
��������	�
����	�������������

��� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 356

ISSN No. 0976-5697

The Service Plan for Qos Mangment with The Help of Mobile Middleware and Video

Sterming.

Supriya Agarwal
Electronics deptt.

SRMSCET

Bareilly,India

ersupriyaagarwal@gmail.com

Gaurav Agarwal*
Computer Science Deptt

Invertis University

Bareilly,India

gauravagarwal95@gmail.com

Saurabh Singh
Information Technology Deptt

Invertis University

Bareilly,India

saurabh.iiet@gmail.com

Mayank Kumar
Electronics and Instrumentation Deptt.

Invertis University

Bareilly,India

mayank865@gmail.com

Abstract: As middleware and component technologies lack support of QoS management, so we tried to propose a solution for how a mobile

middleware can take up support the QoS management. In order to identify' the QoS mechanisms, that the middleware must manage on behalf of

the application, we use a Video Streaming scenario and demonstrate the feasibility of our solution for this scenario. The key concept of our work

is the service plan that specifies the service and the QoS of components and compositions. These service plans are user recursively, so that the

QoS aware middleware platform can configure and reconfigure applications, based on user requirements and resource availability.

Keywords: Qos Management, Mobile Middleware, Video Streaming

I. INTRODUCTION.

In order to meet the increasing performance and

scalability requirements, mechanisms that adapt to various

workloads and requirements must be designed. It is also

develop strategies for dynamically combining components

into a high-performance service. The adaptation

mechanisms are needed to maintain the Qos.The traditional

way of handling this is to integrate QoS mechanisms with

the application logic. This makes the application complex

and hard to manage, and the implementation of QoS

mechanisms cannot be reused in other applications. We

follow an approach to separate the application logic from the

domain specific QoS management, so that it becomes easy

to reuse both application components and QoS mechanisms

and also ensure safe reconfiguration (i.e. the service plan

can be reconfigure according to the availability of resources

, user requirements etc. safely) at runtime .

A. Introduction to Video Streaming to Mobile

Terminal.

The Video servers are accessed by clients from different

types of terminals like Laptops, Home Theatres etc, which

are connected to the internet over access networks[1] like

fixed LAN, Wireless LAN, GPRS etc. So, the main

challenge lies in giving the users a high-quality playback in

different contexts: home theater-LAN, laptop-LAN, laptop-

WLAN etc.

B. Introduction to Dynamics and Constraints.

In the video streaming scenario, there are several

challenges One is the traditional streaming requirement,

timely delivery of high data rate streams. Another, more

complicated, is the handling of the different combinations of

access networks and terminal types.The QoS requirements

like frame rate, resolution and color depth may differ from

user to user. So, streaming the same content to users using

the same technology may result in streams with different

characteristics and requirements [3]. Hence, the application

must be adapted according to the user's QoS requirements

and the capabilities of all the resources along the data path

from server to client.

C. Introduction to Middleware.

Middleware is computer software that connects

software components or applications [4, 5]. The software

consists of a set of services that allow multiple processes

running on one or more machines to interact across a

network. This technology evolved to provide for

interoperability in support of the move to coherent

distributed architectures, which are used most often to

support and simplify complex, distributed applications.

Middleware sits "in the middle" between application

software working on different operating systems. It is

similar to the middle layer of three-tier single system

architecture, except that it is stretched across multiple

systems or applications. Examples include database systems,

telecommunications software, transaction monitors, and

messaging-and-queuing software.

Gaurav Agarwal et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,356-359

© 2010, IJARCS All Rights Reserved 357

Figure 1 Middleware overview.

D. Introduction to QoS.

In the field of computer networking and other packet

switched telecommunication networks, the traffic

engineering term quality of service (QoS) refers to resource

management mechanisms rather than the achieved service

quality. Quality of service is the ability to provide different

priority to different applications, users performance, or data

flows, or to guarantee a certain level of performance to a

data flow. For example, a required bit rate, delay, jitter,

packet dropping probability and/or bit error rate may be

guaranteed. Quality of Service (QoS) for networks is an

industry-wide set of standards and mechanisms for ensuring

high-quality performance for critical applications [4, 5].

E. QoS Aware Mobile Middleware.

Middleware and component technologies lack support

for Quality of Service (QoS) management [2]. Application

developers, therefore, integrate QoS mechanisms into the

application itself. In this paper, we propose a solution for

how a mobile middleware can take on the responsibility for

QoS management- We use a video streaming scenario to

identify the QoS mechanisms that the middleware must

manage on behalf of the application, and we demonstrate the

feasibility of our solution within this scenario.

Figure 2 Mobile Middleware

F. Introduction to Video Streaming to Mobile

Terminals.

The Video servers are accessed by clients from different

types of terminals like Laptops, Home Theatres etc, which

are connected to the internet over access networks like fixed

LAN, Wireless LAN,GPRS etc. So, the main challenge lies

in giving the users a high-quality playback in different

contexts: home theater-LAN, laptop-LAN, laptop-WLAN,

PDA-WLAN, PDA-GPRS, when network conditions are

changing and users roam between access networks.

Streaming video is content sent in compressed form over the

Internet and displayed by the viewer in real time. With

streaming video or streaming media, a Web user does not

have to wait to download a file to play it. Instead, the media

is sent in a continuous stream of data and is played as it

arrives. The user needs a player, which is a special program

that uncompressed and sends video data to the display and

audio data to speakers. A player can be either an integral

part of a browser or downloaded from the software maker's

Web site.

II. PROPOSED SOLUTION

It is already defined that the middleware should select

and combine the most appropriate components for a given

context (e.g., access network technology, execution

environment, and terminal type) and available resource

capacity (e.g., CPU, storage, and network). If a terminal

stays connected to the same network, the initial

configuration will remain fixed during the whole session. In

order to maintain the best possible QoS. In general, there are

two adaptation types that must be supported

[a] changing parameter settings of individual components

[b] changing the application composition

Each application variant, resulting from performing one

of these types of adaptation, is called an application

configuration. We also recognize that some QoS

mechanisms are so tightly coupled with the corresponding

functionality that separating them out would result in a very

complex design.

One example of such a mechanism is data traffic

control, which constantly monitors round trip time and

packet error rates, to adjust the transmission rate.

Consequently, our approach to handle the dynamics in the

scenario is to let the middleware control QoS to the extent

feasible, and to allow component self-adaptation where

necessary. This requires that the QoS characteristics is

specified for each component, which then are used by the

middleware to assess the suitability of each component

when assembling a composition. For self-adapting

components, it is important that the ability to self-adapt is

expressed and quantified in the QoS characteristics. The

designing phase consist of

[i] Defining components.

[ii] Specifying compositions.

[iii] Specifying parameter configurations.

[iv] Service modeling.

[v] QoS modeling.

Figure 3 System overview

Gaurav Agarwal et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,356-359

© 2010, IJARCS All Rights Reserved 358

A. Model to be simulated.

Through dynamic reconfiguration of the model better

results and an even more optimized scenario for the same

can be obtained [2]. Therefore, we have tried to safely

reconfigure the initial model for three clients, using

Omnet++. Omnet++ is a tool that enables simulation with

Visual C++ as a background tool. OMNeT++ is an object-

oriented modular discrete event network simulator. The

simulator can be used for:

[a] traffic modeling of telecommunication networks

[b] protocol modeling

[c] modeling queuing networks

[d] modeling multiprocessors and other distributed

hardware systems

[e] validating hardware architectures

[f] evaluating performance aspects of complex software

systems

B. Simulated Model.

In our simulated model, we have intended to depict the

working, wherein; there are clients, sending requests to

work on a network. The middleware acts as a mediator. As

the name suggests it takes input in the form of requests from

the various clients, and passes the requests to the classifier

for the determination of the network available for the

particular client, according to the priority. From the

middleware the request is then passed to the classifier,

which on the basis of the priority assigned to the client

selects a network for it. The choice of network lies from the

very high speed wireless LAN ,to the lower speed GPRS ,to

the slowest LAN.Now, through the internet the request of

the client is passed from the particular network to the server.

The server then responds to the request of the particular

client. It passes the result to the middleware, which further

transfers the result to the corresponding or the requesting

client.In the simulated model, the clients depict either a

laptop, a desktop, or a personal digital assistant. A priority

has been decided for each of the client. It is possible to

increase the number of clients, but for our convenience we

have limited the number of clients to three. The high priority

client are enabled to access through the fastest Wireless

LAN. The medium priority personal digital assistant is

required to access the comparatively slow GPRS, whereas

the common pool or the lowest priorities are enabled to use

the slowest LAN. This classification of network is done by

the classifier. After the classification has been done the

request travels through the overall network or the internet.

The server is where the requests are received and

processed so as to produce the final or rather the desired

results as demanded by the client. The working for the

various applications is stored in the middleware.

Figure 4 Simulated models

C. OMNeT++ simulation model look like.

OMNeT++ provides a component architecture. Models

are assembled from reusable components, modules. Well-

written modules are truly reusable and can be combined in

various ways like LEGO blocks.Modules can be connected

with each other via gates (other systems would call them

ports), and combined to form compound modules.

Connections are created within a single level of module

hierarchy: a sub module can be connected with another, or

with the containing compound module. Every simulation

model is an instance of a compound module type. This level

(components and topology) is dealt with in NED files. To

give you an idea, a component named Ether MAC would be

described in NED like this:

//

// Ethernet CSMA/CD MAC

//

simple EtherMAC

parameters:

address : string; // others omitted for brevity

gates:

in: phyln; // to physical layer or the network

out: phyOut; // to physical layer or the network

in: llcln; // to EtherLLC or higher layer

out: llcOut; // to EtherLLC or higher layer

endsimple

And it could be used in the model of an Ethernet station like

this:

//

// Host with an Ethernet interface

//

module EtherStation

parameters: ...

gates: ...

in: in; // for connecting to switch/hub, etc

out: out;

submodules:

app: EtherTrafficGen;

llc: EtherLLC;

mac: EtherMAC;

connections:

app.out --> llc.hlln;

app.in <-- llc.hlOut;

llc.macln <-- mac.llcOut;

llc.macOout --> mac.llcln;

mac.phyln <— in;

mac.phyOut —> out;

endmodule

Comments are useful in documentation generation via

opp nedtool; see an example here). Simple modules which,

like Ether MAC above, don't have further sub modules and

are backed up with C++ code that provides their active

behavior are declared with the simple keyword; compound

modules are declared with the module keyword. To simulate

an Ethernet LAN, you'd create a compound module Ether

LAN and announce that it can run by itself with the network

keyword:

module EtherLAN

... (sub modules of type Ether Station, etc)...

endmodule

network etherLAN : EtherLAN

endmodule

Gaurav Agarwal et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,356-359

© 2010, IJARCS All Rights Reserved 359

III. CONCLUSION

In the paper we have discussed about the Video

Streaming scenario and demonstrate the feasibility of our

solution.The concept of our work is the service plan that

specifies the service and the QoS of components and

compositions.

IV. REFERENCES

[1] Charles Perkins. IP Mobility Support for IPv4. IETF

RFC 3344, August 2002.

[2] Amundsen, K. Lund, C. Griwodz, and P. Halvorsen.

Scenario Description- Video Streaming in the Mobile

Domain. http://www.simula.no:8888/ QuA/2/techV

ScenAl.pdf,2005..

[3] OMG. UML Profile for Modelling Quality of Service

and Fault Tolerance Characteristics and Mechanisms.

OMG Adopted Specification, June 2004.

[4] R. Staehli, F. Eliassen, and S. Amundsen. Designing

Adaptive Middleware for Reuse. In Proceeding from

3rd International Workshop on Reflective and Adaptive

Middleware, 2004.

[5] S. Amundsen A. Solberg, J. 0. Aagedal, and F. Eliassen.

A Framework for QoS-Aware Service Composition. In

Proceedings of 2nd ACM international Conference on

Service Oriented Computing 2004.

[6] Simula Research Laboratory. QuA documentation.

http://www.simula.no:8888/QuA/55,2004

[7] S. Amundsen, K. Lund, F. Eliassen, and R. Staehli.

QuA: Platform-Managed QoS for Component

Architectures. In Proceedings from Norwegian

Informatics Conference (NIK), November 2004

