
Volume 6, No. 6, July - August 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 133

A New Scheduling Method for Workflows on Cloud Computing

Seyed Ebrahim Dashti
Department Of Computer, science and research Branch,

Islamic Azad University, Tehran, Iran

Amir masoud Rahmani
Department Of Computer, science and research Branch,

 Islamic Azad University, Tehran, Iran

Abstract: Cloud computing has recently become a very popular topic. Nowadays, with the increasing demand for process automation in the
cloud, the investigation on cloud workflow scheduling strategies is becoming a significant issue. Majority of existing workflow scheduling
algorithms consider only compute resources that usually cannot be provisioned on demand size of workflows or not released to the environment
until the workflow execution completes. That is why the performance of these algorithms is being decreased and time and cost of them is being
increased. In this paper, we present a new workflow scheduling method based on Ant Colony Optimization algorithm in order to reduce this
scheduling overhead with considering the above problems in our dynamic environment. Furthermore, we do consider these problems and various
type VMs during the execution dynamically based on Amazon EC2. Also in comparison with state of the art in large-scale scheduling method,
our datasets are based on real workflow applications with maximum 100 nodes. The results show that performance of our algorithm is
significantly better than Greedy Randomized Adaptive Search Procedure (GRASP) and scalable for increasing nodes of workflow.

Keyword: workflow scheduling, cloud computing, VM allocation, Dynamic VM, user constraint, ACO (Ant Colony Optimization).

1. INTRODUCTION
Cloud computing is emerging as the latest distributed

computing paradigm and attracts increasing interests of

researchers in the area of Distributed and Parallel Computing,

Service Oriented Computing, and Software Engineering.

Though there is yet no consensus on what Cloud is, some of

its distinctive aspects as proposed by Ian Foster in [1] can be

borrowed for an insight: “Cloud computing is a large-scale

distributed computing paradigm that is driven by economies

of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage,

platforms, and services are delivered on demand to external

customers over the Internet.” Compared with the definitions

of conventional computing paradigms such as cluster, grid,

and peer-to-peer (p2p), “economies” is a noticeable keyword

in cloud computing which has been neglected by others.

Utility and cloud computing have emerged as new service

provisioning models and are capable of supporting diverse

computing services such as servers, storage, network and

applications for e-Business and e-Science over a global

network. In cloud these services introduced as Infrastructure

as a service (IaaS), platform as a service (PaaS) and software

as a service (SaaS) [2]. In cloud environments, users consume

the services when they need to, and pay only for what they

use. With economy incentive, these technologies encourage

organizations to offer their specialized applications and other

computing utilities as services so that other

individuals/organizations can access these resources remotely.

Therefore, it facilitates individuals/ organizations to develop

their own core activities without maintaining and developing

fundamental infrastructure.

Nowadays, with the increasing demand for process

automation, especially for large-scale collaborative, e-science

applications, and distributed e-business [2, 3], the

investigation on cloud workflow scheduling strategies is

becoming a significant issue. In the following paragraph, we

define the workflow and the importance of workflow in cloud

environment.

Workflows can be modeled as Directed Acyclic Graphs

(DAGs). In this model, each node in the DAG represents an

executable task. Each directed edge represents a precedence

constraint between two tasks (data or control dependence). A

DAG represents a model that help build a schedule of the

tasks onto resources in a way that precedence constraints are

respected and the schedule is optimized. The majority of

proposed workflows [4, 5] aim at minimizing execution time

of the schedule; However, other important parameters such as

budget and money should be taken into consideration in

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 134

cloud. In this paper, we do solve the workflow scheduling

problems in cloud.

There are several reasons that we encourage to investigate the

workflow in cloud as follow a: Initially, workflows were

being implemented in grids. Due to the above mentioned

causes and reduced performance faced in grids, now there is a

need to implement workflows in cloud. The primary benefit of

moving to clouds is application scalability. Unlike Grids,

scalability of cloud resources allows real-time provisioning of

resources to meet application requirements. This enables

workflow management systems to readily meet Quality of

Service (QoS) requirements of applications, as opposed to the

traditional approach that required advance reservation of

resources in global multi-user Grid environments. Cloud

services like compute, storage and bandwidth resources are

available at substantially lower costs. Workflow applications

often require very complex execution environments. These

environments are difficult to create on grid resources. In

addition, each grid site has a different configuration, which

results in extra effort each time an application needs to be

ported to a new site. Virtual machines allow the application

developer to create a fully customized, portable execution

environment configured specifically for their application [6].

Main contributions of this paper are as follows.

1.Present architecture for workflow scheduling.

2.Present a new workflow scheduler as a subdomain of

workflow manager which would be defined as a new service

in PaaS level.

3.Define a new problem in cloud workflow by scheduling it

in various type of VM.

4.Define a new aspect in scheduling cloud workflow

problem by assign task to various type of VM.

5.Adapt ant colony optimization method to solve workflow

scheduling in cloud computing in order to improve makespan

in budget constraint from user perspective.

6.New formulate the ACO pheromone and heuristic by

embedding cost, time and budget constraint to solve our

problem.

7.Design refined algorithm to reduce bought VM cost in full

hour billing model.

8.An extensive simulation-based evaluation and performance

analysis of the proposed algorithm.

The rest of the paper is organized as follow. In Section 2 we

discuss the related work. We present our proposed

architecture and Framework in Sections 3, at last of this

section, we define some of cloud characteristics assumed in

our environment. In section 4, description of our problem is

continued with design heuristic by formulate pheromone in

ACO to solve workflow scheduling. In section 5 we design a

refined sub algorithm to improve ACO results. In section 6,

we evaluate our approach and analysis of experimental result.

We discuss conclude the paper in secion7.

2. LITERATURE REVIEW

Many heuristics have been investigated by several projects for

scheduling workflows on Grids. The heuristics can be

classified as either task level or workflow level. Task level

heuristics make scheduling decisions based only on the

information about a task or a set of independent tasks, while

workflow level heuristics take into account the information of

the entire workflow. Min-Min, Max-Min and Sufferage [7]

are three major task level heuristics employed for scheduling

workflows on Grids which are being used by Mandal et al [8]

to schedule EMAN bio-imaging applications. Blythe et al. [9]

proposes a workflow level scheduling algorithm based on

Greedy Randomized Adaptive Search Procedure (GRASP)

[10] which is also compared with Min-Min in

compute-intensive and data-intensive scenarios. Another two

workflow level heuristics have been employed by the

ASKALON project [11, 12]. One is based on Genetic

Algorithms and the other is a

Heterogeneous-Earliest-Finish-Time (HEFT) algorithm.

Sakellariou and Zhao [13] developed a low-cost rescheduling

policy in order to reduce the overhead produced by

rescheduling by conducting rescheduling only when the delay

of a task execution impacts on the entire workflow execution.

However, these works only attempt to minimize workflow

execution time and do not consider users’ budget

constraints in Grid. Several works have been proposed to

address scheduling problems based on users’ budget

constraints. Nimrod-G [14] schedules independent tasks for

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 135

parameter-sweep applications to meet users’ budget. A

market-based workflow management system [15] locates an

optimal bid based on the budget of the current task in the

workflow. Tsiakkouri et al [16] developed scheduling

approaches, LOSS and GAIN, to adjust a schedule which is

generated by a time optimized heuristic and a cost optimized

heuristic to meet users’ budget constraints respectively. A

time optimized heuristic attempts to minimize execution time

while a cost optimization attempts to minimize execution cost.

More recently, [17] schedule bag of tasks to VMs in cloud

using integer programing method (without any order). Some

researchers assign workflow tasks to services in user’s

QoS(Quality of Service), it means they investigate in higher

layers of cloud (SaaS and PaaS)[18,19]. In contrast of [17],

we have been ordering of tasks in workflow and in

comparison with [18, 19] we consider VMs and type of them

in cloud and discuss it in lower layers (PaaS and IaaS).

A number of Grid workflow management systems [20, 21, 22]

with scheduling algorithms have been developed. They

facilitate the execution of workflow applications and

minimize their execution time on Grids. However, to impose a

workflow paradigm on cloud, execution cost must also be

considered when scheduling tasks on resources. The price of

VMs is mainly determined by its QoS level such as the

processing speed.

Users may not always need to complete workflows earlier

than they require. They sometimes may prefer to use cheaper

VM that is sufficient to meet their requirements. [23]. There

are few work examining issues related to budget constraints in

a Grid context. The most relevant work is available in [23,

24], where it is demonstrated, through simulation. Although,

the constraint budget and deadline parameters were

considered in the grid environment [25] but not in cloud,

which minimizes workflow execution cost within a certain

deadline and other QoS. In [23] a genetic algorithm based

scheduling heuristic is developed to minimize execution time

while meeting user’s budget constraint,[25] develop an ACO

algorithm in Grid for different QoS. Several researchers use

ACO algorithm in cloud to minimize the makespan by

balancing the entire system load. Two different load balancing

scheduling algorithms based on ant colony are proposed in

[26] and [27]. Another ant colony based algorithm aims to

minimize job completion time based on pheromone is

proposed in [28]. Some researchers consider the cost

parameter in grid/cloud for service or VM. To the best of our

knowledge, all of those methods get and free VM statically

that once VM provision, power on, until end of scheduling.

But in cloud computing, dynamic scalability becomes more

attractive and practical because of the unlimited resource pool.

Some articles are based on the best effort method and

optimize workflow execution time and scalability in multiple

and single workflow [29, 30] without considering cost

parameter that plays important role in cloud. Some researchers

consider specific workflow in cloud such as

transaction-intensive. In [31], the objective of optimization is

to maximize the throughput. [32] Solve the workflow

optimization in cost constraint parameter and [33] improves it

using comprise cost and time constraint. Large-scale

distributed systems are considered by Look-Ahead Genetic

Algorithm (LAGA) in [34]which optimize both makespan and

reliability of a workflow application, some other improve

performance and reliably of their workflow middleware in

distributed environments, such as grids and clouds [35].

In [36], authors discuss load-balancing technologies for SaaS

infrastructure to execute workflow processes, they propose a

proactive load balancing algorithm, by which requests from

different tenants are scheduled concurrently by a single

service instance over shared hosting resources and the

predicted cost of executing the process instances. Some other

solve the problem by using virtual clusters as cloud in IaaS

level, they propose the SHEFT algorithm to schedule a

workflow elastically on a Cloud computing environment [29].

In another paper researchers present a new workflow

scheduling method based on iterative ordinal optimization

(IOO) and they try to reduce makespan and improve

throughput [37]. In [30], researchers also propose virtual

cluster and try to find a solution that meets all users preferred

QoS constraints while improve CPU utilization. Schedule

workflow in two levels of service-level and task-level from

SaaS to IaaS is represented in[38], in [39,40] researchers

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 136

presented scheduling heuristic methods based on Particle

Swarm Optimization (PSO) to minimize data transmission

cost of data intensive workflows on Cloud.

In this paper, we consider workflow applications that are

modeled as DAGs. Moreover, the above mentioned articles

focusing on either service flow scheduling with various QoS

requirements [18], or makespan optimization or throughput.

We also consider that a budget constraint and scalability of

VMs need to be satisfied. Each job, when running on a

machine, consumes some money. Thus, the overall aim is to

find the schedule that gives the shortest makespan for a given

DAG and a given set of resources without exceeding the

budget available. To achieve these aims, we develop an Ant

colony Optimization algorithm for scheduling workflow.

3. THE PROPOSED ARCHITECTURE

Many computation-intensive applications in science and

business can be described as workflows. According to [38],

we can imagine the general cloud architecture as four basic

layers from top to bottom: application layer (user

applications), platform layer (middleware cloud services to

facilitate the development/deployment of user

applications),unified resource layer(abstracted/encapsulated

resources by virtualisation), and fabric layer (physical

hardware resources).Here, we present the lifecycle of a

workflow application to illustrate the system architecture in

Figure 1. Note that here we focus on the system architecture.

Figure 1: Cloud workflow system architecture

We design a framework for workflow management scheduling

as it’s components can be seen in Figure 2. We define each

component briefly in the following:

Figure 2: Framework of workflow management in our cloud

User Interface Module contains four components as follows: Web portal: this module defines a user friendly interface to

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 137

communicate with customer and other users. The user can

define a new workflow with her parameters and QoS or use

original template workflow and manipulate them for her

specific usage or parameters.

Parsing Module: this module transforms graphical workflows

that enter by the user to XML standard form that

understandable for workflow manager; Moreover, it adds

metadata like size of data transfer between nodes. Clustering

can add to this module to merge small tasks to enhance

performance.

Static Verification Tool: this module tests connectivity

between nodes in workflow and verify data user in enter

parameters in order to be in a valid range. Also this module

tests XML format of workflow that the user enter.

Monitoring System: this module communicates with all other

components and collects information. Customer and designer

are able to monitor related module in an online fashion.

Resource Management module contains six components as

follows:

Service and VM Directory: this module index all existing

services and VMs type and price. It also index services and

VM images.

Exception Handling: this component manages fault tolerance,

for example if fault occurs in VM during run time execution;

this component reschedules the task in order to prevent any

delay for other nodes of the workflow.

Security Manager: this component maintains privacy of other

components and VMs and prevents malicious access.

Accounting and QoS Manager: this component monitors task

execution QoS and amount of credit that spend. If any

inconvenience occurs in QoS, it reports to Exception Handling

to manage them. This module also calculate amount of credit

in user‘s account according to QoS.

Workflow Scheduling Module: this component schedules a

task to a suitable VM that satisfy the user QoS and other

constraints like order in workflow.

Energy Efficient Manager: this component manages energy

efficiency of datacenter and manages load of host and merge

under load host and switch off the free host.

A user may first submit a workflow application that specifies

task definitions, the execution order of tasks (process

structures), and QoS constraints through a web portal [19].

Once workflow specifications are created, workflow manager

can verify structure errors and QoS constraints statically. Our

workflow scheduler specifies the number and type of VM in

user constraint that schedule tasks in order to be mapped to

VM in unify Resource Layer so that a concrete workflow is

generated.
3.1. CLOUD ARCHITECTURE CHARACTERISTICS

As a computing platform, clouds own distinct characteristics

compared to utility computing and grid computing. We have

identified the following characteristics which get from popular

cloud computing like amazon EC2 that can largely affect the

way people use cloud platforms, especially in cloud scaling

activities.

Unlimited resources limited budget: Clouds offer users

unlimited computing power and storage capacity. Unlimited

resource enables applications to scale to extremely large size.

On the other hand, these unlimited resources are not free.

Every cycle used and byte transferred are going to appear on

the bill. Budget cap is a necessary constraint for users to

consider where they deploy applications in clouds. Therefore,

a cloud auto-scaling mechanism should explicitly consider

user budget constraints when acquiring resources.

Full hour billing model: The pay-as-you-go billing model is

attractive, because it saves money when users shut down

machines. However, VM instances are always billed by hours.

Fraction consumption of an instance-hour is counted as a full

hour. In other words, 10 minutes and 60 minutes usage are

both billed as 1 hour usage and if an instance is started and

shut down twice in an hour, users will be charged for two

instance hours. The shutting down time can greatly affect

cloud cost. Therefore, a reasonable policy is that whenever an

instance is started, it is better to be shut down when

approaching full hour operation.

4. PROBLEM DESCRIPTION
We model a workflow application as a Directed Acyclic

Graph (DAG). Let Γ be the finite set of tasks Ti 1≤i≤n. Let Λ

be the set of directed arcs of the form (Ti,Tj) where Ti is

called a parent task of Tj , on the other hand Tj is the child

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 138

task of Ti. We assume that a child task cannot be executed

until all of its parent tasks are completed. Let B be the cost

constraint (budget) specified by the users for workflow

execution. Then, the workflow application can be described as

a Directed Acyclic Graph (DAG) G=(Γ,Λ, B).

Suppose that we have unlimited Virtual Machines (VMs) with

four variant types like speed and RAM. Virtual machines have

varied processing capability delivered at different prices. We

estimate the max number of type groups that ants can be

selected by Equation 1. In this formula one VM add to number

of groups in order to execute a critical path. Total number of

VM instances that is able to select can be calculated according

to the Equation 2.

Equation 1: Number of group= {Number_of_total_task_in

workflow – length of longest critical path +1}

Equation 2: Total VM Instance=Number of group* Number

of VMs Type

Suppose only one VM can be assigned for the execution of a

task; each task must be allocated to one available time. The

cost of virtual machine type is shown in Figure 3 that each

type has specific speed and RAM (Random Access Memory).

We got costs and types from Amazon VM in Asia, where the

VM is charged at least for one hour. The scheduling problem

is to map every Ti into a suitable virtual machine to minimize

the execution time of the workflow and complete it within the

budget B.

Figure 3: cost of amazon VM [41]

4.2. ACO METHOD FOR SCHEDULING ALGORITHM
The general idea of Ant Colony Optimization (ACO) is to

simulate the foraging behavior of ant colonies. When a group

of ants set out from their nest to search for food source, they

use a special kind of chemical to communicate with each other.

The chemical is referred to as the pheromone. Once ants

discover a path to food source, they deposit pheromone on the

path. By sensing pheromone on the ground, ants can follow

the path to food source discovered by other ants. As this

process continues, most of the ants tend to choose the shortest

path to food as there have been a huge amount of pheromones

accumulated on this path. This collective pheromone

depositing and pheromone following behavior of ants

becomes the inspiring source of ACO. The flowchart of the

high level algorithm is given by Figure 4. These procedures

are described in detail below.

The ant colony optimization has been implemented on several

engineering domain [42]. Our problem is similar to travelling

salesman problem, ACO usually is use to produce

near-optimal solutions for it [42]. ACO also, has an advantage

over simulated annealing and genetic algorithm approaches of

similar problems when the graph may change dynamically. In

this paper, we apply ACO algorithms to tackle the workflow

scheduling problem in cloud computing. ACO has several

advantages; one of them is avoiding the convergence to a

locally optimal solution (because of Pheromone evaporation).

Despite the distributed computation avoids premature

convergence, positive feedback leads to rapid discovery of

good solutions. It is possible to prove that it is convergent i.e.,

it is able to find the global optimum in finite time [43]. Also,

the ACO algorithm is scalable for number of nodes and its

performance and results are acceptable. In other words, by

increasing the workflow nodes, overall performance remains

in an acceptable level. Informally, the algorithm can be

viewed as the interplay of the following procedures:

1) Initialization of the algorithm: All pheromone values and

parameters are initialized.

2) Initialization of ants: Assume that a group of M ants are

used in the algorithm. At the beginning of the iteration, all

ants are set to the initial state.

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 139

Figure 4: Flowchart of the ACO algorithm

3) Solution construction: M ants set out to build M solutions

to the problem. The construction procedure includes n

steps where n is the number of Tasks in the workflow. In

each step, each ant picks up the next tasks using

pheromone and heuristic information and maps it to the

most suitable Virtual Machine. The algorithm also

estimates the earliest start time and the earliest end time

of tasks and the free duration of last one hour of the VM

in terms of the information of partial solution built by

each ant. This information is helpful to guide the search

behavior of ants. Each ant chooses duration via greedy

method with regard the constraint Budget heuristic. Based

on the heuristic, each ant builds its tackling sequence of

tasks

4) Local updating: Soon after an ant selects the possible Ti

and maps it to VM, the corresponding pheromone value is

updated by a local pheromone updating rule.

5) Global updating: After all ants have completed their

constructions, global pheromone updating is applied to

the best-so-far solution. The cost and makespan of all

solutions are evaluated. The pheromone values related to

the best-so-far solution is significantly increased.

Moreover, some parameters of the algorithm are

adaptively adjusted in this procedure.

6) Terminal test: If the test is passed, the algorithm is end.

Otherwise, go to step (2) to begin a new iteration.

4.3. CONVERT WORKFLOW SCHEDULING TO ACO

PROBLEM

The workflow should be converted to the ACO problem. The

problem which is modelled with the ACO must be a graph.

The workflow as defined at the beginning of this section is

essentially an acyclic graph, the tasks represent the nodes of

graph, and the edges between them represent the dependencies

between workflow nodes. Ants are only allowed to flow this

directions, in other words cost of other direction is infinity, in

term of ACO, we define wall in forbidden directions. Ants

travel workflow graph to optimize order of traversal for assign

optimal nodes to the VMs, the traverse stops when the ants are

a stopping criterion specified or the number of repetitions

completed. Figure 5 illustrates selection and assignment of

nodes (tasks) to the VM by an ant.

Figure 5: A sample Ant build process scheduling

Ant select the next node and VM by quantities obtained from

the probability by Roulette wheel function that is calculated

from the consistency of nodes and the costs ,i.e. execution and

communication costs, and the running cost of VM purchased

in the previous period in order to utilize the unused period of

it. Also the historical of ant pheromone affects the quantity of

probability that illustrated in the next section.

4.4. DEFINITION OF PHEROMONE AND HEURISTIC
Pheromone and heuristic information are the most important

factors of an ACO algorithm. In general, pheromone is used to

record the historical searching experiences and bias the ants’

searching behaviour in future. On the other hand, heuristic

information is some problem based values to guide the search

direction of ants. As the scheduling problem is mainly to map

all tasks to VMs, we denote the pheromone value of mapping

VMj to task Ti as fitness(i,j) and then calculate the cost of

them.

In Equation 3, we estimate distance of current slot selection in

VMj to suggested budget for Ti . We use the first term of this

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 140

equation in numerator and denominator of fraction to

normalize the fitness. We calculate the cost of Ti in Equation

4,free time in this equation encourage ant to select VMj that

product minimum slot time that is not used for Ti ,or Ti can fill

previous free slot time in VMj.

Equation

3:

Equation 4:

Suggest Budget (SB): the SB heuristic biases the artificial ants

to select the VMs within the budget cost. To achieve this

objective, for each task Ti, we assign a suggested budget SBi

based on the user-defined budget of the application [25].

By mapping all tasks to the VMs with the lowest cost, we can

obtain the minimum cost of the whole workflow application

(denoted as min_Cost). That is,

Equation 5:

The suggested budget SBi for Ti is evaluated by enlarging the

value of min costi on a scale of Budget:

Equation 6:

Suppose an ant’s heuristic type is the SB heuristic, and then

the heuristic value of mapping VMj to Ti is set to Equation 3.

According to Equation 3, a VM instance, the cost of which is

closer to SBi, will be associated with a higher heuristic value

and fitness(i,j) ∈ (0, 1].

Global Pheromone Updating: Global updating takes place

after all ants have built their solutions. The algorithm first

compares all solutions in that iteration. The quality of a

solution schedule I can be evaluated by the following

equations Equation 7. In the case of makespan optimization in

constraint budget, the score of schedule I is given by:

Equation 7:

The length of the schedule I in terms of (5) is composed of

two parts: penalties of QoS constraints and quality of the

user-preferred QoS parameter. If I satisfies all QoS constraints,

its length for QoS constraints will be set to zero, and the

length for the user-preferred QoS parameter will be set

according to the makespan of I. Better makespan will

contribute to a lower length of tour. On the other hand, if I

fails to satisfy all QoS constraints, its score for QoS

constraints will be set according to the degree of satisfaction,

and the length for the user-preferred QoS parameter will be set

to a maximum value. The smaller the length is, the better the

schedule will be.

5. REFINE SCHEDULING BY MERGE HOMOGENISE

VM
Scheduling multitask workflows is NP-hard problem, therefor

one approach to solve them in an acceptable time is

meta-heuristic methods such as ACO algorithm. Because of

exploring more search space, Equation 1 (number of VMs

selected by ACO=Number of group*4(Figure 3)) is designed

very optimistically. But in practice, we experimentally

understood in scheduling result some homogenise VMs could

merge due to reduced cost in pre-specified makespan. Figure 6

and Figure 7 illustrate the one instance scheduling that our

algorithm generated for e-protein workflow in budget

5$ before and after refine the scheduling. We illustrate the

pseudo code of the refined algorithm in Algorithm 1.

Algorithm 1:Refine algorithm

For i=1 to Total VM Instance step Number of VMs Type

For j=i to i-1+ Number of VMs Type

If VM is not empty

If Tasks duration in homogenous VM not conflict

 Merge VMs

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 141

Figure 6: ACO scheduling before merge tasks

Figure 7: ACO scheduling after merge tasks

6. EXPERIMENTAL RESULT

We simulate our experiments at high level in Matlab and at

low level in cloudsim environment; there are mainly five

parameters in the algorithm: ant number, α, β, ρ, and

maximum iteration. α and β consequently determine the

impact of before and current best value in ant new selection

path. ρ is the global refresh effect in founded tour. The

maximum iteration is a variable that is specified based on our

experience which is responsible to prevent the algorithm not

to be in an infinity loop because of unexpected user’s entry. If

the ant fails to satisfy the user’s constraints in the maximum

iteration, the algorithm exit and print the best result that found

in the maximum iteration. The best empirical values of those

parameters for our problem consequently are 50, 7, 1, 0.65,

and 50.

We test the ACS algorithm in four workflow applications. The

basic information of these workflow applications is shown in

Table 1. The first two workflows, including the neuroscience

application [functional MRI (fMRI)] with 15 tasks, and the

e-protein workflow with 15 tasks [23], are derived from real

life applications.

Table 1: Test Instances
Instance Name Number of

Tasks
Network

fMRI 15 Figure 8
e-Protein 15 Figure 9
J50_0 50 J50_0 (PSPLIB)
J100_0 100 J100_0 (PSPLIB)

The DAGs of these applications are shown in Figure 8 and

Figure 9. The other two workflows are generated based on the

networks in the project scheduling problem library (PSPLIB)

[24], which is a library for project scheduling problems. These

networks include j50_0 with 50 tasks, and j100_0 with 100.

We estimate maximum number of type groups (VM instances)

that ants can be select according to Equation 1.Total number

of VM instances that ant can be selected calculate from

Equation 2. The QoS parameters (execution time and cost) of

all VMs instances are given from amazon, but they follow the

rule that for the same task, a VM instance with shorter

execution time may cost more money and vice versa. The

range of task’s length in workflow is between one million to

ten million instructions.

Figure 8: a neuro-science workflow: fMRI (parallel app)

Figure 9: e-protein workflow (Hybrid structure)

As has been mentioned before, few methods solve workflow

scheduling problem with different user-defined QoS

constraints in grid, but we consider this problem in cloud by

dynamic get and free of a VM and try to reduce makespan in

user’s budget.

We compare our ACO approach with Greedy Randomized

Adaptive Search Procedure (GRASP) that is one kind of

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 142

greedy algorithm [27] and other researchers usually compare

their proposed evolutionary algorithms with this method.

Algorithm 2 shows pseudo code of this algorithm. The greedy

approach assigns a VM to each task in the workflow based on

the free slot time of VM randomly

Algorithm2:GRASP (Greedy Randomized Adaptive Search

Procedure)algorithm

1:While stopping criterion not satisfied do

2: schedule ← createSchedule(work flow)

3: if schedule is better than bestSchedule then

4: bestSchedule ← schedule

5: end if

6: end while

7: PROCEDURE:createSchedule(workflow)

8: solution ← constructSolution(workflow)

9:nSolution ← localSearch(solution)

10:if nSolution is better than solution then

11: return nSolution

12:end if

13: return solution

14: END createSchedue

15:PROCEDURE: constructSolution(workflow)

16:while schedule is not completed do

17: T← get all unmapped ready tasks

18: make a RCL for each tɛT

19: subSolution ← select a resource randomly for each t ɛT

from its RCL

20: solution ← solution subSolution

21: update information for further RCL making

22: end while

23:return solution

24:END constructSolution

25:PROCEDURE:localSearch(solution)

26:nSolution ←find an optimal local solution

27:return nSolution

28: END localSearch

We simulate two common workflow structures in scientific

workflow applications and two other workflows from PSPLIB

data set for our experiments: parallel and hybrid and random

(many nodes). A parallel application (see Figure 8) requires

multiple pipelines to be executed in parallel. A pipeline

executes a number of tasks in a single sequential order. For

example, in Figure 8, there are 4 pipelines (1-2, 3-4, 5-6 and

7-8) before task 9. A hybrid structure application (see Figure

9) is a complex combination of parallel and sequential

execution. In our experiments, we used a neuro-science

workflow for our parallel application and a protein annotation

workflow developed by London e-Science Centre for our

hybrid workflow structure application [23]. Moreover, in

order to check the scalability of our approach, our simulation

is applied for two workflow instances with 50 and 100 nodes

from PSPLIB dataset.

Figure 10 to Figure 17 compare the execution costs and time

(makespan) of using the ACO and GRASP for scheduling

parallel, hybrid structure applications, 50 and 100 tasks

workflow from PSPLIB dataset with suitable budget. It can be

seen that the GRASP takes much higher execution cost. That

is because the decision making of the GRASP is based only

on the information of the current task. It may produce the best

schedule for the current task but it could consequently reduce

the entire workflow performance. However, as the user’s

budget increases, the results of the two approaches are closer.

Moreover as shown in the result of 50 and 100 nodes of the

workflow, we understand when the number of task increase

performance of GRASP decreases but performance of ACO

does not changes significantly.

In our optimization problem time and cost are opposite and

when cost is increased the time decreases, as shown in Figure

10 to Figure 17 the ACO result is near to budget constraint in

compare of GRASP, due to remaining the best path of the ant

in each iteration and use it in other iteration, while in GRASP

each iteration is searched randomly without considering the

best path obtained in pervious iterations, in other word, its

search is limited to compare with total result. For example,

Figure 12 and Figure 13 show our algorithm for fMRI

(parallel workflow) in execution cost and time is significantly

better than GRASP. Our method in all sample constraints

produce better results except in budget 7 which our algorithm

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 143

and GRASP has similar cost. However as shown in Figure 16

our method in budget 7 is outperformed in term of time.

As the results show; in some budget the exact budget

constraint may not be satisfied and it may be little lower or

higher than budget, these variances is because of VM hourly

cost and the length of tasks do not fitted exactly in duration

hourly although our algorithm produce nearest cost to budget .

On average, the ACO algorithm is better in cost or both in

makespan and cost, while there are differences in various

benchmark workflow. For example, the greatest performance

in compare of GRASP is in parallel and large scale workflow.

Thus, we can see there are comparisons to be made in cost and

makespan in results of algorithms by changes in number of

nods and structure of workflow.

Figure 10: Comparison of execution cost in various budget

in two approaches for e-protein workflow

Figure 11: Comparison of makespan in different budget in

two algorithms for e-protein workflow

Figure 12: Comparison of execution cost in various budget

in two approaches for fMRI workflow

Figure 13: Comparison of makespan in different budget in

two algorithms for fMRI workflow

Figure 14: Comparison of execution cost in various budget

in two approaches for 50 tasks workflow

Figure 15: Comparison of makespan in different budget in

two algorithms for 50 tasks workflow

Figure 16: Comparison of execution cost in various budget

in two approaches for 100 tasks workflow

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 144

Figure 17: Comparison of makespan in different budget in

two algorithms for 100 tasks workflow

7. CONCLUSION

This paper investigates about workflow scheduling in cloud in

the levels of PaaS and IaaS based on the ACO optimization

algorithm. Money is an important parameter in cloud that is

ignored in many researches because of workflow scheduling

methods, often centralize in grid. In this study, we propose the

ACO approach to acquire the best scheduling in user’s

constraint budget. Also, instead of provisioning all VMs in the

beginning of the scheduling like previous researches, we

consider VM dynamically and according to the Amazon cloud

the least get duration is on hour. We evaluate our method in

real and PSPLIB workflow benchmark, the result shows our

approach has significantly better performance in comparison

to similar works.
REFERENCES

[1]Foster I, Yong Z, Raicu I, Lu S (2008) “Cloud
computing and grid computing 360-degree
compared” .In: Proc 2008 grid computing environments
workshop, pp 1–10

[2]Verma,A. ,and Kaushal,S. (2011) “Cloud Computing
Security Issues and Challenges: A Survey”. In
proceeding of springer International Conference on
Advances in Computing and Communication,
Kochi,India, 445-454.

[3]Deelman E, Gannon D, Shields M, Taylor I (2008)
“Workflows and e-science: an overview of workflow
system features and capabilities”. Future Gener Comput
Syst Volume 25, Issue 6,528–540

[4]Xiaofeng Wang , Chee Shin Yeo, Rajkumar Buyya,
Jinshu Su ,(2011)”Optimizing Makespan and Reliability
for Workflow Applications with Reputation and
Look-ahead Genetic Algorithm“. International Journal of
Future Generation Computer Systems Volume 27, Issue
8, Pages 1124–1134.

[5]Cui Lin, Shiyong Lu,(2011),” Scheduling Scientific
Workflows Elastically for Cloud Computing” in IEEE
4th International Conference on Cloud Computing.

[6]Anju Bala, Inderveer Chana,(2011),” A Survey of
Various Workflow Scheduling Algorithms in Cloud
Environment “, 2nd National Conference on Information
and Communication Technology (NCICT) , International
Journal of Computer Applications (IJCA).

[7]Yu J, Buyya R, (2008) “Workflow scheduling
algorithms for grid computing”. In: Xhafa F,Abraham
A (eds) Metaheuristics for scheduling in distributed
computing environments. ISBN:978-3-540-69260-7.
Springer, Berlin.

[8]A. Mandal et al.,(2005) “Scheduling Strategies for
Mapping Application Workflows onto the Grid”,IEEE

International Symposium on High Performance
Distributed Computing (HPDC 2005).

[9]J. Blythe et al.,(2005) “Task Scheduling Strategies for
Workflow-based Applications in Grids”, In IEEE
International Symposium on Cluster Computing and
Grid (CCGrid).

[10]Resende, M. and Ribeiro, C.,(2002) “Greedy
Randomized Adaptive Search Procedures,
State-of-the-art Handbook in Metaheuristics”,Glover and
Kochenberger, eds., Kluwer Academic Publishers.

[11]R. Prodan and T. Fahringer,(2005) “Dynamic
Scheduling of Scientific Workflow Applications on the
Grid using a Modular Optimisation Tool: A Case
Study”, In 20 th Symposium of Applied
Computing (SAC 2005), Santa Fe, New Mexico,
USA, ACM Press.

[12]M. Wieczorek, R. Prodan and T.
Fahringer,(2005),“Scheduling of Scientific Workflows in
the ASKALON Grid Environment”, Special Issues on
scientific workflows, ACM SIDMOD Record,
34(3):56-62, ACM Press.

[13]R. Sakellariou and H. Zhao.(2004), "A Low-Cost
Rescheduling Policy for Efficient Mapping of
Workflows on Grid Systems''. Scientific Programming,
Volume 12, Issue 4, pages 253-262.

[14]R. Buyya, J. Giddy, and D. Abramson,(2000) “ An
Evaluation of Economy-based Resource Trading and
Scheduling on Computational Power Grids for Parameter
Sweep Applications”, In 2nd Workshop on Active
Middleware Services (AMS 2000), Kluwer Academic
Press, Pittsburgh, USA.

[15]A.Geppert, M.Kradolfer, and D.Tombros.(1998)
“Market-based Workflow Management”, International
Journal of Cooperative Information Systems, World
Scientific Publishing Co., NJ, USA.

[16]E.Tsiakkouri et al.,(2005) “Scheduling Workflows with
Budget Constraints”, In the CoreGRID Workshop on
Integrated research in Grid Computing,S. Gorlatch and
M.Danelutto (Eds.), Technical Report TR-05-22,
University of Pisa, Dipartimento Di Informatica, Pisa,
Italy, pages 347-357 .

[17]Ming Mao,Jie Li,Marty Humphrey ,(2010) “Cloud
Auto-scaling with Deadline and Budget” , 11th
IEEE/ACM International Conference on Grid
Computing (GRID), Pages: 41 - 48.

[18]H. liu, D. Xu, H. Miao,(2011) “Ant Colony
Optimization Based Service flow Scheduling
with Various QoS Requirements in Cloud
Computing”, First ACIS International Symposium on
Software and Network Engineering, Pages: 53-58.

[19]A. Verma, S. Kaushal,(2012) “Deadline and
Budget Distribution based Cost- Time
Optimization Workflow Scheduling Algorithm for
Cloud”. International Journal of Computer Applications
(IJCA).

[20]T. Fahringer et al,(2005), “ASKALON: a tool set for
cluster and Grid computing”, Concurrency and
Computation: Practice and Experience, Volume
17,Pages:143-169, Wiley InterScience.

[21]B.Ludäscher et al.,(2005) “Scientific Workflow
Management and the KEPLER System”,
Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows.

Seyed Ebrahim Dashti et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,133-145

© 2010-14, IJARCS All Rights Reserved 145

[22]J. Yu and R. Buyya,(2005) “A Taxonomy
of Workflow Management Systems for Grid
Computing”, Journal of Grid Computing, Springer,
Volume 3, Issue 3,4, Pages: 171-200, Spring
Science+Business Media B.V., New York, USA.

[23]Jia Yu and Rajkumar Buyya ,(2006) “A Budget
Constrained Scheduling of Workflow Applications on
Utility Grids using Genetic Algorithms”, Journal of
Scientific Programming - Scientific Workflows
archive,Volume 14 Issue 3,4, Pages: 217-230.

[24]R. Kolisch and A. Sprecher,(1997) “PSPLIB—A project
scheduling problem library: OR Software—ORSEP
operations research software exchange program,” Eur.
J. Oper. Res., Volume 96, Issue 1, Pages: 205–216.

[25]Wei-Neng Chen, Jun Zhang,(2009) "An Ant Colony
Optimization Approach to a Grid Workflow Scheduling
Problem With Various QoS Requirements",IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS-PART C: APPLICATIONS AND
REVIEWS, Volume 39, Issue 1 Pages:29-43.

[26]Xin Lu, Zilong Gu,(2011) “A load-adapative cloud
resource scheduling model based on ant colony
algorithm”, IEEE.

[27]Kun Li, Gaochao Xu, Guangyu Zhao,
Yushuang Dong, Wang, D.,(2011) “Cloud Task
Scheduling Based on Load Balancing Ant Colony
Optimization”, IEEE.

[28]Xiangqian Song, Lin Gao, Jieping Wang,(2011)
“Job scheduling based on ant colony
optimization in cloud computing”, IEEE.

[29]Cui Lin, Shiyong Lu,(2011) ” Scheduling Scientific
Workflows Elastically for Cloud Computing”, In IEEE
4th International Conference on Cloud Computing.

[30]P.Varalakshmi, Aravindh Ramaswamy, Aswath
Balasubramanian, and Palaniappan Vijaykumar,
(2011) ”An Optimal Workflow Based Scheduling and
Resource Allocation in Cloud”, Department of
Information Technology, Anna University Chennai,
India, Pages: 411–420.

[31]Ke Liu, Jinjun Chen, Yun Yang and Hai Jin,(2008) “A
throughput maximization strategy for scheduling
transaction-intensive workflows on SwinDeW-G”,
Concurrency and Computation:Practice and
Experience, Wiley, Volume 20, Issue15,
Pages:1807-1820.

[32]Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan and H.
Jin,(2008) “An Algorithm in SwinDeW-C for
Scheduling Transaction-Intensive Cost-Constrained
Cloud Workflows”, Proc. of 4th IEEE International
Conference on e-Science, Indianapolis,
USA,Pages:374-375.

[33]K. Liu, Y. Yang, J. Chen, X. Liu, D. Yuan and H.
Jin,(2010) “A Compromised-Time-Cost Scheduling

Algorithm in SwinDeW-C for Instance-intensive
Cost-ConstrainedWorkflows on Cloud Computing
Platform”, International Journal of High Performance
Computing Applications, Volume 24, Issue 4,
Pages:445-456.

[34]Xiaofeng Wang , Chee Shin Yeo, Rajkumar Buyya,
Jinshu Su ,(2011) ”Optimizing Makespan and Reliability
for Workflow Applications with Reputation and
Look-ahead Genetic Algorithm“,International Journal of
Future Generation Computer Systems Volume 27, Issue
8,Pages 1124–1134.

[35]Ewa Deelman,(2010) ”Grids and Clouds: Making
Workflow Applications Work in Heterogeneous
Distributed Environments”,International Journal of High
Performance Computing Applications ,International
Journal of High August , Volume 24, Issue3,
Pages:284-298.

[36]Liyong Zhang , Yan Wen , Yanbo Han,(2010) “ A
Proactive Approach to Load Balancing of Workflow
Execution in a SaaS Environment”,Fifth IEEE
International Symposium on Service Oriented System
Engineering.

[37]Fan Zhang, Junwei Cao, Kai Hwang, and Cheng
Wu,(2011) “Ordinal Optimized Scheduling of Scientific
Workflows in Elastic Compute Clouds”, submitted to
IEEE Transactions on Computers.

[38]Zhangjun Wu, Xiao Liu, Zhiwei Ni, Dong Yuan and
Yun Yang,(2011) ”A market-oriented hierarchical
scheduling strategy in cloud workflow systems”,
Springer, The Journal of
Supercomputing ,Science+Business Media.

[39]S. Pandey, Wu. Linlin, Guru,Buyya,(2010) ”A Particle
Swarm Optimization-based Heuristic for Scheduling
Workflow Applications in Cloud Computing
Environments”, 24th IEEE International Conference on
Advanced Information Networking and Applications
(AINA),Pages: 400 – 407.

[40]Z.Wu, Z.Ni, L. Gu,(2010) “A Revised Discrete Particle
Swarm Optimization for Cloud Workflow Scheduling”.
Computational Intelligence and Security (CIS), Pages:
184-188.

[41] Amazon,Amazon EC2 Pricing, Available from:
http://aws.amazon.com/ec2/pricing/,2012.

[42] B. Chandra Mohan , R.B.,(2012) “A survey: Ant Colony
Optimization based recent research and implementation
on several engineering domain. Expert Systems with
Applications”, Elsevier. Volume 39, Issues 4, Pages:
4618–4627.

[43]Dorigo M., Blum C.,(2005) “Ant colony optimization
theory: A survey” , Elsevier, Theoretical Computer
Science, Volume 344, Issues 2-3.

