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Abstract: Distributed Data Mining(DDM)  has evolved  into  an  important  and  active  area  of  research  because of theoretical  challenges  
and  practical  applications  associated  with  the problem  of    extracting,  interesting  and  previously unknown  knowledge  from  very  large  
real-world  databases.  Fuzzy Set  Theory  (FST)  is  a  mathematical  formalism  for  representing uncertainty  that  can  be  considered  an  
extension  of  the  classical  set theory. It has been used in many   different   research areas, including those   related   to   inductive   machine   
learning   and   reduction of knowledge   in Distributed data-based   systems.   One   important   concept related to FST is that of a fuzzy 
relation. In this paper we presented the current status of research on applying fuzzy set theory to DDM, which  will  be  helpful  for  
handle  the  characteristics  of  real-world databases.  The  main  aim  is  to  show  how  fuzzy  set  and  fuzzy  set analysis  can  be  effectively  
used  to  extract  knowledge  from  large databases. 
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I. INTRODUCTION 

Data mining technology has emerged as a means for 
identifying patterns and trends from large quantities of data. 
Data mining is a computational intelligence discipline that 
contributes tools for data analysis, discovery of new 
knowledge, and autonomous decision making. The task of 
processing large volume of data has accelerated the interest 
in this field. As mentioned in Mosley (2005) data mining is 
the analysis of observational datasets to find unsuspected 
relationships and to summarize the data in novel ways that 
are both understandable and useful to the data owner.  

Distributed Data Mining (DDM) aims at extraction 
useful pattern from distributed heterogeneous data bases in 
order, for example, to compose them within a distributed 
knowledge base and use for the purposes of decision 
making. A lot of modern applications fall into the category 
of systems that need DDM supporting distributed decision 
making. Applications can be of different natures and from 
different scopes, for example, data and information fusion 
for situational awareness; scientific data mining in order to 
compose the results of diverse experiments and design a 
model of a phenomena, intrusion detection, analysis, 
prognosis and handling of natural and man-caused disaster 
to prevent their catastrophic development, Web mining ,etc. 
From practical point of view, DDM is of great concern and 
ultimate urgency. 

Fuzzy set theory has been studied extensively over the 
past 30 years. Most of the early interest in fuzzy set theory 
pertained to representing uncertainty in human cognitive 
processes (see for example Zadeh (1965)). Fuzzy set theory 
is now applied to problems in engineering, business, 
medical and related health sciences, and the natural 
sciences. 

The use of fuzzy set theory as a methodology for 
modeling and analyzing decision systems is of particular 
interest to researchers in production management due to 

fuzzy set theory’s ability to quantitatively and qualitatively 
model problems which involve vagueness and imprecision. 
Kawasaki and Evans (1986) identify the potential applications 
of fuzzy set theory to the following areas of production 
management: new product development, facilities location and 
layout, production scheduling and control, inventory 
management, quality and cost benefit analysis. Kawasaki and 
Evans identify three key reasons why fuzzy set theory is 
relevant to production management research. First, imprecision 
and vagueness are inherent to the decision maker’s mental 
model of the problem under study. Thus, the decision maker’s 
experience and judgment may be used to complement 
established theories to foster a better understanding of the 
problem. Second, in the production management environment, 
the information required to formulate a model’s objective, 
decision variables, constraints and parameters may be vague or 
not precisely measurable. Third, imprecision and vagueness as a 
result of personal bias and subjective opinion may further 
dampen the quality and quantity of available information. 

Fuzzy set theory is a new mathematical approach to 
imperfect knowledge. The problem of imperfect knowledge has 
been tackled for a long time by philosophers, logicians and 
mathematicians. Recently it became also a crucial issue for 
computer scientists, particularly in the area of artificial 
intelligence. There are many approaches to the problem of how 
to understand and manipulate imperfect knowledge. The most 
successful one is, no doubt, the fuzzy set theory proposed by 
Zadeh .Fuzzy set theory proposed by Zpawlak presents still 
another attempt to this problem. The theory has attracted 
attention of many researchers and practitioners all over the 
world, who contributed essentially to its development and 
applications. Fuzzy set theory has an overlap with many other 
theories. However we will refrain to discuss these connections 
here. Despite of the above mentioned connections fuzzy set 
theory may be considered as the independent discipline in its 
own rights. Fuzzy set theory has found many interesting 
applications. The fuzzy set approach seems to be of 
fundamental importance to AI and cognitive sciences, 
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especially in the areas of machine learning, knowledge 
acquisition, decision analysis, knowledge discovery from 
databases, expert systems, inductive reasoning and pattern 
recognition. The main advantage of fuzzy set theory in data 
analysis is that it does not need any preliminary or 
additional information about data − like probability in 
statistics, or basic probability assignment in Dempster-
Shafer theory, grade of membership or the value of 
possibility in rough set theory. 

The proposed approach 
A.  Provides efficient algorithms for finding hidden          

patterns in data, 
B.  Finds minimal sets of data (data 

reduction), 
C. Evaluates significance of data, 
D. Generates sets of decision rules from data, 
E. It is easy to understand, 
F. Offers straightforward interpretation of 

obtained results, 
G. Most algorithms based on the rough set 

theory are particularly suited for parallel 
processing. 
 

The remaining sections of the paper are organized as 
follows. In Section II we describe Fuzzy sets theory in data 
mining .In Section III we describe Distributed Data Mining. 

In Section IV we describe fuzzy set analysis in 
Distributed Data Mining. In Section V we describe 
Computational Aspects of Fuzzy set on   DDM. In Section 
VI   concludes the paper. 

      II.FUZZY SETS THEORY IN DATA MINING 

Fuzzy set theory was developed by Zdzislaw Pawlak in 
the early 1980’s1. Fuzzy set deals with classification of 
discreet data table in a supervised learning environment. 
Although in theory fuzzy set deals with discreet data, fuzzy 
set is commonly used in conjunction with other technique to 
do discrimination on the dataset. The main feature of fuzzy 
set data analysis is non-invasive, and the ability to handle 
qualitative data. This fits into most real life application 
nicely. Fuzzy set have seen light in many researches but 
seldom found its way into real world application. 

Knowledge discovery with fuzzy set is a multi-phase 
process consisted of mainly: 
A. Discretization 
B. Reducts and rules generation on training set 

A. System architecture 
The overview of the architecture of the system can be 

seen in figure. The proposed architecture will adopt the 
traditional architecture of a data mining system. Data from 
multiple channels is collected on the operational data store 
for fast transaction and up to date data that can be used for 
the front office. Then, periodically, the data is extracted, 
cleans, transformed and imported into the data warehouse. 
The data will then will be send to the appropriate data marts 
for departmental use. Then, according to the needs of the 
user, either the enterprise data or the departmental data is 
sent to the OLAP tier for processing. The results is then 
stored and then sent to the decision makers through the use 
of thin clients. The overview of this architecture is seen in 
Figure 1 . The proposed system is pretty good in theory as it 

provides compartmentalization of data and collection of data 
from multiple channels. The architecture is simple and sticks to 
the basis of founded work and should provide a good base for 
the system. 

 
 

Figure 1: the over view of proposed system Architecture 

                 III. DISTRIBUTED DATA MINING 

Traditional warehouse-based architectures for data mining 
suppose to have centralized data repository. Such a centralized 
approach is fundamentally inappropriate for most of the 
distributed and ubiquitous data mining applications. In fact, the 
long response time, lack of proper use of distributed resource, 
and the Fundamental characteristic of centralized data mining 
algorithms do not work well in distributed environments. A 
scalable solution for distributed applications calls for distributed 
processing of data, controlled by the available resources and 
human factors. For example, let us suppose an ad hoc wireless 
sensor network where the different sensor nodes are monitoring 
some time-critical events. Central collection of data from every 
sensor node may create traffic over the limited bandwidth 
wireless channels and this may also drain a lot of power from 
the devices. A distributed architecture for data mining is likely 
aimed to reduce the communication load and also to reduce the 
battery power more evenly across the different nodes in the 
sensor network. One can easily imagine similar needs for 
distributed computation of data mining primitives in ad hoc 
wireless networks of mobile devices like PDAs, cell phones, 
and wearable computers. The wireless domain is not the only 
example. In fact, most of the applications that deal with time-
critical distributed data are likely to benefit by paying careful 
attention to the distributed resources for computation, storage, 
and the cost of communication. As an other example, let us 
consider the World Wide Web: it contains distributed data and 
computing resources. An increasing number of databases (e.g., 
weather databases, oceanographic data, etc.) and data streams 
(e.g., financial data, emerging disease information, etc.) are 
currently made on-line, and many of them change frequently. It 
is easy to think of many applications that require regular r 
monitoring of these diverse and distributed sources of data. A 
distributed approach to analyze this data is likely to be more 
scalable and practical particularly when the application involves 
a large number of data sites. Hence, in this case we need data 
mining architectures that pay careful attention to the distribution 
of data, computing and communication, in order to access and 
use them in a near optimal fashion.          Distributed Data 
Mining (sometimes referred by the acronym DDM) considers 
data mining in this broader context. DDM may also be useful in 
environments with multiple compute nodes connected over high 
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speed networks. Even if the data can be quickly centralized 
using the relatively fast network, proper balancing of 
computational load among a cluster of nodes may require a 
distributed approach. The privacy issue is playing an 
increasingly important role in the emerging data mining 
applications. For example, let us suppose a consortium of 
different banks collaborating for detecting frauds. If a 
centralized solution was adopted, all the data from every 
bank should be collected in a single location, to be 
processed by a data mining system. Nevertheless, in such a 
case a Distributed Data Mining system should be the natural 
technological choice: both it is able to learn models from 
distributed data without exchanging the raw data between 
different repository, and it allows detection of fraud by 
preserving the privacy of every bank’s customer transaction 
data. For what concerns techniques and architecture, it is 
worth noticing that many several other fields influence 
Distributed Data Mining systems concepts. First, many 
DDM systems adopt the Multi-Agent System (MAS) 
architecture, which finds its root in the Distributed Artificial 
Intelligence (DAI). Second, although Parallel Data Mining 
often assumes the presence of high speed met work 
connections among the computing nodes, the development 
of DDM has also been influenced by the PDM literature. 
Most DDM algorithms are designed upon the potential 
parallelism they can apply over the given distributed data.. 
In figure 3 a general Distributed Data Mining framework is 
presented. In essence, the success of DDM algorithms lies in 
the aggregation. Each local model represents locally 
coherent patterns, but lacks details that may be required to 
induce globally meaningful knowledge. For this reason, 
many DDM algorithms require a centralization of a subset 
of local data to compensate it. The ensemble approach has 
been applied in various domains to increase the accuracy of 
the predictive model to be learnt. It produces multiple 
models and combines them to enhance accuracy. Typically, 
voting (weighted or un-weighted) schema are employed to 
aggregate base model for obtaining a global model. As we 
have discussed above, minimum data transfer is another key 
attribute of the successful DDM algorithm. 

 
 

Figure 2: General Distributed data mining Frame work 

 

 

IV.FUZZY SET ANALYSIS IN DISTRIBUTED 
DATA MINING 

A. Fuzzy sets 
Fuzzy sets have been introduced by Lotfi A. Zadeh (1965). 

What Zadeh proposed is very much a paradigm shift that first 
gained acceptance in the Far East and its successful application 
has ensured its adoption around the world. Fuzzy sets are an 
extension of classical set theory and are used in fuzzy logic. In 
classical set theory the membership of elements in relation to a 
set is assessed in binary terms according to a crisp condition — 
an element either belongs or does not belong to the set. By 
contrast, fuzzy set theory permits the gradual assessment of the 
membership of elements in relation to a set; this is described 
with the aid of a membership function valued in the real unit 
interval [0, 1]. Fuzzy sets are an extension of classical set theory 
since, for a certain universe, a membership function may act as 
an indicator function, mapping all elements to either 1 or 0, as 
in the classical notion. 

Specifically, A fuzzy set is any set that allows its members 
to have different grades of membership (membership function) 
in the interval [0,1]. A fuzzy set on a classical set Χ is defined 
as follows:  

 
B. The membership functions in fuzzy set analysis 

The membership function μA(x) quantifies the grade of 
membership of the elements x to the fundamental set Χ. An 
element mapping to the value 0 means that the member is not 
included in the given set, 1 describes a fully included member. 
Values strictly between 0 and 1 characterize the fuzzy members. 

 
 

 
  

Figure 3 

 

C. Membership function terminology: 
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Universe of DiscourseUniverse of Discourse: the universe of discourse is the 
range of all possible values for an input to a fuzzy system.  

Support: the support of a fuzzy set F is the crisp set of 
all points in the universe of discourse U such that the 
membership function of F is non-zero.  

 
 
Core: the core of a fuzzy set F is the crisp set of all 

points in the universe of discourse U such that the 
membership function of F is 1.  

 
Boundaries: the boundaries of a fuzzy set F is the crisp 

set of all points in the universe of discourse U such that the 
membership function of F is between 0 and 1.  

 
 
Crossover point: the crossover point of a fuzzy set is the 

element in U at which its membership function is 0.5.  
Height: the biggest value of membership functions of 

fuzzy set. 
 
Normalized fuzzy set: the fuzzy set of  
 
Cardinality of the set:  
 
 
 
Relative cardinality: 
 
Convex fuzzy set:      ,          
a fuzzy set A is Convex, if for  
 
 
 

 
 

D. Type of membership functions: 
 
1. Numerical definition (discrete membership functions) 
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2. Function definition (continuous membership 
functions) 
  Including of S function, Z Function, Pi function, Triangular 

shape, Trapezoid shape, Bell shape. 
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(2) Z function: monotonically decreasing membership   
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(5) Triangular membership function: (5) Triangular membership function: 
  

  
  
  
  
  
  
  
  
  
(6) Bell-shaped membership function: (6) Bell-shaped membership function: 

  
  
  
  
  
  
  
  

Before illustrating the mechanisms which make fuzzy 
logic machines work, it is important to realize what fuzzy 
logic actually is. Fuzzy logic is a superset of conventional 
(Boolean) logic that has been extended to handle the concept 
of partial truth- truth values between "completely true" and 
"completely false". As its name suggests, it is the logic 
underlying modes of reasoning which are approximate 
rather than exact. The importance of fuzzy logic derives 
from the fact that most modes of human reasoning and 
especially common sense reasoning are approximate in 
nature. 
The essential characteristics of fuzzy logic are as follows. 

Before illustrating the mechanisms which make fuzzy 
logic machines work, it is important to realize what fuzzy 
logic actually is. Fuzzy logic is a superset of conventional 
(Boolean) logic that has been extended to handle the concept 
of partial truth- truth values between "completely true" and 
"completely false". As its name suggests, it is the logic 
underlying modes of reasoning which are approximate 
rather than exact. The importance of fuzzy logic derives 
from the fact that most modes of human reasoning and 
especially common sense reasoning are approximate in 
nature. 
The essential characteristics of fuzzy logic are as follows. 

A.  In fuzzy logic, exact reasoning is viewed as a    limiting 
case of approximate reasoning. 

A.  In fuzzy logic, exact reasoning is viewed as a    limiting 
case of approximate reasoning. 
B. In fuzzy logic everything is a matter of degree.  B. In fuzzy logic everything is a matter of degree.  
C. Any logical system can be fuzzified.  C. Any logical system can be fuzzified.  
D. In fuzzy logic, knowledge is interpreted as a 

collection of elastic or, equivalently, fuzzy 
constraint on a collection of variables.  

D. In fuzzy logic, knowledge is interpreted as a 
collection of elastic or, equivalently, fuzzy 
constraint on a collection of variables.  

E. Inference is viewed as a process of propagation of 
elastic constraints. 

E. Inference is viewed as a process of propagation of 
elastic constraints. 

After know about the characteristic of fuzzy set, we will 
introduce the operations of fuzzy set. A fuzzy number is a 
convex, normalized fuzzy set 

After know about the characteristic of fuzzy set, we will 
introduce the operations of fuzzy set. A fuzzy number is a 
convex, normalized fuzzy set whose membership 
function is at least segmental continuous and has the functional 
value μA(x) = 1 at precisely one element. This can be likened to 
the funfair game "guess your weight," where someone guesses 
the contestants weight, with closer guesses being more correct, 
and where the guesser "wins" if they guess near enough to the 
contestant's weight, with the actual weight being completely 
correct (mapping to 1 by the membership function). A fuzzy 
interval is an uncertain set with a mean interval whose 
elements possess the membership function value μA(x) = 1. As 
in fuzzy numbers, the membership function must be convex, 
normalized, and at least segmental continuous. 

Set- theoretic operations 
Subset: A BA B μ μ⊆ ⇔ ≤  

Complement: ( ) 1 ( )AAA X A x xμ μ= − ⇔ = −  
Union: 

( ) max( ( ), ( )) ( ) ( )c A B AC A B x x x x xBμ μ μ μ μ= ∪ ⇔ = = ∨
Intersection: 

( ) min( ( ), ( )) ( ) ( )c A B AC A B x x x x xBμ μ μ μ μ= ∩ ⇔ = = ∧
 

 
 

Figure 4 
Although one can create fuzzy sets and perform various 

operations on them, in general they are mainly used when 
creating fuzzy values and to define the linguistic terms of fuzzy 
variables. This is described in the section on fuzzy variables. At 
some point it may be an interesting exercise to add fuzzy 
numbers to the toolkit. These would be specializations of fuzzy 
sets with a set of operations such as addition, subtraction, 
multiplication and division defined on them. 

According to the characteristics of triangular fuzzy 
numbers and the extension principle put forward by Zadeh 
(1965), the operational laws of triangular fuzzy numbers, 

1 1 1( , , )A l m r=% and 2 2 2( , , )B l m r=% are as follows: 
(A) Addition of two fuzzy numbers 
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(C) Multiplication of two fuzzy numbers 

  ( ,1 1 1 2 2 2 1 2 1 2 1 2⊗ ≅  
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When we through the operations of fuzzy set to get the 
fuzzy interval, next we will convert the fuzzy value into the 
crisp value. Below are some methods that convert a fuzzy 
set back into a single crisp (non-fuzzy) value. This is 
something that is normally done after a fuzzy decision has 
been made and the fuzzy result must be used in the real 
world. For example, if the final fuzzy decision were to 
adjust the temperature setting on the thermostat a ‘little 
higher’, then it would be necessary to convert this ‘little 
higher’ fuzzy value to the ‘best’ crisp value to actually move 
the thermostat setting by some real amount. 

 
V. COMPUTATIONAL ASPECTS OF FUZZY SET 

ON DDM 
 
In the literature, there has long been a lack of time 

complexity analysis of algorithms for frequently used fuzzy 
set operations. Time complexities of constructing an 
equivalence relation are shown to be O(lm2), where l and m 
are number of attributes and objects, respectively . This 
result corresponds to the analysis of an algorithm, reported 
in, where the goal is to obtain the equivalence relation 
according to the values of a single attribute. For a given 
functional dependency X→Y that holds in an information 
table S, we say that x → X is superfluous (or non-
significant) attribute for Y in S if and only if, X-{x}→Y still 
holds in S. A reduct of X for Y in S is a subset P of X such 
that P does not contain any superfluous attribute. If we have 
a metric to measure the degree of dependency, then we have 
a way to explore a reduct of X, with a degree of θ, where 0 ≤ 
θ ≤ 1 . It is shown that finding a reduct of X for Y in S is 
computationally bounded by l2m2 where l and m is a length 
of X and the number of objects in S respectively. The time 
complexity to find all reducts of X is O(2lJ), where J is the 
computational cost for finding one reduct, and l is the 
number of attributes in X. 

 
                          VI. CONCLUSIONS 
 
         In the paper, basic concepts of distributed data mining 
and the fuzzy set theory were discussed. Fuzzy Set Theory 
has been widely used in DDM since it was put forward. 
Having important functions in the expression, study, 
conclusion and etc. of the uncertain knowledge, it is a 
powerful tool, which sets up the intelligent decision system. 
The main focus is to show how fuzzy set techniques can be 
employed as an approach to the problem of data mining and 
knowledge extraction. The project shows that fuzzy set 
theory can be used as a tool for knowledge discovery. Even 
though it is a symbolical method, application of a suitable 
quantization technique will allow it to perform on just about 
any type of data. As opposed to numerical method that 
cannot be adapted to be used for symbolical data. Fuzzy set 
provide a useful tool that can be used on a lot of different 
data regardless weather it is numerical or symbolical and it 
also provide a non-intrusive methodology to knowledge 
discovery. 
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