
Volume 5, No. 7, September-October 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 243

ISSN No. 0976-5697

Interoperability in the JVM and CLR Engines for Cross Languages Application

Developments

Sonar Sanjay Bhagwan

Ph.D Scholar Rai University,

Saroda, Dholka Taluka, Ahmedabad, Gujarat, India

Abstract: Engines of the Java Virtual Machine (JVM) and Common Language Runtime (CLR) are designed on the basis of multi-platform

mechanism and as well as compatible of the cross languages interoperability based on the pure object orientation for both JVM and CLR related

languages. Both engines languages are compatible for application domain specification, requirements elicitation, Genericity in all objects

specification, designing mechanism of pure object orientation and Methodological implementation. The paper proves common mechanism and

methodological design-to-implementation steps by pure object orientation, to design database and application using JVM and CLR languages.

Paper also proves genericity in relationship between compatible mechanism of the CLR and JVM platform. Both engines has compiled and

interpreted mechanism, cross languages feature, as well as multi-platform mechanism. The JVM platform is java based languages as Java, JRuby

and Scala; and CLR platform is VS.NET based languages as vb.net, c#.net and vc++.net and other. There are no business logic is applied on the

design-to-implementation steps for designing the system in both engines, but common tools is mechanized and sequentialised to design the

applications and common database for JVM and CLR related languages.

Keywords: Interoperability, compatibility, domain, genericity, Cross-Platform, actor, Use Cases.

I. INTRODUCTION

Interoperability in the pure object oriented Cross-

Languages, like as Java Virtual Machine based and

Common Language Runtime based languages. The pure

object oriented cross language as well as Platform

independent Languages are purely object dependable. Each

task of the application is treated as objects and here object

itself is generic. The object is atom as well as object

attribute either it is based on instance or non-instance, from

the specific domain, then faced with object classes, that is

abstracted from the business logic or SRS from the domain

specification; also reusability, genericity, polymorphism,

class binding, and generalization are mechanized by the pure

objects orientation design[1,3]

In both engines are designed on the basis of pure object

orientation as well as both engines are also compatible and

interoperable for pure object orientation. The object is

treated as tangible unit as static and dynamic, faces in the

class, operations, and methods, therefore the object in pure

object oriented design, treated as generic itself. Also both

engines languages mechanism of developing applications

and database should be common as compatible, so generic

domain identification and object identification should be

more specific and genericity, for both engines languages as

common database design and common application design,

also object classes, methods, operations as well as

component design and collaboration design would be

generic for common use for both platforms; and therefore it

should be tightly coupled with both platforms. Paper prove

the common domain and all object specification with

specific object build in domain/sub domain as based on the

commonness for design the application and database in both

platform languages[1,8].

A De Champeaux and Faure at Hewlett Packard

Laboratories have initiated a systematic comparison of

OOADMs, by surveying more than ten object-oriented

analysis methodologies; de Champeaux compared the

common features and the major differences of the chosen

methodologies. His article provides an excellent tutorial for

object-oriented analysis, but his comparison of the

methodologies is somewhat abbreviated [1, 6].

II. PROBLEM DEFINITION

Significant drawbacks as in present object-oriented

design methods only deal with the design of specific

application on selected platform and selected language; And

does not facilitate the design of commonness for CLR and

JVM engines as the based on the pure object orientation for

cross languages. And also no interface oriented object

system design for software implementations and database

implementation on the pure cross-languages platforms, also

no any specification of the object limitation, across the

system on the based on the object paradigm for both engines

languages. Also present tools and methods/tasks of the

object oriented system are not incorporated and interface

oriented as common in both engines languages, also not step

next tools, to design the system from design-to-

implementation for the Cross-Platform software

development in both JVM and CLR languages. During the

past years, the need for software reuse and commonness has

become evident. Object-orientation has provided a means to

increase the reusability of code, by introducing standard

interfaces and inheritance. Class libraries have provided

well defined and tested reusable components, but using class

libraries mainly implies reuse of code and little reuse of

analysis and design. In present object oriented systems for

developing system in pure cross languages platforms; the

requirements to design the common system for Pure Object

Oriented Cross Languages of JVM and CLR engines, are

pointed as below.

a. Object Identification and Specification

Sonar Sanjay Bhagwan , International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014,243-247

© 2010-14, IJARCS All Rights Reserved 244

b. Single object/class objects/ control object/ link object/

attribute objects/atom objects

c. Non-instances and instances objects.

d. Classification of the objects by domain.

e. Domain Specification as area of work and

decomposition of domain by objects

f. Specification in actor and Use Case Scenario for

domain specification.

g. Specification of object limit in the domain.

h. Indentify common Non-instances and instances

objects. Common interface oriented architecture of

the objects

i. Step next tools to precede design-to-Implementation

and interfaces components Collaboration of the entire

system design.

j. Compatibility in commonness in cohesion and

coupling for both engine languages.

A. Previous Research on Commonness:

De Champeaux is developing a model for object-based

analysis. His current research focuses on the use of a trigger-

based model for inter-object communications and

development of a top-down approach to analysis using

ensembles. We then survey two research activities that

prescribe the design process [3].

Present work from Alan Snyder at Hewlett-Packard on

developing a common framework for object-oriented

terminology. They defined several comparing criteria and

performed an extensive comparison of these methodologies.

The results were presented in a set of tables. The goal of this

effort is to develop and communicate a corporate-wide

common language for specifying and communicating about

objects. We next look into the research activity at Hewlett-

Packard, led by Dennis de Champeaux [3, 9].

Then present investigations by Ralph Johnson at the

University of Illinois at Urbana-Champaign into object-

oriented frameworks and the reuse of large-scale designs. A

framework is a high-level design or application architecture

and consists of a suite of classes that are specifically

designed to be refined and used as a group

III. COMPARISON OF JVM AND CLR ENGINES

Figure 1. Comparison of JVM and CLR engines

Design for the comparison between java based and

micro-soft Visual Studio based platform. Both platforms

generate intermediate code for platform independence and

language independence; both engines have its own JIT (Just

In Time) Compiler, get invoked by the JVM and CLR

engines. JIT generate Native code as own machine (OS)

understandable code for interpreted as output. The CLR

developed for UNIX and LINUX Operating System by UN

Berkeley’s Berkeley System Distribution (BSD) [7, 9, 10].

IV. METHODOLOGICAL IMPLIMENTATION

The following six steps are mechanized of the pure

object orientation for the developments applications with

database in both JVM and CLR related cross languages. The

following design engineering steps are interface oriented

from domain specification to Step next tools to precede

design-to- Implementation and interfaces components

Collaboration of the entire system design for developing

application in both platforms.

A. Genericity in domain identification:

This is first step of the Methodological Implementation,

Using this step the generic domain would be identified for

both platforms. The common area is justified and abstracted.

As well as area wise all objects is mechanized for further

specification of Collaboration model and component

interface design.

B. Domain Specification and Limitation:

After the domain specification, Using this step, identify

and specify all common generic objects like instance/Non-

instance objects, control objects, attribute objects, atom,

anti-atoms, object classes, Major and sub classes modules

Sonar Sanjay Bhagwan , International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014,243-247

© 2010-14, IJARCS All Rights Reserved 245

and groups etc. This specification is based on the genericity

of the objects but not get from requirement elicitation and

specified business logic. The domain specification and

limitation cover the all generic area of the domain for all

object identification, that is designed-to-implementation for

java based and dot.net based applications with common

databases. The Actors, Use Case and Scenarios tools are

used for the solution of the domain specification and

limitation.

C. Requirements Elicitation Engineering:

Requirements Elicitation identifies the common Actors,

Scenarios (General instance, directly applied to application),

Use Cases Refinements (Specify common scenarios),

identify the relationship among Actors and Use Case

Instances, and indentify common initial objects as well as

functional and non functional requirements.

The first step of requirements elicitation is

identification of actor. An actor can be human or external

system or software agents that are directly concerns with

system specification. Actor also defines the boundaries of

the system and to find all perspectives from which the

developers need to consider the system [5, 6].

Scenarios are the concrete, focused information

description of the single features of the system from the

viewpoint of the single actor. Scenarios focus specific

instances, also Scenarios provide Common tools for the

requirements elicitation engineering. The numbers of

scenarios are used for common requirements elicitation as

like As-is-Scenarios, Visionary Scenarios, Evaluation

Scenarios. A Scenario is the instance of the use case that is a

use case specifies all Scenarios for a given piece of

functionality. A use case is initiated by the actor, as well as

use case represents the complete flow of the events through

the system in the sense that it describes a series of related

interactions that from its initiation.

The relationship among Actors and Use Case Instances

to reduces the complexity of the model and increasing its

understandability.

After the Indentify and specify the Actors and related

use case instances, the initial objects can be abstracted from

them. For that the participating objects are abstracted from

each use case. The design engineer identifies the names of

the object from the work of use case. Also identify the non-

functional requirements that are not directly concerns with

system.

D. Generic object designing:

Decomposition of the problem into objects depends of

the Heuristics or judgment and nature of the problem. The

common object identification for the both technology is

based on the pure object oriented systems. Using pure object

identification, the object itself is generic as like instance or

non-instance object, control or link object, atom or anti-

atom object, attribute or variable object etc. and collection

of the objects are object class or class as major or sub

classes. Also in pure object orientation the JVM and CLR

both engine are treated object as class and class treated as

object as well as atom is treated as variable and it treated

object for instance. There is no genericity in the instance

now, the genericity concerns with only objects and object

class with attributes, operations, methods, Multiplicity, link

and associations, rolling, ordering, aggregation.

Generalization and qualification.

An Example of common class model for CLR and JVM

application object specification of the company’s employees

with employees related other objects, based on pure object

orientation [4, 8, 11].

Figure 2. Common generic object class specification.

The following common factors are treated and operated

by the Generic object designing.

a. The Clean room of the object and/or object class

and/or object as attribute and/or instance/non-

instance.

b. Specify that objects treated as if class/abstract major

class, class (non-instance)/major class/sub classes

link (Relationship) class.

c. Multiplicity of the class object as how many instances

of one class may related to each instance of the

another class.

d. Identify object domain/sub domain and Link and

association among the object class

e. Role names of the association with qualification of

the each objects.

f. Aggregation and Generalization of the each objects.

Candidate key as object’s minimum attributes that

uniquely identifies as object of link to other objects.

E. Commonness on Coupling and Cohesion:

The commonness between coupling and cohesion as

designed as loosely coupling and tightly coupling, the

system is divided into number of subsystem. And two or

more subsystem is loosely coupling and tightly coupled,

depending on the nature of the system. The one subsystem is

modified the impact on the other subsystem.

The Cohesion is the number of dependences within a

sub system. The cohesion specifies the all subsystem

domain objects are interacted with each other as the based

on the tightly and loosely coupled. Each subsystem contain

number of unrelated objects, The class model and Use case

model are tools for domain object cohesion and coupling

[2].

F. Common models of Unified Modeling Language:

Unified Modeling Language has nine diagrams for

modeling the system, but the following models are

clarifying commonness design for both JVM and CLR

related languages.

Sonar Sanjay Bhagwan , International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014,243-247

© 2010-14, IJARCS All Rights Reserved 246

a. Class/Object Model: The Class diagram describes the

system in terms of objects, classes, and members of

the class. Also depicts the interface among the classes

with above pure identifications, and relations among

them. The objects in the class share a semantic

purpose, based on the common attributes and

operations [2, 6, 12].

b. Use Case Model: This Model is used for purely during

requirements elicitation and analysis of the

functionality of the system. The model provides the

external visible behavior of the system. The model

designed for actor and system performance scenario

here actor describe entity that interact with the system.

Along with what the system does in response. The Use

case diagram is basic tool for domain /sub domain

specification, object selection in specific domain/sub

domain and object division by supporting the actors [2,

13].

c. State Diagram: This diagram designs by states and

events, when events is received the next state depends

on the current state as well as event, state changes is

caused transition. A state represents a particular set of

values for an object, This Diagram is used for common

operations, method and states of the each objects of the

both engines languages [4].

d. Collaboration Model: this model interaction with

emphasis on relations between objects. Collaboration

model represents of the combination of the

information taken from class and use case models, and

describes the static and dynamic behavior of the object

classes. Also Collaboration model show the message

flow as well as association between objects. Basically

Collaboration Model specifies the domain and co-

domain for object distribution [7, 10].

e. Component Model: This model describes the major

architecture of the system. The component diagram

depicts the deployable units of the system as

applications, components, and data stores. As well as

design the interface and associations among the

components. This model also specifies the domain and

co-domain for object distribution as well as actor and

use case specification [7, 8, 12].

V. CONSISTENCY BETWEEN OBJECTS

DESIGN ENGINEERING AND INMPIMENTATION

When performing the common pure object oriented

analysis and design for cross languages we should care

about the consistency where there will be a relation among

the object designing and implementation. The design should

be common for both platforms for application

implementation and database implementation. The above six

methodological implementation steps are interface oriented

and sequentialised for the commonness object design, for

implementation application and database in both platform

languages. Therefore the object in pure object oriented

system treated as generic itself it has many faces for

operation statically and sequentially. Also both engines

languages are mechanism of developing applications are

compatible, so generic object identification is vital for all

related objects (instance/non-instance, control, attributes,

atomic, link etc.),object class, methods, operations as well as

component design and collaboration design would be

generic; and therefore it is tightly coupled with both

platforms for design database and application object

orientation designing.

VI. CONCLUSION

Drawbacks as in present object-oriented design methods

only deal with the design of specific application on selected

platform and language. And does not commonness for CLR

and JVM cross languages design as the based on the pure

object orientation and database design. Also present tools

and methods/tasks of the object oriented system are not

incorporated and interface oriented and not specifically step

next tools, to design the system from design to

implementation for the Cross-Platform languages of both

JVM and CLR engines. The above methodological

implementations tools are focused on the commonness

design pure object orientation for developing applications in

both platform cross languages because object in pure object

oriented system treated as generic its self for different faces.

The comparison depicts the interoperability and

comparability of the JVM and CLR cross platform

independence languages commonness. The paper also

proves the consistency in design engineering to common

database design and pure object oriented application

development in both engines languages.

VII. ACKNOWLEDGEMENT

I would like to thanks Dr. Samrat O Khanna, Head of

the Departments of ISTAR institute of the Anand-Gujarat,

to inspire and Encouraged me to perform my best. And I

also Thanks to all Software firms who gave me the best

support to abstract my goal.

VIII. REFERENCE

[1]. Gamma, Erich; Helm, Richard; Johnson, Ralph; and

Vlissades, John. “Design Patterns”, 2nd Edition, Pearson

Education 1994.

[2]. Bernd Bruegge, Allen H. Dutoit. “Object Oriented Software

Engineering, Using UML, Patterns, and Java”, Second

Edition, Pearson Education, 2010

[3]. De Champeaux, D. and Faure, P., "A Comparative Study of

Object Oriented Analysis Methods," Journal of Object-

Oriented Programming (JOOP), March/April, 1992, pp. 21-

33.

[4]. James Rumbhaugh, Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen, “Object Oriented

Modeling and Design”, Prentice- Hall India Edition, 3rd

Edition, 2001

[5]. Heninger K.L., “Specifying software requirements for

complex systems”, New techniques and their applications.

IEEE Transactions on Software Engineering 6 (1), p. 2-13,

1980.

[6]. Wirfs - Brock, R. and Wilkerson, B. “Object Oriented

Design” A Responsibility - Driven Approach. In Proceedings

of OOPSLA '89 Conference. SIGPLAN Not. (ACM) 24, 10,

(New Orleans, Louisiana, October 1989), pages 71-76.

[7]. www.it-ebooks.info/book (E-book) Scala/JRuby

Programming.

Sonar Sanjay Bhagwan , International Journal of Advanced Research in Computer Science, 5 (7), Sept–Oct, 2014,243-247

© 2010-14, IJARCS All Rights Reserved 247

[8]. James J, Odell, “Advanced Object Oriented Analysis and

Design by UML”, SBN- 9780521648196, Cambridge

University Press, 1998

[9]. Deitel & Deitel, Listfield, Nieto, Yaeger,Zlatkina, “C# How

to Program”, 3rd Edition, Pearson Education, 2005.

[10]. Deitel & Deitel, “Java How to Program”, 3rd Edition,

Prentice Hall American Edition, 1995.

[11]. Sonar Sanjay B, Dr. Samrat Khanna, “A UML Model for

Automation of Counseling System Using Pure Object

Oriented Approach”, Journal of IAEME, “International

Journal of Computer Engineering and Technology”, Volume

4, Issue 5, September-October 2013, pp. 15-22.

[12]. Code P. Yourdon. E. “Object Oriented Design”, 2nd addition,

Yorden press, Englewood Cliffs, N J 1991.

[13]. Schneider Winters, “Applying Use Cases”, 2nd addition,

Pearson Education .2008.

