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Abstract: Conventional abstraction queries, like range search and nearest neighbour retrieval, involve only conditions on objects’ geometric 
properties. Today, several modern applications involve novel varieties of queries that aim to seek out objects satisfying each abstraction 
predicate, and a predicate on their associated texts. As an example, rather than considering all the restaurants, a nearest neighbour question 
would instead extract the eating house that's the highest among those whose menus contain “steak, spaghetti, brandy” all at an equivalent time. 
Presently the most suitable resolution to such queries is predicated on the IR2-tree, which, as shown during this paper, features a few 
deficiencies that seriously impact its potency. Motivated  by this,  a replacement access methodology has been developed which is known as the 
abstraction inverted index that extends the standard inverted index to address flat knowledge, and comes with algorithms that may answer 
nearest neighbour queries with keywords in real time. As scrutinised by experiments, the projected approaches outgo the IR2-tree in question 
latent period considerably, typically by an element of orders of magnitude. 
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I. INTRODUCTION 
A spatial database manages multidimensional objects 

(like points, rectangles, circles, squares ), and gives faster 
access to the objects based on different selection criteria in 
the user query. The importance of spatial databases is 
reflected by the necessity of modelling entities of reality in a 
geometric manner. For example, spots of restaurants, hotels, 
hospitals and so on are mostly represented as points in a 
map, while larger locations such as parks, lakes, and 
landscapes are represented as a combination of symbols. 
Spatial database and its functionalities are useful in many 
different contexts. For instance, in a geographical 
information system (GIS), range search can be deployed to 
find all restaurants in a particular area, while  proximity 
search can find the restaurant nearest to a given address or 
location.  
         The advent of Internet has given rise to an increasing 
amount of  text data associated with multiple attributes, for 
example, customer reviews in e commerce websites (e.g., 
Flipkart) are always linked with dimensions like price, 
model, and rate. A traditional OLAP data cube can be easily 
made to aggregate and navigate structured data together 
with unstructured text data and that is called a text cube . A 
cell in the text cube combines a set of documents/items with 
matching attribute values in a subset of dimensions. 
Keyword based query, one of the most common , popular 
and easy ways to retrieve useful information from a 
collection of text documents, is being extended to RDBMSs 

to retrieve information from text-rich attributes. When a set 
of keywords is given, traditional methods aim to retrieve 
relevant data items or joins of data items that contain all or 
most of the keywords.   
         Spatial queries with keywords have not been widely 
explored. In the past years, the community has showed 
interest in studying keyword based search in relational 
databases. Very recently that attention was diverted to 
multidimensional data [5],[6],[8],[9]. 

II. PROBLEM DEFINITION 

[9] Let P be a set of multidimensional points. As our aim is 
to merge keyword based search with the existing 
Geographical positioning services on facilities such as 
hospitals, restaurants, hotels, etc., we will focus on 
dimensionality two, but our technique can be extended to 
any dimensionalities with no technical obstacle. We will 
assume that the points in P have integer coordinates, such 
that each coordinate ranges in [0, t], where t is a large 
integer. This is not as restrictive as it may seem, because 
even if one would like to insist on real valued coordinates, 
the set of different coordinates representable under a space 
limit is still finite and listable therefore, we could as well 
convert everything to integers with proper scaling methods.  

As said in [5] Each point  p € P is associated with a set 
of words, which is denoted as Wp and termed the document 
of p. For example, if p stands for a restaurant, Wp can be its 
menu, or if p is a hotel, Wp  is the description of its services 
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and facilities, or if  p is a hospital, Wp can be the list of its 
out-patient specialities. It is clear that Wp may potentially 
contain many words 
          Traditional nearest neighbour search  returns the data 
point closest to a query point. Following [5], We expand the 
problem to include predicates on objects’ texts. Formally, in 
our context, a proximity search (NN) query specifies a point 
q and a set Wq of keywords (we refer to Wq as the 
document of the query). It returns the point in Pq that is the 
nearest to q, where Pq is defined as 

Pq = {p  € P | Wq € Wp}        (1) 

In other words, Pq is the set of objects in P whose 
documents has all the keywords in Wq. In the scenario 
where Pq is empty, the query returns nothing. The problem 
definition can be generalized to k nearest neighbour (kNN) 
search, which finds the k points in Pq nearest to q; if Pq has 
less than k  points, the entire Pq should be returned. 

For example, Let's consider that P consists of eight 
points whose locations are as shown in Fig.1.a. (the black 
dots), and their documents are given in  Fig.1. b. Let's take a 
query point q at the white dot of Fig.1.a. with the set of 
keywords Wq = {c, d}. proximity search finds p6, noticing 
that all points closer to q than p6 are missing either the 
query keyword c or d. If k = 2 proximity neighbours are 

wanted, p8 is also returned in addition. The result remains as 
{p6, p8} even if k increases to 3 or higher, because only two 
objects have the keywords c and d at the same time. We 
consider that the data set does not fit in memory, and needs 
to be indexed by productive access methods in order to 
minimize the number of I/Os in answering a query 

III. EXISTING SYSTEM 

The advent of Internet has given rise to an ever increasing 
amount of text data associated with multiple dimensions 
(attributes), for example, customer reviews in shopping 
websites (e.g., flipkart) are mostly associated with attributes 
like cost and model of the product. A conventional OLAP 
data cube can be naturally extended to summarize and 
navigate structured data together with unstructured text data. 
Such a cube like model is otherwise known as text cube . A 
cell in the text cube sums up a set of documents/items with 
matching attribute values in a subset of dimensions. 
Keyword query, one of the very popular and easy-to-use 
ways to get useful information from a collection of plain 
documents , is being extended to RDBMSs to extract 
information from text-rich attributes . Given a set of 
keywords, existing methodologies aim to find appropriate 
items or joins of items (e.g., linked by foreign keys) that 
contain all or some of the given keywords 

 

 

Figure 1 (a) Shows the locations of points and (b) Gives their associated texts. 

 

Traditional IR methods can be used to rank documents 
according to the relevance. In a huge text  database, 
however, the number of relevant documents to a query could 
be large, and a user has to spend much time reading them. 
Researchers have combined two well-known concepts: R-
tree [1], a popular spatial index, and signature file [4], an 
efficient method for keyword-based document retrieval. In 
this progress they developed a  structure called the IR2-tree 
[5] , which has the strengths of both R-trees and signature 
files. Like R-trees, the IR2-tree keeps track of objects’ 

spatial proximity, which is the key to solving spatial queries 
efficiently. On the other hand, like signature files, the IR2-
tree is able to filter a considerable part of the objects that do 
not contain all the query keywords, thus significantly 
reducing the number of objects to be examined.  

[9] The IR2-tree, however, also incorporates a drawback 
of signature files: false hits. That is, a signature file, due to 
its restrictive nature, may still direct the search to some 
objects, even though they do not have all the keywords. The 
penalty thus caused is the need to verify an object whose 
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satisfying a query or not cannot be resolved using only its 
signature, but also requires loading its full text description, 
which is expensive due to the  resulting random accesses. It 
is notable that the false hit problem is not specific only to 
signature files, but also exists in other methods for 
approximate set membership tests with compact storage (see 
[2] and the references therein). 

Therefore, the problem cannot be solved by simply 
replacing signature file with any of those methods. For 
example, it would be fairly useful if a search engine is able 
to find the nearest restaurant that offers “steak, spaghetti, 
and brandy” all at the same time. Note that this is not the 
“globally” nearest restaurant (which would have been 
returned by a traditional proximal neighbor query), but the 
nearest restaurant among only those providing all the listed 
foods, drinks and other menu items.  

Another method is inverted index. The inverted index 
data structure is a main and central component of a typical 
search engine indexing algorithm. The aim of a search 
engine performance is to optimize the speed of the query: 
find the documents in which the word occurs. When an 
index is developed, which provisions lists of words per 
document; it is next inverted to develop an inverted index. 
Querying the index would require sequential iteration 
through each document and to each and every word to verify 
a matching document. The time memory and processing 
property to run such a query are not always theoretically 
realistic. Instead of enumerating the words per article in the 
index, the inverted index data structure is developed which 
lists the documents per word. The inverted index produced, 
the query can now be identified by jumping to the word id in 
the inverted index. These were effectively inverted indexes 
with a small amount of additional explanation that required 
an implausible amount of attempt to produce. 

Figure 2 Example of an inverted index. 

IV. PROPOSED SYSTEM  

Spatial Inverted Index 
                    In this paper, based on the experiments of [7]  
we propose a variant of inverted index that is optimized for 
multidimensional points, and is thus named the spatial 
inverted index (SI-index). This access method perfectly 
incorporates point coordinates into a conventional inverted 
index with small extra space, owing to a delicate compact 
storage scheme. The compression removes the defect of a 
conventional I-index such that an SI-index consumes much 
less space. 

Compression Of SI-Index 
          Compression is used to decrease the size of an 
inverted index where each inverted list contains only ids. In 
that case, an effective approach is to record the gaps 
between successive ids, as opposed to the corresponding ids. 
For example, given a set S of integers {2, 3, 6, 8}, the gap-
keeping approach will store {2, 1, 3, 2} instead, where the 
ith value (i >= 2) is the difference between the ith and (i-1) 
th values in the original S. As the original S can be precisely 
recreated, no information is lost. The only overhead is that 
decompression incurs additional computation cost, but such 
cost is negligible compared to the overhead of I/Os. Note 
that gap- keeping will be much less useful if the integers of 
S are not in a sorted order. This is because the space saving 
is derived from the hope that gaps would be much smaller 
(than the original values) and hence could be represented 
with fewer bits. This would not be true if S is not been 
sorted. 

Compressing an SI-index is not that straightforward. The 
difference here is that each element of a list, a.k.a. a point p, 
is a triplet {idp, xp, yp}, which includes both the id and 
coordinates of p. As gap-keeping requires a sorted order, it 
can be extended on only one attribute of the triplet.  For 
example, if we decide to sort the list by ids, gap-keeping on 
ids may result in good space saving, but its application on 
the x- and y-coordinates would not have much effect.  

To confront this problem, let us first leave out the ids 
and focus on the coordinates. Even though each point 
contains two coordinates, we can convert them into only one 
so that gap keeping can be applied effectively. The tool 
required is a space filling curve (SFC) such as Hilbert- or Z-
curve. SFC converts  a multidimensional point to a 1D value 
such that if two points are very close and near in the original 
space, their 1D  values also tend to be similar. As 
dimensionality has been reduced to 1, gap-keeping works 
effectively after sorting the (converted) 1D values. 

Figure 3 Converted values of the points in fig.2 based on Z-curve. 
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  For example, based on the Z-curve, the resulting 
values, called Z-values, of the points in Fig.1.a are clearly 
and precisely denoted in Fig. 3 in increasing order 
(ascending). With gap-keeping, we will save these 8 points 
as the sequence 12, 3, 8, 1, 7, 9, 2, 7. Note that as the Z-
values of all points can be precisely restored, the exact 
coordinates can be restored as well.  

Let us put the ids back into focus . Now that we have 
successfully dealt with the two coordinates with a 2D Space 
Filling Curve (SFC) , it would be natural to consider using a  
3D SFC to cope with ids too. As far as space reduction is 
concerned, this 3D method may not be a bad solution. The 
problem is that it will ruin the locality of the points in their 
original space. Specifically, the converted values would no 
maintain the spatial proximity of the points, because ids in 
general have nothing to do with coordinates. 

If one thinks about the purposes of having an id, it will 
be clear that it essentially gives a token for us to extract 
(typically, from a hash table) the details of an object, e.g., 
the text description and/or other attribute values. 
Furthermore, in  responding to a query, the ids also provide 
the base for merging. Therefore, nothing stops us from using 
a pseudo-id internally. Specifically, let us forget about the 
“real” ids, and instead, associate each point to a pseudo-id 
that equals its sequence number in the ordering of Z-values. 
For example, as per the Fig.3, p6 gets a pseudo-id 0, p2 gets 
a 1, and so on. Explicitly, these pseudo-ids can co-exist with 
the “real” ids, which can still be kept along with objects’ 
details. 

The benefit we get from pseudo-ids is that sorting them 
provides the same ordering as sorting the Z-values of the 
points. This means that gap-keeping will work 
simultaneously on both the pseudo-ids and Z-values. As an 
example that gives the full scenario, consider  the inverted 
list of word d in Fig.2 that has p2, p3, p6, p8, whose Z-
values are 15, 52, 12, 23 respectively, with pseudo-ids being 
1, 6, 0, 2, respectively. Sorting the Z-values automatically 
also keeps the pseudo-ids in ascending order. With gap-
keeping, the Z-values are stored as 12; 3; 8; 29 and the 
pseudo-ids as 0, 1, 1, 4. So we can exactly capture the four 
points with four pairs: {(0, 12), (1, 3), (1, 8), (4, 29)}. 

Since SFC applies to any dimensionality, it is straight 
forward to extend our compression scheme to any 
dimensional space. As a remark, we are aware that the ideas 
of space filling curves and internal ids have also been 
mentioned in [3] (but not for the purpose of compression). 

 Blocking An SI-Index  
The SI-index described up to now applies gap keeping 

capturing all points continuously in a row. In 
decompressing, we must scan an inverted list from its 
beginning even though the point of our interest is situated 
deep down the list (remember that a point cannot be restored 
without all the gaps preceding it being accumulated). This is 
not a complication for a query algorithm that performs 

sequential scan on the list. But in some of the significant 
cases (e.g., when we would like to build an R-tree on the 
list), it is very useful to restore a point anywhere in the list 
much faster than reading from the beginning every time. 

The above concern motivates the design of the blocked 
SI-index in [7] and which differs only in that each list is 
split into blocks each of which holds points where B is a 
parameter to be specified later. For example, given a list of 
{p1, p2, p3, p4 , p5, p6}, we would store it in two blocks 
{p1, p2, p3} and {p4, p5, p6} if the block size is 3. Gap-
keeping is now implemented within each block separately.  

For example, in block {p1, p2, p3}, we will store the 
exact pseudo-id and Z-value of p1, the gaps of p2 (from p1) 
in its pseudo-id and Z-value, respectively, and similarly, the 
gaps of p3 from p2. Evidently, blocking allows restoring all 
the points in a block locally, as long as the starting address 
of the block is available. It is no longer mandatory to always 
scan from the beginning. 

Meanwhile, an SI-index keeps track of the spatial 
locality of data points, and comes with an R-tree built on 
every inverted list at little space overhead. Every block in 
the SI-Index is a leaf node in the R-tree built on the inverted 
list. As a result, it offers two competing ways for query 
processing (merging and distance browsing manner). We 
can (sequentially) combine multiple lists very much like 
merging traditional inverted lists by ids. Alternately, we can 
also leverage the R-trees to browse the points of all relevant 
lists in ascending order of their distances to the query point.  

V. COMPARATIVE STUDY 

        A Comparative study based on the experiments in [7], 
is explained below, 

Competitors. The proposed SI-index comes with two query 
algorithms based on merging and distance browsing 
respectively. We will refer to the former as SI-m and the 
other as SI-b. Our evaluation also covers the state-of-the-art 
IR2-tree; in particular, our IR2-tree implementation is the 
fast variant developed in [5], which uses longer signatures 
for higher levels of tree.  
        Furthermore, we also include the method, named index 
file R-tree (IFR) henceforth, which indexes each inverted 
list (with coordinates embedded) using an R-tree, and 
applies distance browsing for query processing. IFR can be 
regarded as an uncompressed version of SI-b.    

Data.  Experiments are done using both synthetic and real 
data. The dimensionality is invariably 2, with each axis 
containing integers from 0 to 16; 383. The synthetic data has 
two data sets: Uniform and Skew, which vary in the 
distribution of data points, and in whether there is a 
correlation between the spatial distribution and objects’ text 
documents. Specifically, each data set comprises 1 million 
points. Their locations are uniformly spread in Uniform, 
whereas in Skew, they maintain the Zipf distribution.3 for 



J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52 
 

© 2015-19, IJARCS All Rights Reserved                     49 

both data sets, the vocabulary has 200 words, and each word 
appears in the text documents of 50k points. The difference 
is that the association of words with points is totally random 
in Uniform, while in Skew, there is a pattern of “word-

locality”: points that are spatially proximal have almost 
identical text documents. 

3. We create each point exclusively by generating each of its 
coordinates (again, independently) according to Zipf. 

 
 

Table 1. Data Set Statistics 

 
 

 
Figure 4. Query time versus the number of keywords |Wq|: (a) Data set Uniform, (b) Skew, (c) Census. The number k of neighbours retrieved is 10. 

           
Our real data set, referred to as Census below, is a 
combination of a spatial data set published by the US 
Census Bureau,4 and the web pages from Wikipedia.5 The 
spatial data set has 20,847 points, each of which represents a 
county subdivision. We use the name of the subdivision to 
search for its corresponding page at Wikipedia, and collect 
the words there as the text description of the corresponding 
data point. All the points, and their text documents, makeup 
the data set Census. The main statistics of all of our data sets 
are summed up in Table 1. 
 Parameters.The page size always remains as 4,096 bytes. 
All the SIindexes holds a block size of 200 (see Section 6.1 
for the meaning of a block). The parameters of IR2-tree are 
kept in exactly the same way as in [5]. Specifically, the tree 
on Uniform extends ro 3 levels, whose signatures (from 
leaves to the root) have respectively 48, 768, and 840 bits 
each. The respective lengths for Skew are 48, 856, and 864. 
The tree on Census contains two levels, whose lengths are 2, 
000 and 47, 608, respectively. 

4. 
http://www.census.gov/geo/www/gazetteer/places2k.html, 
and follow the link “County Subdivisions”. 
5. http://en.wikipedia.org. 

Queries.As in [5], we consider NN search with the AND 
semantic. There are 2 query parameters: (i) the number k of 
neighbours requested, and (ii) the number |Wq| of keywords. 
Each workload contains 100 queries that have the same 
parameters, and are generated independently as follows. 
First, the query location is uniformly distributed in the data 
space. Second, the set Wq of keywords is a random subset 
(with the designated size |Wq|) of the text description of a 
point randomly sampled from the underlying data set. We 
will measure the query cost as the total I/O time (in our 
system, on average, almost every sequential page access 
time takes about 1 milli-second, and a random access is 
around 10 times slower). 
Results on query efficiency. Let us start with the query 
performance with respect to the number of keywords |Wq|. 

 



J Sindhu et al, International Journal of Advanced Research in Computer Science, 6 (8), Nov–Dec, 2015,45-52 
 

© 2015-19, IJARCS All Rights Reserved                     50 

For this purpose, we will keep the parameter k to 10, i.e., 
each query extracts 10 neighbors. For each alternative 
method, we will report its average query time in processing 
a workload. The results are explained in Fig. 4, where (a), 
(b), (c) are about data sets Uniform, Skew, and Census, 
respectively. In each case, we provide the I/O time of IR2-
tree separately in a table, because it is significantly more 
expensive than the other solutions. The experiment on 
Uniform inspects |Wq| up to 4, because almost all queries   

with greater |Wq| return no result at all. 
The fastest approach is either SI-m or SI-b in all cases. 

In particular, SI-m is especially efficient on Census where 
each inverted list is relatively small (this is implicitly shown 
from the column “the number objects per word” in Table 1), 
and hence, index-based search is not as effective as simple 
scans. The behaviour of the two algorithms on Uniform very 
well confirms the intuition that distance browsing is more 
suitable when |Wq| is small, but is outperformed by merging 
when Wq is sizable. On Skew, SI-b is significantly better 
than SI-m because of the “word-locality” pattern. As for 
IFR, its behaviour in general follows that of SI-b because 
they differ only in whether compression is performed. The 
superiority of SI-b derives from its larger node capacity. 

 

 

Figure 5.Number of false hits of IR2-tree. 
 

 

 
 
 

Figure. 6. Query time versus the number of k of neighbours returned: (a) data set Uniform, (b) Skew, (c) Census. The number |Wq| of query keywords is 3.
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IR2-tree, on the other hand, fails to give real time 
answers, and is often slower than our results by a factor of 
orders of magnitude, particularly on Uniform and Census 
where word-locality does not exist. As analyzed earlier, the 
deficiency of IR2-tree is mainly caused by the need to verify 
a vast number of false hits. To explicitly demonstrate this, 
Fig. 5 plots the average false hit number per query (in the 
experiments of Fig. 4) as a functionality of |Wq|. We see an 
rapidly increasing escalation of the number on Uniform and 
Census, which explains the drastic explosion of the query 
cost on those data sets. Interesting is that the number of false 
hits oscilates6 a little on Skew, which explains the 
fluctuation in the cost of IR2-tree in Fig. 4b.  
         6. Such fluctuation is not a surprise because, as 
discussed earlier, the number of false hits is determined by 
two factors that may cancel each other: (i) how many data 
points are in proximity than the kth NN reported, and (ii) the 
false hit probability. While the former factor increases with 
the growth of |Wq|, the latter actually decreases. 

Next, we shift to study the other query parameter k (the 
number of neighbors returned). The experiments for this 
purpose are based on queries with |Wq| = 3. As before, the 
average query time of each approach in handling a workload 
is reported. Figs. 6a, 6b, and 6c give the results on Uniform, 
Skew, and Census, respectively. Once again, the costs of 
IR2-tree are segregated into tables. In these experiments, the 
best method is still either SI-m or SI-b. As expected, the cost 
of SI-m is not affected by k, while those of the other 
solutions all increase monotonically. The relative superiority 
of competing methods, in general, is similar to that exhibited 
in Fig. 4. Perhaps worth noting down is that, for all 
distributions, distance browsing appears to be the most 
efficient approach when k is small.  

Results on space consumption. We will conclude our 
experiments by reporting the space cost of each method on 
each data set. While four methodologies are scrutinised in 
the experiments on query time, there are only three as far as 
space is concerned. Remember that SI-m and SI-b actually 
implement the same SI-index and hence, have the same 
space cost. In the following, we will refer to them on the 
wholesome as SI-index. 

Fig.7 gives the space consumption of IR2-tree, SI-index, 
and IFR on data sets Uniform, Skew, and Census, 
respectively. As expected, IFR incurs prohibitively large 
space cost, because it needs to duplicate the coordinates of a 
data point p as many times as the number of unique words in 
the text description of p. As for the other methods, IR2-tree 
appears to be slightly more space efficient, although such a 
benifit does not justify its expensive query time, as shown in 
the earlier experiments. 

 
Figure. 7. Comparison of space consumption.           

Summary. Based on experiments R tree incurs prohibitively 
large space cost, because it needs to duplicate the 
coordinates of a data point p as many times as the number of 
distinct words in the text description of p. As for the other 
methods, IR2-tree appears to be slightly more space 
efficient, although such an advantage does not justify its 
expensive query time.          
            The SI-index, accompanied by the proposed query 
algorithms, has presented itself as an excellent trade-off 
between space and query efficiency. Compared to IFR, it 
consumes significantly less space, and yet, answers queries 
much faster. Compared to IR2-tree, its superiority is 
overwhelming since its query time is typically lower by a 
factor of orders of magnitude. 

VI. CONCLUSION 

        We have seen many applications calling for a search 
engine that is able to efficiently support novel forms of 
spatial queries that are integrated with keyword search. The 
existing solutions to such queries either incur space 
consumption or are unable to give real time solutions. The 
Spatial Inverted -index is fairly space economical,  also it 
has the ability to perform keyword-based proximity search 
in time that is at the order of dozens of milliseconds. 
Furthermore, as the Spatial Inverted-index is based on the 
traditional technology of inverted index, it is quickly 
incorporable in a commercial search engine that involves 
massive parallelism, implying its immediate merits. 

The future enhancements includes extending the 
proximity search with wide range of search parameters e.g. 
Restaurant themes , current seat availability in the 
restaurant, etc. Addition of parameters leads to increase in 
response time and space complexity. Compression schemes 
can be enhanced to overcome the added overhead. 
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