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Abstract: Clustering is used to grouping objects from the large database.  Each group, called cluster, consists of objects that are similar between 
themselves and dissimilar to objects of other groups. It is a high dimension of the dataset, arbitrary shapes of clusters, scalability, input 
parameter, domain knowledge and noisy data. Large number of clustering algorithms had been proposed till date to address these challenges. 
There do not exist a single algorithm which can adequately handle all sorts of requirement. In this paper, we have discussed in K-means 
Clustering algorithm and Agglomerative clustering algorithm. 
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I. INTRODUCTION      

Data Stream is defined as a sequence of unbounded, 
real time data items with a very high data rate that can only 
read once. E.g.: computer Networks, traffic, phone 
conversations, web searches. In this paper, we examine the 
real process of web searches to be an example. Web mining 
is the application of data mining techniques to discover 
patterns from the Web. According to analysis targets, web 
mining can be divided into three different types, which are 
Web usage mining, Web content mining and Web structure 
mining. Web usage mining is the process of finding out 
what users are looking for on internet. Some users might be 
looking at only textual data whereas some other might want 
to get multimedia data. Web usage mining also helps finding 
the search pattern for a particular group of people belonging 
to a particular region. Web structure mining is the process of 
using graph theory to analyses the node and connection 
structure of a web site. According to the type of web 
structural data, web structure mining can be divided into two 
kinds. 

The first kind of web structure mining is extracting 
patterns from hyperlinks in the web. A hyperlink is a 
structural component that connects the web page to a 
different location. The other kind of the web structure 
mining is mining the document structure. It is using the tree-
like structure to analyses and describes the HTML (Hyper 
Text Markup Language) or XML (extensible Markup 
Language) tags within the web page. 

Web user session in clustering is a means of 
understanding user activity and interests on the World Wide 
Web. The period of time a user interfaces with an 
application. The user session begins when the user accesses 
the application and ends when the user quits the application. 
The session of activity that a user with a unique IP address 
spends on a Web site during a specified period of time is 
called a user session. The number of user sessions on a site 
is used in measuring the amount of traffic a Web site gets.  

The site administrator determines what the time frame 
of a user session will be (e.g., 30 minutes). If the visitor 
comes back to the site within that time period, it is still 
considered one user session because any number of visits 
within those 30 minutes will only count as one session. If 

the visitor returns to the site after the allotted time period 
has expired, say an hour from the initial visit, then it is 
counted as a separate user session.  Contrast with unique 
visitor, hit, click-through and page view, which are all other 
ways that site administrators measure the amount of traffic a 
Web site gets.   

II.RELATED WORK 

Clustering data streams is an interesting Data Mining 
problem. Detailed surveys of clustering algorithms may be 
found in three variants of the K-means algorithm to cluster 
binary data streams. The variants include On-line K-means, 
Scalable K-means, and Incremental K-means, a proposed 
variant introduced that finds higher quality solutions in less 
time [1], [2]. Clustering under the data stream model of 
computation, the data stream model is relevant to new 
classes of applications involving massive data sets, such as 
web click stream analysis and multimedia data analysis [3]. 
The nature of stream data makes it essential to use 
algorithms which require only one pass over the data. 
Recently, single-scan, stream analysis methods have been 
proposed in this context. However, a lot of stream data is 
high- dimensional in nature. High-dimensional data is 
inherently more complex in clustering, classification, and 
similarity search [4].  

Recent research discusses methods for projected 
clustering over high-dimensional data sets [5]. Scalable is 
very important and difficult to handle the high dimensional 
data sets, previously they used to increase the efficiency in 
some algorithms like Scalable Advanced Massive Online 
Analysis (SAMOA), Gamma Region Density partition, and 
utilizes K-means  - GARDEN-K-means[6],[7]. The famous 
K-means clustering algorithm is sensitive to the selection of 
the initial centroids and may converge to a local minimum 
of the criterion function value. A new algorithm for 
initialization of the K-means clustering algorithm is 
presented. The proposed initial starting centroids procedure 
allows the K-means algorithm to converge to a “better” local 
minimum.  
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