
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 192

ISSN No. 0976-5697

Natural Language Interface to Databases – An Implementation

Er. Amit Chaudhary
1
, Er. Annu Battan

2

Assistant Professor, CSE dept.1, Student, M.Tech-CSE2
1,2Modern Institute Of Engineering & Technology, Mohri Kurukshetra, India

Abstract: Information can be stored in a computer file to make a list easier and faster to use. Such a file is called a database. Database

Management Systems (DBMS) have been widely used for storing and retrieving data. However, databases are commonly hard to use because
storing and retrieving the information from database requires the knowledge of database language like SQL. Structured Query Language (SQL)
is standard for accessing and manipulating the information stored in database. But everybody not has known about the structure and syntax of
SQL. So NLIDB is developed that use natural language and convert this NL to SQL Query. The idea of using NL (natural language) has
prompted the development of new type of processing method called Natural Language Interface to Database systems (NLIDB). So everybody
retrieve information from database easily without any knowledge of SQL queries.

Keywords: Natural Language Interface to Database, Hindi Language Interface to Database, Lexicon, Tokenizer, Structured Query Language,

Database Management Systems

I. INTRODUCTION

The proposed system converts the Hindi language into

SQL query. To achieve the goal of NLIDB a step by step

methodology has been given below:

a) Create STUDENT database which store information

about students, all the entries are in Hindi language.

b) Create a database which contain all the table name,

columns name, conditions, operators and all the tokens

which can be given in query and their corresponding

English word.

c) Tokenize the input Hindi sentence given as a query by

user.

d) Identify the nature of query.

e) Extract the table name, column names, conditions,

functions, operators included in input query by mapping

tokens with the database values.

f) Generate the SQL query from the extracted values.

g) Execute SQL query and give output to user in Hindi

language.

II. LITERATURE REVIEW

Prototype for NLIDB had appeared in late sixties and

early seventies. Since then a number of systems have

developed.

The best known NLIDB of sixties and early seventies

was LUNAR , It answers the questions about samples of

rocks brought back from the moon [6]. The meaning of the

system name is in relation to the moon. LUNAR system has

two databases, one is chemical analysis and other is
literature references. The LADDER (Language Access to

Distributed Data with Error Recovery) [5] was designed for

US Navy ships with a natural language interface. It takes

queries in English language. The system was designed as a

management aid to navy decision makers. CHAT-80 [2]

system came in eighties and was implemented in prolog.

TEAM was developed in 1987.TEAM was designed to be

easily configurable by database administrators with no

knowledge of NLIDBs [3] [4]. GINLIDB The system was

developed in 2009 and is called a Generic Interactive

Natural Language Interface to Database. It is designed by

the use of UML and developed using visual basic .NET

2005.The system includes two main components. 1)

Linguistic handling component and 2)SQL constructive
component [1] . WASP (Word Alignment-based Semantic

Parsing) is a system developed at the University of Texas,

Austin by Yuk Wah Wong [7]. The system was designed for

achieving the goal of constructing” a complete, formal,

symbolic, and meaningful representation of a natural

language sentence”, that can also be executed to the NLIDB

domain. Prolog was used as the formal query language [7].

III. SYSTEM ARCHITECTURE

The architecture of interface to database using Hindi

language is composed of four phases. The phases are given

below.

a) To tokenize the input Hindi sentence.

b) Map the tokens with lexicon which store all the tokens

and their corresponding English word.

c) Formulate SQL query with the help of query

generator.

d) Execute the query and display result on interface to

user.
Output of one phase is given to next phase. To map the

tokens database is used which store all usable tokens.

Architecture of system is given in figure 1.

Annu Battan et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 192-195

© 2010-14, IJARCS All Rights Reserved 193

Figure 1: Architecture of the system

IV. HINDI LANGUAGE INTERFACE TO STUDENT

DATABASE MANAGEMENT SYSTEM

For case study of interface to database using Hindi

language use STUDENT database. This database has two

tables STUDENT and DEPARTMENT.STUDENT table

contain information about students. It has attributes roll no

(roll number), name, city, dob (date of birth), dept_no,

Marks. roll no is primary key, no two students can have

same roll no.

Figure 2: Workflow of the system

A. Input Hindi query:

Query given by user is a Hindi sentence. That is

composed of Hindi words that we call tokens. Here we

explain the working of system with the help of an example

sentence given below.

Example sentence

 , '

 ' 75

B. Tokenizing:

Tokens are gathered from the input sentence by using

the logic that all the tokens are separated by a gap from their

adjacent tokens. The above sentence has 20 tokens. Some of

them are useless that have no further use.

, , , , , , , ,

, , , , , , 75, , , , ,

C. Discard the useless tokens :

To find out the nature of tokens whether it is table

name, field name, condition, command, operation or any

useless token we create a database TOKEN which has all

the tokens that can be given by user for our STUDENT

database. This database has four fields id, Hindi_token,

English_token, type. Type tells about the nature of token.

The TOKEN table consists of four columns. Type

column tell about the type of token.
We divide the tokens into 11 categories. 1)

selection_start(, , ,) 2) field_start (, ,) 3)

Command 4) Table_name (two tables STUDENT and

DEPARTMENT) 5) Field (name. roll no, city, name, dob,

marks, dept_no and dept_name) 6) Logop (AND, OR and

NOT) 7) Cond_start (, ,) 8) Function

(min(), max(), sum(), avg()) 9) Condop (.

, , ,) 10) Cond_op_start (,)

11) Cond_end (,)

D. Map tokens to table name:

In example query „ ‟ is the table_name.

Table_name.english = STUDENT. So the STUDENT is

saved as table name.

E. Map tokens for Function, Fields and Joining:

In our example query we have two columns one is

„ ‟ and other is „ ‟. Output of this phase will be

table_name.column_name.english
STUDENT.name, STUDENT. marks

For input sentence we have no need of joining because

both the columns name and marks belong to same table

STUDENT.

F. Map the token with command name:

Command name in input example query is „ ‟. We

store the equivalent English word for this in command
string. Therefore command.english = select.

G. Map token for condition and operations :

For our example query „ ' '

75 ‟ are stored in temp_list. To solve the

condition we have need of four arrays list to store columns,

value, conditions and logical operators. Match the first token

Annu Battan et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 192-195

© 2010-14, IJARCS All Rights Reserved 194

of temp_list with field type tokens. As we know that

condition would have definitely columns so if matching is

true we store column in column_arraylist after conversion

into English. It also checks whether column belongs to same

table or not as we did above and removes the token from

temp_list.
In this example sentence these array list have following

values.

Column_arraylist- city, marks

Condition_arraylist- =, >=

Logicalop_arraylist- and

Value_arraaylist- , 75

Therefore output of this phase is

city = „ ‟ and marks >= 75

H. Create SQL query:

In this phase SQL query is created with the help of

output of various phases given above. We have table name,

columns name, command, condition and operations. Now

we create he SQL query in this way

“command” “column(s) name” from “table_name” where

“condition”

Therefore for our example sentence SQL query is Select

student.name,student.marks from student where city =

„ ‟ and marks >=75

Figure 2: Step by step conversion into SQL

I. Execute SQL query:

The SQL query is executed on the database. The output

is provided to user on user interface in Hindi language. For

the example query output is the name and marks of all the

student whose city is „ ‟and they scored 75 or more

than 75 marks. The exact output is shown below in the

figure 3.

Figure 3: Example query output

V. CONCLUSION

The proposed an improved Hindi Language graphical

user Interface to database to STUDENT database that store

information of students accept query in Hindi language and

tokenize the input sentence. Type of command is getting by
mapping the tokens with command_type table. Then tokens

are mapped with tables which store tables name, columns

name, condition, functions and operations to find the table

name, column name, function and conditions and stored in

string to use them in SQL formulation. Then all the stored

tokens are mapped with their corresponding English word.

Now SQL query is generated and executed. Output of query

is displayed to user.

VI. REFERENCES

[1]. A. Faraj EI-Mouadib, S. Zubi Zakaria, A. Ahmed Almagrous

and S. Irdess EI-Feghi “Generic Interactive Interface to

Databases”, International Journal of Computers issue 3, vol.

3, 2009.

[2]. M. E. Saleh, “Semantic Based Query in Relational Database

Using Ontology”, Canadian Journal on Data, Information

and Knowledge Engineering, vol.2, 2011.

[3]. B.J. Grosz “TEAM: A Transportable Natural-Language

Interface System”, In Proceedings of the 1st Conference on

Applied Natural Language Processing, Santa Monica,

California, pp. 39–45, 1983.

[4]. B.J. Grosz, D.E. Appelt, P.A. Martin, and F.C.N. Pereira,

“TEAM: An Experiment in the Design of Transportable

Natural Language Interfaces”, Artificial Intelligence, vol.32,

pp. 173–243, 1987.

[5]. A. Shingala, P. Virparia ,” Enriching Document Features for

Effective Information Retrieval using Natural Language

Query Interface”, International Journal of IT, Engineering

and Applied Science Research, ISSN: 2319-4413, 2012.

Annu Battan et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014, 192-195

© 2010-14, IJARCS All Rights Reserved 195

[6]. A. Shingala, P. Virparia, “Enhancing the Relevance of

Information Retrieval by Querying the Database in Natural

form”, International Conference on Intelligent Systems and

Signal Processing (ISSP), 2013.

[7]. Yuk Wah Wong, Learning for Semantic Parsing Using

Statistical Machine Translation Techniques, Technical

Report UT-AI-05-323,University of Texas at Austin,

Artificial Intelligence Lab, October 2005.

