
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 142

ISSN No. 0976-5697

Hadoop MapReduce Multi-Job Workloads using Resource Aware scheduler

Shivakumar.N
1
, Rashmi S

2
, and Anirban Basu

3

1,2,3Department of Computer Science and Engineering,

East Point College of Engineering and Technology, Bangalore, India

Abstract-Cloud computing features a flexible computing infrastructure for large-scale data processing. MapReduce is a typical model providing
an logical framework for cloud computing and Hadoop, an open-source implementation of MapReduce, is a common platform to realize such
kind of parallel computing model. We present a resource-aware scheduling technique for MapReduce multi-job workloads that aims at

improving resource utilization across machines while observing completion time goals. Existing MapReduce schedulers define a static number
of slots to represent the capacity of a cluster, creating a fixed number of execution slots per machine. This abstraction works for homogeneous
workloads, but fails to capture the different resource requirements of individual jobs in multi-user environments. Our technique leverages job
profiling information to dynamically adjust the number of slots on each machine, as well as workload placement across them, to maximize the
resource utilization of the cluster.

Key Words- Map Reduce, scheduling, resource-awareness, performance Management, Large-Scale Data Processing, Hadoop.

I. INTRODUCTION

With Increase in the development of web applications,

peta bytes of data generated by various kinds of network

applications are processed in the Internet. Cloud computing

is developed to process massive data, such as distributed

data sorting, log analyzing, machine learning and so on.

Analyzing these huge volumes of data requires a scalable

solution, MapReduce[2] , is one well-known cloud

computing model, features an efficient framework to

analyze data in parallel with flexible job decomposition and
sub-tasks allocation. MapReduce can be deployed on a large

number of suitable machines and can automatically handle

node failures.

Hadoop, a project maintained by Apache Software

Foundation and an open-source implementation of

MapReduce, is primarily used by Yahoo and also Facebook,

Amazon and Baidu etc. Hadoop is a suitable platform to

deal with variety of applications such as data mining and

extraction on large-scale of data. In Hadoop, there are

multiple Map and Reduce tasks in a MapReduce job. Each

task is a single unit of work that can be performed together

with other tasks in parallel.
Assigning tasks to node assign is performed by a master

node, which distributes tasks to slave nodes[1]. Each slave

node has a fixed number of Map and Reduce slots for

executing Map and Reduce tasks. At any time, each slot can

run only one task. Slot offers a simple abstraction of the

available resources on a physical machine. The primary

advantage of slots is the ease of implementation of the

MapReduce programming model in Hadoop.

The industry and research community have witnessed

an remarkably good growth in research and development of

data-analytic technologies. Pivotal to this phenomenon is the

adoption of the MapReduce programming paradigm and its

open-source implementation Hadoop. Pioneer

implementations of MapReduce have been designed to
provide overall system goals (e.g., job throughput). Thus,

support for user-defined goals and resource utilization

management have been left as secondary considerations at

best.

We believe that both capabilities are crucial for the

further development and adoption of large-scale data

processing. On one hand, more users wish for ad-hoc

processing in order to perform short-term tasks[9].

Furthermore, in a Cloud environment users pay for

resources used. Therefore, providing consistency between

price and the quality of service obtained is key to the
business model of the Cloud. Resource management, on the

other hand, is also important as Cloud providers are

motivated by profit and hence require both high levels of

automation and resource utilization while avoiding

bottlenecks.

II. BACKGROUND KNOWLEDGE

A. MapReduce:

MapReduce, introduced by Google in 2004, is one of

the famous software frameworks to support distributed

computing on Large amount of data sets on clusters of
computers. It is widely used in various kinds of applications

like distributed data sorting, log file analyzing and machine

learning and so on. The main aim of MapReduce is to

distribute the processing across many nodes to take

advantage of parallel processing power. This is generally

done by dividing the dataset into several chunks, and then

processing those chunks in separate nodes.

Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 143

ISSN No. 0976-5697

Figure 1. MapReduce

A MapReduce job mainly consists of two phases, Map

and Reduce. The input data-sets are split into independent

pieces of default size. The Map task turns the chunk into a

set of key-value pairs. One Map process is invoked to

process one chunk of input data, and each Mapping

operation is independent to each others. Then, the

intermediate key-value pairs from the output of each Map
task are collected and sorted by key, then transferred to the

location where a Reduce process would operate on the

intermediate data. Reduce tasks merge all intermediate

values associated with the same intermediate key to form a

possibly smaller data set. In other words, all key-value pairs

with the similar key complete at the same Reduce task.

MapReduce runs on a large cluster of commodity machines.

A large server cluster can use MapReduce to sort peta bytes

of data in only a few hours. The parallelism also offers some

possibility of fault-tolerant. If one Map task or Reduce task

fails, the work can be recovered by rescheduling.

B. Hadoop:

Apache Hadoop is an open-source implementation of

the MapReduce programming model. Hadoop follows the

master/slave architecture and consists of one master

machine responsible for organizing the distribution of work,

and a set of worker machine responsible for executing the
work assigned by the master. Hadoop focuses on distributed

storing and processing on large data[3]. It is designed to

scale up from a single node to thousands of ones, with a

very high degree of fault tolerance. In the Hadoop

environment, the MapReduce framework consists of a single

JobTracker on the master node and one TaskTracker per

slave node in the cluster.

First, client applications submit jobs to JobTracker.

Jobs are split into many tasks by default size. JobTracker

communicates to the NameNode to determine the location

of the data, and then submits the Map or Reduce task to the

chosen TaskTracker nodes. When the job is completed,

JobTracker updates its status and stores the output data.

Figure 2.Hadoop Architecture

In Hadoop, resources are depicted by the concept of

„slot‟. On the other hand, each TaskTracker is responsible

for a specific number of slots on each node. The slot number

figure out the max running number of tasks which are

allowed to be run in parallel on that node at a time. The

scheduling policy in Hadoop is based on the fixed slot

number for the lifetime of each node. The slot number

depicts the computation ability on the node and can be

configured in an XML file.

Originally, JobTracker chooses the processing

TaskTracker in the cluster by one rule - keeping the work as
close to the data as possible. That is, when JobTracker tries

to schedule a task with the MapReduce operations, it first

sees for an empty slot on the same server that hosts the

DataNode containing the processing data. If not, it allocates

work to one TaskTracker nearest to the data with an

available free slot. During the processing time, each

TaskTracker send out heartbeat messages to JobTracker

every certain time period to notice JobTracker that it is still

alive. If JobTracker does not receive the heartbeat signals

from TaskTracker because of node failure or timeout, the

corresponding job would be rescheduled to another node.

JobTracker is responsible for scheduling the tasks on the
slaves, monitoring TaskTracker and again scheduling the

failed tasks. TaskTracker only needs to execute the Map or

Reduce task that is issued by JobTracker.

III. LITERATURE SURVEY

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 144

Much work have been done in the space of scheduling

for MapReduce. Since the number of slots in a Hadoop

cluster is fixed throughout the lifetime of the cluster, most of

the proposed solutions can be reduced to a variant of the

task-assignment or slot-assignment problem. The Capacity

Scheduler is a pluggable scheduler developed by Yahoo!
which partition resources into pools and provides priorities

for each pool. Hadoop's Fair Scheduler allocates equal

shares to each tenant in the cluster.

Quincy scheduler proposed for the Dryad environment

also shares similar fairness goals. All these schedulers are

built on top of the slot model and do not support user-level

goals. The performance of MapReduce jobs has attracted

much interest in the Hadoop community. Stragglers, tasks

that take an unusually long time to complete, have been

shown to be the most common reason why the total time to

execute a job increases[7] . Speculative scheduling has been

widely adopted to complement of one other that impact of
stragglers,. Under this scheduling strategy, when the

scheduler detects that a task is taking longer than expected it

spawns multiple instances of the task and takes the results of

the first completed instance, killing the others .

In Mantri the effect of stragglers is mitigated via the

`kill and restart' of tasks which have been noticed as

potential stragglers.

The main disadvantage of these techniques is that

killing and duplicating tasks results in wasted or loss of

resources [9, 5]. In RAS we take a more proactive approach,

in that we prevent stragglers resulting from resource
contention. Furthermore, stragglers caused by distorted data

cannot be avoided at run-time by any existing technique. In

RAS the slow-down effect that these stragglers have on the

end-to- end completion time of their corresponding jobs is

mitigated by allocating more resources to the job so that it

can still complete in a specified timely manner.

Recently, there has been increasing interest in user-

centric data analytics. One of the seminal works in this

space is. In this work, the authors propose a scheduling

scheme that enables soft-deadline support for MapReduce

jobs[7]. It differs from RAS in that it does not take into

consideration the resources in the system. Flex is a
scheduler proposed as an add-on to the Fair Scheduler to

provide Service-Level-Agreement (SLA) guarantees. More

recently, ARIA : Automatic Resource Inference and

Allocation for MapReduce Environments," introduces a fair

resource management framework that consists of a job

profiler, a model for MapReduce jobs and a SLO-scheduler

based on the Earliest Deadline First scheduling strategy.

Flex and Aria are both slot-based and therefore suffers from

the same limitations we mentioned earlier. One of the first

works in considering resource awareness in MapReduce

clusters by J. Dhok and V. Varma.
In this paper the scheduler classifies tasks into good and

bad tasks depending on the load they impose in the worker

machines. More recently, the Hadoop community has also

recognized the importance of developing a resource-aware

scheduling for MapReduce. Arun Murthy[8]. Next

Generation Hadoop outlines the vision behind the Hadoop

scheduler of the future. The framework proposed introduces

a resource model consisting of a `resource container' which

is|like our `job slot'|fungible across job tasks. We think that

our proposed re- source management techniques can be

leveraged within this framework to enable better resource

management.

The Hadoop architecture follows the master/slave

paradigm. It consists of a master machine responsible for

coordinating the distribution of work and execution of jobs,

and a set of worker machine responsible for performing
work assigned by the master. The master and slaves roles

are performed by the „JobTracker‟ and „TaskTracker‟

processes, respectively.

The singleton JobTracker partitions the input data into

„input splits‟ using a splitting method defined by the

programmer, populates a local task-queue based on the

number of obtained input splits, and distributes work to the

TaskTrackers that in turn process individual splits. Work

units are represented by „tasks‟ in this framework. There is

one map task for every input split generated by the

JobTracker. The number of reduce tasks is defined by the

user. Each TaskTracker controls the execution of the tasks
assigned to its hosting machine.

The driving principles of RAS are resource awareness

and continuous job performance management. The former is

used to decide task placement on TaskTrackers over time,

and is the main objective. The latter is used to estimate the

number of tasks to be run in parallel for each job in order to

meet some performance objectives, expressed in RAS in the

form of completion time Goals.

These goals are treated as soft deadlines in RAS as

opposed to the strict deadlines familiar in real-time

environments: they simply guide workload management. In
order to enable this resource awareness, we introduce the

concept of „job slot‟.

A job slot is an execution slot that is bound to a

particular job, and a particular task type (reduce or map)

within that job. A slot is bound only to a task type regardless

of the job. This extension allows for a finer-grained resource

model for MapReduce jobs. Additionally, RAS determines

the number of job slots, and their placement in the cluster,

dynamically at run-time. This contrasts sharply with the

traditional approach of requiring the system administrator to

statically and homogeneously configure the slot count and

type on a cluster. This eases the configuration burden and
improves the behaviour of the MapReduce cluster. The

number of slots per TaskTracker determines the maximum

number of concurrent tasks that are allowed to run in the

worker machine.

Heartbeat is a program that runs specialized scripts

automatically whenever a system is initialized or rebooted.

Originally designed for two-node Linux-based clusters,

Heartbeat is extensible to larger configurations. In a system

running Heartbeat, nodes communicate by

exchanging packets called "heartbeats" at the rate of

approximately 2 Hz (twice per second). The heartbeat
packets contain the number of map and reduce tasks

remaining in that particular node[5].

The master machine upon receiving heartbeat packets

updates the status of map and reduce slots to be used by

scheduler in coordination with the JobTracker to process the

incoming jobs which are partitioned into input splits and

been assigned with execution slots for performing either a

map task or reduce task.

IV. ALGORITHM

http://searchnetworking.techtarget.com/definition/node
http://searchenterpriselinux.techtarget.com/definition/Linux
http://searchexchange.techtarget.com/definition/cluster
http://searchnetworking.techtarget.com/definition/packet
http://searchmobilecomputing.techtarget.com/definition/hertz

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 145

Algorithm: Placement Algorithm runs at each Control

Cycle

Inputs PM(job, tt) : Placement Matrix of Map tasks, PR (job,

tt) : Placement Matrix of Reduce tasks, J: List of Jobs in the

System, D: Resource demand profile for each job, TT: List

of TaskTrackers in the System, Γj and Ωtt: Resource demand
and capacity for each Job each TaskTracker

correspondingly, as used by the auxiliary function

room_for_new_job_slot.

{————————— Place Reducers ———————}

1: for job in J do

2: Sort TT in increasing order of overall number of

reduce tasks placed (first criteria),

and increasing order of number of reducers job placed

(second criteria).

3: fortt in TT do

4: if room for new job slot (job, tt) &rjob
pend> 0 then

5: PR (job, tt) = PR (job, tt) + 1
6: end if

7: end for

8: end for

{———————— Place Mappers ————————}

9: for round = 1. . . roundsdo

10: fortt in TT do

11: jobin ← min U(jobin, P), room for new job

slot(jobin, tt),

12: jobout ← max U(jobout, P), PM(jobout, tt) > 0

13: repeat

14: Pold ← P
15: jobout ← max U(jobout, P), P(jobout, tt) > 0

16: PM(jobout, tt) = PM(jobout, tt) − 1

17: jobin ← min U(jobin, P), room for new job

slot(jobin, tt)

18: untilU(jobout, P) < U(jobin, Pold)

19: P ← Pold

20: repeat

21: jobin ← min U(jobin, P), room for new job

slot(jobin, tt)

22: PM(jobin, tt) = PM(jobin, tt) + 1

23: until job such that room for new job slot(job, tt)

24: end for
25: end for

26: if map phase of a job is about to complete in this

control cycle then

27: switch profile of placed reducers from shuffle to

reduce and wait for Task Scheduler to drive the

transition.

28: end if

A. Job Initialization:

Map and reduce tasks run in parallel, as the tasks

progresses the number of map tasks reduces, and the number

of reduce tasks increases. When the JobTracker receives a

call to its submit Job() method, it puts the job into an

internal queue from where the job scheduler will pick it up

and initialize it. Initialization involves creating an object to

represent the job being run, which encapsulates its tasks, and
log information to keep track of the tasks‟ status and

progress.

To create the list of tasks to run, the job scheduler first

retrieves the input splits computed by the system from the

shared filesystem. It then creates one map task for each split.

The number of reduce tasks to be created is determined by

the property in the configuration files, and the scheduler

simply generates this number of reduce tasks to be run.

Tasks are given IDs at this point.

B. Task Assignment:

Heartbeats signal tell the JobTracker that a TaskTracker

is alive. The TaskTrackers in the slaves dynamically

generates heartbeat packets which also carry the map and

reduce slots indicating the status of remaining slots in each

of the worker machines. As a part of the heartbeat, a

TaskTracker will indicate whether it is ready to run a new

task, and if it is ready, the JobTracker will allocate it a task,

which it communicates to the TaskTracker using the
heartbeat return value.

Before it can choose a task for the TaskTracker, the

JobTracker must choose a job to select the task from. There

are various scheduling algorithms (example FIFO), but the

default one simply maintains a priority list (arrival time) of

jobs. Having chosen a job, the JobTracker now chooses a

task for the job.

TaskTrackers have a fixed number of slots for map

tasks and for reduce tasks: for ex, a TaskTracker may be

able to run two map tasks and two reduce tasks

continuously. The default scheduler fills empty map task
slots before reduce task slots, so if the TaskTracker has at

least one empty map task slot, the JobTracker will select a

map task; otherwise, it will select a reduce task.

To choose a reduce task, the JobTracker simply takes

the next in its list of yet-to-be-run reduce tasks, since there

are no data locality considerations. For a map task, however,

it takes account of the TaskTracker‟s network location and

picks a task whose input split is as close as possible to the

TaskTracker. In the optimal case, the task is data-local, that

is, running on the same node that the divides resides on.

Alternatively, the task may be rack-local: on the same rack,

but not the same node, as the split. Some tasks are neither
data-local nor rack-local and retrieve their data from a

different rack from the one they are running on.

C. Task Execution:

Now that the TaskTracker has been assigned a task, the

next step is for it to run the task. First, it localizes the job

JAR by copying it from the shared filesystem to the
TaskTracker‟s filesystem. It also copies any files needed

from the distributed cache by the application to the local

disk. Second, it creates a local working directory for the

task, and un-jars the contents of the JAR into this directory.

Third, it creates an instance of process in it to run the task.

Map and reduce tasks run simultaneously and as the

tasks progresses, the number of map task reduces and the

number of reduce task increases. This way, the child process

informs the parent of its task‟s progress every few seconds

until the task is completed.

D. Progress and Status updates:

MapReduce jobs are long-running batch jobs, taking

anything from minutes to hours to run. Because this is a

significant distance of time, it‟s important for the user to get

feedback on how the job is progressing.

A job and each of its tasks have a status, which includes

such things as the state of the job or task (e.g., running,
successfully completed), the results of maps and reduces,

the values of the job‟s counters, and a status message or

description (which may be set by user code). These statuses

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 146

change over the course of the job, so how do they get

communicated back to the client[4].

When a task is running, it keeps track of its progress,

that is, the proportion of the task completed. For map tasks,

the progress is the proportion of the input that has been

processed. For reduce tasks, it‟s a little more complex, but
the system can still estimate the proportion of the reduce

input processed. It does this by dividing the total progress

into three parts, corresponding to the three phases of the

shuffle (“Shuffle, Sort and Reduce”). For example, if the

task has run the reducer on half of its input, then the task‟s

progress is ⅚ , since it has completed the copy and sort

phases (⅓ each) and is halfway through the reduce phase

(⅙).

E. Job completion:

When the JobTracker receives a notification that the last

task for a job is complete, it changes the status for the job to

“successful.” Then the JobTracker also sends an HTTP job

notification if it is configured to do so. Last, the JobTracker

cleans up its working state for the job and instructs

TaskTrackers to do the same (so intermediate output is

deleted) and it learns that the job has completed

successfully, so it prints a message to tell the user and then
returns from the main method.

V. EVALUATION

The results are shown based on the configurations made

on multimode cluster of 5 nodes with the capacity of 4GB of
RAM in all the three machines with the storage capacity of

250GB hard disk and the processor speed of 2.2GHZ . The

snapshots of the execution of the jobs and the graph

representing them.

A. Submission of jobs:

Figure.4 Start of job1 (20 GB)

This snapshot represents the jobid and submission time

of job1. The jobid is job_201405142052_0002 and job is

submitted at time 20:56:16. The map task starts at

submission time and reduce task starts at time 20:57:45.

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 147

Figure.5 Start of job2 (10 GB)

This snapshot represents the jobid and submission time

of job2. The jobid is job_201405142052_0003 and job is

submitted at time 20:58:39. The map task starts at

submission time.

B. End of the submitted jobs:

Figure.6 End of job1

The job1 with jobid job_201405142052_0002
completes its map tasks at time 21:39:41 and reduce tasks at

time 21:39:46. The number of map tasks launched is 305
and reduce tasks is 1.

Figure.7 End of job2

The job2 with jobid job_201405142052_0003
completes its map tasks at time 21:28:06 and reduce tasks at

time 21:28:14. The number of map tasks launched is 155

and reduce tasks is 1.

C. JobTracker Status:

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 148

JobTracker includes the user who submitted the job,

priority of the job, name of the program that is executed and

status of execution of current map and reduce tasks

executing.

Figure.8 Simultaneous execution of job1, job2

At this instance, the job2 is submitted with 155 map
tasks and 1 reduce task launched along with the execution of

job1. The status of map and reduce tasks completed of job1
and job2 is also indicated.

Figure.9 Completion status of job2

Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 149

ISSN No. 0976-5697

Since, the size of job2 considered is less than job1, the

job2 is completed before the job1 is completed, even though

it is submitted later.

Figure.10 Completion status of job1

After the successful completion of all map and reduce
tasks of job1 utilizing complete resources of the nodes (after

completion of job1), the job1 ends.

D. Comparison of Default and RAS scheduler:

Figure.11 Default Execution

Figure.12RAS Execution

From the graphs plotted (Fig.11),it is observed that, in
case of default scheduler (FIFO), only after completion of

Job1(20GB), Job2(10GB) is being started. Thus, this

demonstrates the fact that even though the resources are

available, they are not being utilized.

Existing MapReduce schedulers define a static number

of slots to represent the capacity of a cluster, creating a fixed

number of execution slots per machine. This abstraction

works for homogeneous workloads, but fails to capture the

different resource requirements of individual jobs in multi-

user environments. But in the case of RAS, technique

leverages job profiling information to dynamically adjust the
number of slots on each machine, as well as workload

Shivakumar.N et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,142-150

© 2010-14, IJARCS All Rights Reserved 150

placement across them, to maximize the resource utilization

of the cluster.

From the RAS graph plotted (Fig.12) we can infer that

both Job1(20GB) and Job1(10GB) executes simultaneously,

thus maximising the resource utilization for the MapReduce

clusters. The experiments which we conducted on RAS and
Default scheduler we notice that RAS will take less time

when compared to Default scheduler .we notice upto 25% of

improvement in Execution time.

VI. CONCLUSION & FUTURE SCOPE

In this paper we have implemented the Resource-aware

Adaptive Scheduler, RAS, which introduces a novel

resource management and job scheduling scheme for

MapReduce. RAS is capable of improving resource

utilization and job perfor- mance. The cornerstone of our

scheduler is a resource model] based on a new resource

abstraction, namely `job slot'. This model allows for the

formulation of a placement problem which RAS solves by

means of a utility-driven algorithm. This algorithm in turn

provides our scheduler with the adaptability needed to

respond to changing conditions in resource demand and
availability.

The presented scheduler relies on existing profiling

information based on previous executions of jobs to make

scheduling and placement decisions. Profiling of

MapReduce jobs that run periodically on data with similar

characteristics is an easy task, which has been used by many

others in the community in the past. RAS pioneers a novel

technique for scheduling reduce tasks by incorporating them

into the utility function driving the scheduling algorithm. It

works in most circumstances, while in some others it may

need to rely on preempting reduce tasks (not implemented in

the current prototype) to release resources for jobs with
higher priority. Managing reduce tasks in this way is not

possible due to limitations in Hadoop and hence it affects all

existing schedulers.

In RAS we consider three resource capacities: CPU,

memory and I/O. In our experiments we considered mainly

on CPU resource and I/O. It can be extended easily to

incorporate network infrastructure bandwidth and storage

capacity of the TaskTrackers. Nevertheless, network

bottlenecks resulting from poor placement of reduce tasks

cannot be addressed by RAS without additional monitoring

and prediction capabilities.

VII. REFERENCES

[1]. Improving Resource Utilization in a Heterogeneous Cloud

Environment Hsin-Yu Shih Department of Electronic

Engineering National Taiwan University of Science and

Technology Taipei, Taiwan M9902105@mail.ntust.edu.tw,

APCC 2012

[2]. J. Dean and S. Ghemawat, \MapReduce: Simpli_ed data

processing on large clusters," in OSDI'04, San Francisco,

CA, December 2004, pp. 137{150.

[3]. Hadoop MapReduce. http://hadoop.apache.org/mapreduce/.

[4]. A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J.

Sen Sarma, R. Murthy, and H. Liu, \Data warehousing and

analytics infrastructure at facebook," in Proceedings of the

2010 international conference on Management of data, ser.

SIGMOD '10. New York, NY, USA: ACM, 2010, pp.

1013{1020.

[5]. G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

Y. Lu, B. Saha, and E. Harris, \Reining in the outliers in

map-reduce clusters using mantri," in OSDI'10. Berkeley,

CA, USA: USENIX Asoc., 2010, pp. 1{16.

[6]. J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley,

\Performance-driven task co-scheduling for MapReduce

environments," in Network Operations and Management

Symposium, NOMS. Osaka, Japan: IEEE, 2010, pp.

373{380.

[7]. Resource-aware Adaptive Scheduling for MapReduce

Clusters - Jordda Polo, Claris astillo,David Carrera, Yolanda

Becerra, Ian Whalley, MalgorzataSteinder, Jordi Torres, and

Eduard Ayguade.

[8]. Scheduling and Energy Efficiency Improvement Techniques

for Hadoop Map-reduce: State of Art and Directions for

Future Research - NidhiTiwari, Department of Computer

Science and Engineering, Indian Institute of Technology,

Mumbai.

[9]. A Comparative review of job scheduling for MapReduce-

DongjinYoo, Kwang Mong Sim - Published in Cloud

Computing and Intelligence Systems (CCIS), 2011 IEEE

International Conference.

mailto:M9902105@mail.ntust.edu.tw
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dongjin%20Yoo.QT.&searchWithin=p_Author_Ids:37891335000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kwang%20Mong%20Sim.QT.&searchWithin=p_Author_Ids:37559596300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6034549
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6034549
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6034549
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6034549

