutions. The
Spatial Inverted -index is fairly space economical, also it
has the ability to perform keyword-based proximity search
in time that is at the order of dozens of milliseconds.
Furthermore, as the Spatial Inverted-index is based on the
traditional technology of inverted index, it is quickly
incorporable in a commercial search engine that involves
massive parallelism, implying its immediate merits.

The future enhancements includes extending the
proximity search with wide range of search parameters e.g.
Restaurant themes , current seat availability in the
restaurant, etc. Addition of parameters leads to increase in
response time and space complexity. Compression schemes
can be enhanced to overcome the added overhead.

VII. ACKNOWLEDGMENT

I express my sincere thanks to Dr. ISHARI K
GANESH, the Chancellor and Founder of Vels University
Dr. V.TAMIZHARASAN, Vice-Chancellor, Vels
University for providing me necessary facilities. Also I wish
to extend my heartfelt thanks to
Dr.B.KRISHNAMURTHY, The Registrar of Vels

J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52

© 2015-19, IJARCS All Rights Reserved 52

University. I express my deep and sincere gratitude to the
Head of the Department, Dr.P.MAYILVAHANAN MSc.,
ME., MPhil., PhD., for his valuable suggestions towards
completion of project successfully. I also thank,
Mrs.R.PRIYA MCA, MPhil, (PhD)., Vels University for
her valuable guidance throughout my research work. I also
thank my parents, well wishers and friends who extended
their valuable cooperation throughout my thesis work.

VIII. REFERENCES

[1] N. Beckmann, H. Kriegel, R. Schneider, and B.Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. of ACM Management of
Data (SIGMOD), pages 322–331,1990.
 [2] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static support
lookup tables. In Proc. of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 30–39,
2004.
[3] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In Proc. of
ACM Management of Data (SIGMOD), pages 277–288,
2006.

[4] C. Faloutsos and S. Christodoulakis, “Signature Files:
An Access Method for Documents and Its Analytical
Performance Evaluation,” ACM Trans. Information
Systems, vol. 2, no. 4, pp. 267-288,1984.
[5] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search
on Spatial Databases,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 656-665, 2008.
[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra,
“Processing Spatial-Keyword (SK) Queries in Geographic
Information Retrieval (GIR) Systems,” Proc. Scientific and
Statistical Database Management(SSDBM), 2007.
[7] Fast nearest neighbour browsing and search ,Yufei Tao
and Cheng Sheng ,2014.
[8] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma,
“Hybrid Index Structures for Location-Based Web Search,”
Proc. Conf. Information and Knowledge Management
(CIKM),pp.155-162,2005
[9] R.Pawar Anita, B.Pansare Rajashree, H.Mulani
Tabbsum, B.Bandgar Shrimani “Designing of Semantic
Neighbour Search : Survey” International Journal of
Computer Applications Technology and Research
(IJCATR), Volume 4-Issue 1 pp.53-57,2015

	INTRODUCTION
	PROBLEM DEFINITION
	EXISTING SYSTEM
	PROPOSED SYSTEM
	Spatial Inverted Index
	Compression Of SI-Index
	Blocking An SI-Index

	COMPARATIVE STUDY
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

