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Abstract-Cloud computing features a flexible computing infrastructure for large-scale data processing. MapReduce is a typical model providing 
an logical framework for cloud computing and Hadoop, an open-source implementation of MapReduce, is a common platform to realize such 
kind of parallel computing model. We present a resource-aware scheduling technique for MapReduce multi-job workloads that aims at 

improving resource utilization across machines while observing completion time goals. Existing MapReduce schedulers define a static number 
of slots to represent the capacity of a cluster, creating a fixed number of execution slots per machine. This  abstraction works for homogeneous 
workloads, but fails to capture the different resource requirements of individual jobs in multi-user environments. Our technique leverages job 
profiling information to dynamically adjust the number of slots on each machine, as well as workload placement across them, to maximize the 
resource utilization of the cluster. 
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I. INTRODUCTION 

With Increase in  the  development of web applications, 

peta bytes of data generated by various kinds of network 

applications are processed in the Internet. Cloud computing 

is developed to process massive data, such as distributed 

data sorting, log analyzing, machine learning and so on. 

Analyzing these huge volumes of data requires a scalable 

solution, MapReduce[2] , is one well-known cloud 

computing model, features an efficient framework to 

analyze data in parallel with flexible job decomposition and 
sub-tasks allocation. MapReduce can be deployed on a large 

number of suitable machines and can automatically handle 

node failures. 

Hadoop, a project maintained by Apache Software 

Foundation and an open-source implementation of 

MapReduce, is primarily used by Yahoo and also Facebook, 

Amazon and Baidu etc. Hadoop is a suitable platform to 

deal with variety of applications such as data mining and 

extraction on large-scale of data. In Hadoop, there are 

multiple Map and Reduce tasks in a MapReduce job. Each 

task is a single unit of work that can be performed together 

with other tasks in parallel. 
Assigning tasks to node assign is performed by a master 

node, which distributes tasks to slave nodes[1]. Each slave 

node has a fixed number of Map and Reduce slots for 

executing Map and Reduce tasks. At any time, each slot can 

run only one task. Slot offers a simple abstraction of the 

available resources on a physical machine. The primary 

advantage of slots is the ease of implementation of the 

MapReduce programming model in Hadoop.  

The industry and research community have witnessed 

an remarkably good growth in research and development of 

data-analytic technologies. Pivotal to this phenomenon is the 

adoption of the MapReduce programming paradigm and its 

open-source implementation Hadoop. Pioneer 

implementations of MapReduce have been designed to 
provide overall system goals (e.g., job throughput). Thus, 

support for user-defined goals and resource utilization 

management have been left as secondary considerations at 

best. 

We believe that both capabilities are crucial for the 

further development and adoption of large-scale data 

processing. On one hand, more users wish for ad-hoc 

processing in order to perform short-term tasks[9]. 

Furthermore, in a Cloud environment users pay for 

resources used. Therefore, providing consistency between 

price and the quality of service obtained is key to the 
business model of the Cloud. Resource management, on the 

other hand, is also important as Cloud providers are 

motivated by profit and hence require both high levels of 

automation and resource utilization while avoiding 

bottlenecks. 

II. BACKGROUND KNOWLEDGE 

A. MapReduce: 

MapReduce, introduced by Google in 2004, is one of 

the famous software frameworks to support distributed 

computing on Large amount of data sets on clusters of 
computers. It is widely used in various kinds of applications 

like distributed data sorting, log file analyzing and machine 

learning and so on. The main aim of MapReduce is to 

distribute the processing across many nodes to take 

advantage of parallel processing power. This is generally 

done by dividing the dataset into several chunks, and then 

processing those chunks in separate nodes. 
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Figure 1. MapReduce 

A MapReduce job mainly consists of two phases, Map 

and Reduce. The input data-sets are split into independent 

pieces of default size. The Map task turns the chunk into a 

set of key-value pairs. One Map process is invoked to 

process one chunk of input data, and each Mapping 

operation is independent to each others. Then, the 

intermediate key-value pairs from the output of each Map 
task are collected and sorted by key, then transferred to the 

location where a Reduce process would operate on the 

intermediate data. Reduce tasks merge all intermediate 

values associated with the same intermediate key to form a 

possibly smaller data set. In other words, all key-value pairs 

with the similar key complete at the same Reduce task. 

MapReduce runs on a large cluster of commodity machines. 

A large server cluster can use MapReduce to sort peta bytes 

of data in only a few hours. The parallelism also offers some 

possibility of fault-tolerant. If one Map task or Reduce task 

fails, the work can be recovered by rescheduling. 

B. Hadoop: 

Apache Hadoop is an open-source implementation of 

the MapReduce programming model. Hadoop follows the 

master/slave architecture and consists of one master 

machine responsible for organizing the distribution of work, 

and a set of worker machine responsible for executing the 
work assigned by the master. Hadoop focuses on distributed 

storing and processing on large data[3]. It is designed to 

scale up from a single node to thousands of ones, with a 

very high degree of fault tolerance. In the Hadoop 

environment, the MapReduce framework consists of a single 

JobTracker on the master node and one TaskTracker per 

slave node in the cluster. 

First, client applications submit jobs to JobTracker. 

Jobs are split into many tasks by default size. JobTracker 

communicates to the NameNode to determine the location 

of the data, and then submits the Map or Reduce task to the 

chosen TaskTracker nodes. When the job is completed, 

JobTracker updates its status and stores the output data. 

 

Figure 2.Hadoop Architecture 

In Hadoop, resources are depicted by the concept of 

„slot‟. On the other hand, each TaskTracker is responsible 

for a specific number of slots on each node. The slot number 

figure out the max running number of tasks which are 

allowed to be run in parallel on that node at a time. The 

scheduling policy in Hadoop is based on the fixed slot 

number for the lifetime of each node. The slot number 

depicts the computation ability on the node and can be 

configured in an XML file. 

Originally, JobTracker chooses the processing 

TaskTracker in the cluster by one rule - keeping the work as 
close to the data as possible. That is, when JobTracker tries 

to schedule a task with the MapReduce operations, it first 

sees for an empty slot on the same server that hosts the 

DataNode containing the processing data. If not, it allocates 

work to one TaskTracker nearest to the data with an 

available free slot. During the processing time, each 

TaskTracker send out heartbeat messages to JobTracker 

every certain time period to notice JobTracker that it is still 

alive. If JobTracker does not receive the heartbeat signals 

from TaskTracker because of node failure or timeout, the 

corresponding job would be rescheduled to another node. 

JobTracker is responsible for scheduling the tasks on the 
slaves, monitoring TaskTracker and again scheduling the 

failed tasks. TaskTracker only needs to execute the Map or 

Reduce task that is issued by JobTracker. 

III. LITERATURE SURVEY 
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Much work have been done in the space of scheduling 

for MapReduce. Since the number of slots in a Hadoop 

cluster is fixed throughout the lifetime of the cluster, most of 

the proposed solutions can be reduced to a variant of the 

task-assignment or slot-assignment problem. The Capacity 

Scheduler is a pluggable scheduler developed by Yahoo! 
which partition resources into pools and provides priorities 

for each pool. Hadoop's Fair Scheduler allocates equal 

shares to each tenant in the cluster.  

Quincy scheduler proposed for the Dryad environment 

also shares similar fairness goals. All these schedulers are 

built on top of the slot model and do not support user-level 

goals. The performance of MapReduce jobs has attracted 

much interest in the Hadoop community. Stragglers, tasks 

that take an unusually long time to complete, have been 

shown to be the most common reason why the total time to 

execute a job increases[7] . Speculative scheduling has been 

widely adopted to complement of one other that impact of 
stragglers,. Under this scheduling strategy, when the 

scheduler detects that a task is taking longer than expected it 

spawns multiple instances of the task and takes the results of 

the first completed instance, killing the others .  

In Mantri the effect of stragglers is mitigated via the 

`kill and restart' of tasks which have been noticed as 

potential stragglers. 

The main disadvantage of these techniques is that 

killing and duplicating tasks results in wasted or loss of 

resources [9, 5]. In RAS we take a more proactive approach, 

in that we prevent stragglers resulting from resource 
contention. Furthermore, stragglers caused by distorted data 

cannot be avoided at run-time by any existing technique. In 

RAS the slow-down effect that these stragglers have on the 

end-to- end completion time of their corresponding jobs is 

mitigated by allocating more resources to the job so that it 

can still complete in a  specified timely manner. 

Recently, there has been increasing interest in user-

centric data analytics. One of the seminal works in this 

space is. In this work, the authors propose a scheduling 

scheme that enables soft-deadline support for MapReduce 

jobs[7]. It differs from RAS in that it does not take into 

consideration the resources in the system. Flex is a 
scheduler proposed as an add-on to the Fair Scheduler to 

provide Service-Level-Agreement (SLA) guarantees. More 

recently, ARIA : Automatic Resource Inference and 

Allocation for MapReduce Environments," introduces a fair 

resource management framework that consists of a job 

profiler, a model for MapReduce jobs and a SLO-scheduler 

based on the Earliest Deadline First scheduling strategy. 

Flex and Aria are both slot-based and therefore suffers from 

the same limitations we mentioned earlier. One of the first 

works in considering resource awareness in MapReduce 

clusters by J. Dhok and V. Varma.  
In this paper the scheduler classifies tasks into good and 

bad tasks depending on the load they impose in the worker 

machines. More recently, the Hadoop community has also 

recognized the importance of developing a resource-aware 

scheduling for MapReduce. Arun Murthy[8]. Next 

Generation Hadoop outlines the vision behind the Hadoop 

scheduler of the future. The framework proposed introduces 

a resource model consisting of a `resource container' which 

is|like our `job slot'|fungible across job tasks. We think that 

our proposed re- source management techniques can be 

leveraged within this framework to enable better resource 

management. 

The Hadoop architecture follows the master/slave 

paradigm. It consists of a master machine responsible for 

coordinating the distribution of work and execution of jobs, 

and a set of worker machine responsible for performing 
work assigned by the master. The master and slaves roles 

are performed by the „JobTracker‟ and „TaskTracker‟ 

processes, respectively.  

The singleton JobTracker partitions the input data into 

„input splits‟ using a splitting method defined by the 

programmer, populates a local task-queue based on the 

number of obtained input splits, and distributes work to the 

TaskTrackers that in turn process individual splits. Work 

units are represented by „tasks‟ in this framework. There is 

one map task for every input split generated by the 

JobTracker. The number of reduce tasks is defined by the 

user. Each TaskTracker controls the execution of the tasks 
assigned to its hosting machine.  

The driving principles of RAS are resource awareness 

and continuous job performance management. The former is 

used to decide task placement on TaskTrackers over time, 

and is the main objective. The latter is used to estimate the 

number of tasks to be run in parallel for each job in order to 

meet some performance objectives, expressed in RAS in the 

form of completion time Goals.  

These goals are treated as soft deadlines in RAS as 

opposed to the strict deadlines familiar in real-time 

environments: they simply guide workload management. In 
order to enable this resource awareness, we introduce the 

concept of „job slot‟. 

A job slot is an execution slot that is bound to a 

particular job, and a particular task type (reduce or map) 

within that job. A slot is bound only to a task type regardless 

of the job. This extension allows for a finer-grained resource 

model for MapReduce jobs. Additionally, RAS determines 

the number of job slots, and their placement in the cluster, 

dynamically at run-time. This contrasts sharply with the 

traditional approach of requiring the system administrator to 

statically and homogeneously configure the slot count and 

type on a cluster. This eases the configuration burden and 
improves the behaviour of the MapReduce cluster. The 

number of slots per TaskTracker determines the maximum 

number of concurrent tasks that are allowed to run in the 

worker machine. 

Heartbeat is a program that runs specialized scripts 

automatically whenever a system is initialized or rebooted. 

Originally designed for two-node Linux-based clusters, 

Heartbeat is extensible to larger configurations. In a system 

running Heartbeat, nodes communicate by 

exchanging packets called "heartbeats" at the rate of 

approximately 2 Hz (twice per second). The heartbeat 
packets contain the number of map and reduce tasks 

remaining in that particular node[5].  

The master machine upon receiving heartbeat packets 

updates the status of map and reduce slots to be used by 

scheduler in coordination with the JobTracker to process the 

incoming jobs which are partitioned into input splits and 

been assigned with execution slots for performing either a 

map task or reduce task. 

IV. ALGORITHM 

http://searchnetworking.techtarget.com/definition/node
http://searchenterpriselinux.techtarget.com/definition/Linux
http://searchexchange.techtarget.com/definition/cluster
http://searchnetworking.techtarget.com/definition/packet
http://searchmobilecomputing.techtarget.com/definition/hertz
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Algorithm: Placement Algorithm runs at each Control 

Cycle 

Inputs  PM(job, tt) : Placement Matrix of Map tasks, PR (job, 

tt) : Placement Matrix of Reduce tasks, J: List of Jobs in the 

System,  D: Resource demand profile for each job, TT: List 

of TaskTrackers in the System, Γj and Ωtt: Resource demand 
and capacity for each Job each TaskTracker 

correspondingly, as used by the auxiliary function 

room_for_new_job_slot. 

{————————— Place Reducers ———————} 

1: for job in J do 

2:          Sort TT in increasing order of overall number of 

reduce tasks placed (first criteria), 

and increasing order of number of reducers job placed 

(second criteria). 

3:  fortt in TT do 

4: if room for new job slot (job, tt) &rjob
pend> 0 then 

5:   PR (job, tt) = PR (job, tt) + 1 
6:  end if 

7: end for 

8:  end for 

{———————— Place Mappers ————————} 

9: for round = 1. . . roundsdo 

10:  fortt in TT do 

11: jobin ← min U(jobin, P), room for new job 

slot(jobin, tt), 

12:  jobout ← max U(jobout, P), PM(jobout, tt) > 0 

13: repeat 

14:  Pold ← P 
15: jobout ← max U(jobout, P), P(jobout, tt) > 0 

16: PM(jobout, tt) = PM(jobout, tt) − 1 

17: jobin ← min U(jobin, P), room for new job 

slot(jobin, tt) 

18: untilU(jobout, P) < U(jobin, Pold) 

19: P ← Pold 

20: repeat 

21: jobin ← min U(jobin, P), room for new job 

slot(jobin, tt) 

22: PM(jobin, tt) = PM(jobin, tt) + 1 

23: until job such that room for new job slot(job, tt) 

24:  end for 
25:  end for 

26:  if map phase of a job is about to complete in this 

control cycle then 

27: switch profile of placed reducers from shuffle to 

reduce and wait for Task Scheduler to drive the 

transition. 

28: end if 

 

A. Job Initialization: 

Map and reduce tasks run in parallel, as the tasks 

progresses the number of map tasks reduces, and the number 

of reduce tasks increases. When the JobTracker receives a 

call to its submit Job() method, it puts the job into an 

internal queue from where the job scheduler will pick it up 

and initialize it. Initialization involves creating an object to 

represent the job being run, which encapsulates its tasks, and 
log information to keep track of the tasks‟ status and 

progress. 

To create the list of tasks to run, the job scheduler first 

retrieves the input splits computed by the system from the 

shared filesystem. It then creates one map task for each split. 

The number of reduce tasks to be created is determined by 

the property in the configuration files, and the scheduler 

simply generates this number of reduce tasks to be run. 

Tasks are given IDs at this point. 

B. Task Assignment: 

Heartbeats signal tell the JobTracker that a TaskTracker 

is alive. The TaskTrackers in the slaves dynamically 

generates heartbeat packets which also carry the map and 

reduce slots indicating the status of remaining slots in each 

of the worker machines. As a part of the heartbeat, a 

TaskTracker will indicate whether it is ready to run a new 

task, and if it is ready, the JobTracker will allocate it a task, 

which it communicates to the TaskTracker using the 
heartbeat return value. 

Before it can choose a task for the TaskTracker, the 

JobTracker must choose a job to select the task from. There 

are various scheduling algorithms (example FIFO), but the 

default one simply maintains a priority list (arrival time) of 

jobs. Having chosen a job, the JobTracker now chooses a 

task for the job. 

TaskTrackers have a fixed number of slots for map 

tasks and for reduce tasks: for ex, a TaskTracker may be 

able to run two map tasks and two reduce tasks 

continuously. The default scheduler fills empty map task 
slots before reduce task slots, so if the TaskTracker has at 

least one empty map task slot, the JobTracker will select a 

map task; otherwise, it will select a reduce task. 

To choose a reduce task, the JobTracker simply takes 

the next in its list of yet-to-be-run reduce tasks, since there 

are no data locality considerations. For a map task, however, 

it takes account of the TaskTracker‟s network location and 

picks a task whose input split is as close as possible to the 

TaskTracker. In the optimal case, the task is data-local, that 

is, running on the same node that the divides resides on. 

Alternatively, the task may be rack-local: on the same rack, 

but not the same node, as the split. Some tasks are neither 
data-local nor rack-local and retrieve their data from a 

different rack from the one they are running on.  

C. Task Execution: 

Now that the TaskTracker has been assigned a task, the 

next step is for it to run the task. First, it localizes the job 

JAR by copying it from the shared filesystem to the 
TaskTracker‟s filesystem. It also copies any files needed 

from the distributed cache by the application to the local 

disk. Second, it creates a local working directory for the 

task, and un-jars the contents of the JAR into this directory. 

Third, it creates an instance of process in it to run the task. 

Map and reduce tasks run simultaneously and as the 

tasks progresses, the number of map task reduces and the 

number of reduce task increases. This way, the child process 

informs the parent of its task‟s progress every few seconds 

until the task is completed. 

D. Progress and Status updates: 

MapReduce jobs are long-running batch jobs, taking 

anything from minutes to hours to run. Because this is a 

significant distance of time, it‟s important for the user to get 

feedback on how the job is progressing. 

A job and each of its tasks have a status, which includes 

such things as the state of the job or task (e.g., running, 
successfully completed), the results of maps and reduces, 

the values of the job‟s counters, and a status message or 

description (which may be set by user code). These statuses 
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change over the course of the job, so how do they get 

communicated back to the client[4]. 

When a task is running, it keeps track of its progress, 

that is, the proportion of the task completed. For map tasks, 

the progress is the proportion of the input that has been 

processed. For reduce tasks, it‟s a little more complex, but 
the system can still estimate the proportion of the reduce 

input processed. It does this by dividing the total progress 

into three parts, corresponding to the three phases of the 

shuffle (“Shuffle, Sort and Reduce”). For example, if the 

task has run the reducer on half of its input, then the task‟s 

progress is ⅚ , since it has completed the copy and sort 

phases (⅓ each) and is halfway through the reduce phase 

(⅙ ). 

E. Job completion: 

When the JobTracker receives a notification that the last 

task for a job is complete, it changes the status for the job to 

“successful.” Then the JobTracker also sends an HTTP job 

notification if it is configured to do so. Last, the JobTracker 

cleans up its working state for the job and instructs 

TaskTrackers to do the same (so intermediate output is 

deleted) and it learns that the job has completed 

successfully, so it prints a message to tell the user and then 
returns from the main method. 

V. EVALUATION 

The results are shown based on the configurations made 

on multimode cluster of 5 nodes with the capacity of 4GB of 
RAM in all the three machines with the storage capacity of 

250GB hard disk and the processor speed of 2.2GHZ . The 

snapshots of the execution of the jobs and the graph 

representing them. 

 

A. Submission of jobs: 

 

Figure.4 Start of job1 (20 GB) 

This snapshot represents the jobid and submission time 

of job1. The jobid is job_201405142052_0002 and job is 

submitted at time 20:56:16. The map task starts at 

submission time and reduce task starts at time 20:57:45.
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Figure.5 Start of job2 (10 GB) 

This snapshot represents the jobid and submission time 

of job2. The jobid is job_201405142052_0003 and job is 

submitted at time 20:58:39. The map task starts at 

submission time. 

 

 

B. End of the submitted jobs: 

 

Figure.6 End of job1 

The job1 with jobid job_201405142052_0002 
completes its map tasks at time 21:39:41 and reduce tasks at 

time 21:39:46. The number of map tasks launched is 305 
and reduce tasks is 1. 

 

 

 

Figure.7 End of job2 

The job2 with jobid job_201405142052_0003 
completes its map tasks at time 21:28:06 and reduce tasks at 

time 21:28:14. The number of map tasks launched is 155 

and reduce tasks is 1. 

 

C. JobTracker Status: 
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JobTracker includes the user who submitted the job, 

priority of the job, name of the program that is executed and 

status of execution of current map and reduce tasks 

executing.

 

 

Figure.8 Simultaneous execution of job1, job2 

At this instance, the job2 is submitted with 155 map 
tasks and 1 reduce task launched along with the execution of 

job1. The status of map and reduce tasks completed of job1 
and job2 is also indicated. 

 

 

Figure.9 Completion status of job2 
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Since, the size of job2 considered is less than job1, the 

job2 is completed before the job1 is completed, even though 

it is submitted later. 

 

 

Figure.10 Completion status of job1 

After the successful completion of all map and reduce 
tasks of job1 utilizing complete resources of the nodes (after 

completion of job1), the job1 ends. 

D. Comparison of Default and RAS scheduler: 

 
Figure.11 Default Execution 

 

Figure.12RAS Execution 

From the graphs plotted (Fig.11),it is observed that, in 
case of default scheduler (FIFO), only after completion of 

Job1(20GB), Job2(10GB) is being started. Thus, this 

demonstrates the fact that even though the resources are 

available, they are not being utilized. 

Existing MapReduce schedulers define a static number 

of slots to represent the capacity of a cluster, creating a fixed 

number of execution slots per machine. This abstraction 

works for homogeneous workloads, but fails to capture the 

different resource requirements of individual jobs in multi-

user environments. But in the case of RAS, technique 

leverages job profiling information to dynamically adjust the 
number of slots on each machine, as well as workload 
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placement across them, to maximize the resource utilization 

of the cluster. 

From the RAS graph plotted (Fig.12) we can infer that 

both Job1(20GB) and Job1(10GB) executes simultaneously, 

thus maximising the resource utilization for the MapReduce 

clusters.  The experiments which we conducted on RAS and 
Default scheduler we notice that  RAS will take less time 

when compared to Default scheduler .we notice upto 25% of 

improvement in  Execution time.  

VI. CONCLUSION & FUTURE SCOPE 

In this paper we have implemented the Resource-aware 

Adaptive Scheduler, RAS, which introduces a novel 

resource management and job scheduling scheme for 

MapReduce. RAS is capable of improving resource 

utilization and job perfor- mance. The cornerstone of our 

scheduler is a resource model] based on a new resource 

abstraction, namely `job slot'. This model allows for the 

formulation of a placement problem which RAS solves by 

means of a utility-driven algorithm. This algorithm in turn 

provides our scheduler with the adaptability needed to 

respond to changing conditions in resource demand and 
availability. 

The presented scheduler relies on existing profiling 

information based on previous executions of jobs to make 

scheduling and placement decisions. Profiling of 

MapReduce jobs that run periodically on data with similar 

characteristics is an easy task, which has been used by many 

others in the community in the past. RAS pioneers a novel 

technique for scheduling reduce tasks by incorporating them 

into the utility function driving the scheduling algorithm. It 

works in most circumstances, while in some others it may 

need to rely on preempting reduce tasks (not implemented in 

the current prototype) to release resources for jobs with 
higher priority. Managing reduce tasks in this way is not 

possible due to limitations in Hadoop and hence it affects all 

existing schedulers. 

In RAS we consider three resource capacities: CPU, 

memory and I/O. In our experiments we considered mainly 

on CPU  resource and I/O. It can be extended easily to 

incorporate network infrastructure bandwidth and storage 

capacity of the TaskTrackers. Nevertheless, network 

bottlenecks resulting from poor placement of reduce tasks 

cannot be addressed by RAS without additional monitoring 

and prediction capabilities. 
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