
Volume 5, No. 6, July-August 2014

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 62

ISSN No. 0976-5697

Software Component Clustering using SPARROW Algorithm

Y. Mohana Roopa

Research scholar, Dept. of CSE

JNTUA, Anantapur A.P.India

Dr.A. Rama Mohan Reddy

Professor, Dept. of CSE

SVU CE, SVUniversity Tirupati, A.P,India

Abstract: Component Based Software Development (CBSD) provides a high efficient and low cost way to construct software systems by
integrating reusable software components. Although CBSD has already become a widely accepted paradigm, it is still beyond possibility to
assemble components easily from COTS components into one application system. In real world, such as automation domain, this probability is
unacceptable because additional measures, time, efforts, and costs are required to minimize its impacts. Many general clustering approaches have
been proposed in literature to manage the composition of system at early stage of development. This paper investigates to identify the component
clusters in parallel using a multi-agent adaptive algorithm called SPARROW algorithm. The results of this study are important since it will be used

to develop an efficient Component Based Software Architecture.

Keywords: Component-Based software development, component clustering, software architecture, SPARROW Algorithm.

I. INTRODUCTION

Component-based software development approach is

based on the idea to develop software systems by selecting

appropriate off-the-shelf components and then to assemble

them with a well-defined software architecture. In recent

years, there have been increasing interests in using

Component-Based System Development (CBSD) approach,

particularly COTS (Commercial Off The Shelf) components

[1], to develop large complex applications. Both software

consumers and developers share the interest for the CBSD

approach because of the clear advantages. Some advantages
are but not limited to:

The efficiency of development increased, the product

becomes more reliable, need for maintenance is radically

decreased, the development time decreases, and the usability

of the products increases. Although it promises faster time-

to-market and increased productivity [2], many risks has

been introduced when developing COTS-based systems such

as failure to satisfy the quality attributes. The use of good

quality components to develop system does not grantee to

obtain system with the satisfied quality. Indeed, bad quality

components will not produce high quality product, and even

good quality components can damage a good product if the
composition is not managed appropriately. Consequently, the

failure to satisfy the quality attribute such as reliability means

a financial loss, increased expenses of hardware, higher cost

of software development, and harder than that, the loss of

relationships with consumers. Whenever, quality issues are

addressed at implementation or integration time, correction

of problems impacts the cost, schedule, and quality of the

software.

The clustering methods can be classified into

partitioning methods, hierarchical methods, density-based

methods, and Grid-based methods [3]. Recently, other
algorithms based on biological models have been proposed to

solve the clustering problem [4]. These algorithms are

characterized by the interaction of a large number of simple

agents sensing and changing their environment locally. They

exhibit complex, emergent behavior that is robust compared

to the failure of individual agents. Ants colonies, flocks of

birds, termites, swarms of bees etc. are agent-based insect

models that exhibit a collective intelligent behavior (swarm

intelligence) and may be used to define new algorithms of

clustering.

The multi-agent based models such as Ant colonies, bird

and swarms of bees, exhibit a collective behavior. Based on

these biological models, many new algorithms have been
devised to solve the complex problems in the area of

computer science. These algorithms are characterized by the

interaction of a large number of agents which following

simple rules. One of the first collective behavior models is

the flocking model, which is used in popular applications like

animation. Normally, flocking is considered as an Artificial

Life algorithm because of its budding property [5]. The

flocking algorithm takes advantage of the collective search

mechanism a flock implies, by which if a member of a flock

finds an area of interest; the mechanics of the flock will drive

other members to scan that area in more detail. A standard
clustering algorithm is used to scan the entire dataset in order

to discover the clusters.

The main goal of the proposed work is to efficiently

identify the component clusters in parallel using a multi-

agent adaptive algorithm called SPARROW algorithm. In

this proposed work, some test cases are generated for

component values like cost, time etc. According to these test

cases [6],[7], this proposed approach will effectively

generates the clusters in parallel.

II. NEED FOR CLUSTERING SOFTWARE

COMPONENTS

When an architect starts building a new CBSD

application, he has many options to do this task. Each probable

solution is arranging from a mixture of distinctive components.

All those possible alternatives are called Design Options. The
combination that satisfied the performance requirements is the

target of the architect. However, design options are

proportional with the degree of freedom. The degrees of

freedom are resulted due to the following [8]: Components, the

selection of one component from number of components

Y. Mohana Roopa et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,62-65

© 2010-14, IJARCS All Rights Reserved 63

instances with the same functionality but different

performance specifications; Resource Allocation, due to the

fact that, the selection of hardware does not impact the

functional of components, its configuration could be changed

during search. Therefore, hardware environment are modeled

separately from the common assembly. In fact, manual or/and
mismanaging composition lead to undetected problems in the

system. Researchers have proposed Software component

clustering Approaches [9] to avoid such problem since it

provides early evaluation for architecture.

III. A MULTI-AGENT ADAPTIVE ALGORITHM

SPARROW is a multi-agent algorithm where agents

use modified rules of Reynolds’ standard flock algorithm

to transform a boid into a hunter foraging for clusters in

spatial data A parallel spatial clustering algorithm

SPARROW (SPAtial ClusteRing AlgoRithm thrOugh

SWarm Intelligence), which is based on an adaptive

flocking algorithm combined with a density-based cluster

algorithm, to discover clusters of arbitrary shape and size

in spatial data. SPARROW uses the stochastic and

exploratory principles of a flock of birds for detecting
clusters in parallel according to the density-based

principles of the DBSCAN algorithm, and a parallel

iterative procedure to merge the clusters discovered [10].

It begins with a fixed number of agents that take up a

randomly generated position. Then, a core point is

identified as each agent moves around the spatial data

testing the neighbor of each location. The neighbors of the

identified core point are given a temporary label. These

labels are updated as multiple clusters. Contiguous points

belonging to the same cluster take the label corresponding

to the smallest label in the group of contiguous points. The

movements of the agents are all described in Reynolds’s
model.

The color is used as a communication device between

the flock agents to indicate the roadmap they need to

follow. The roadmap is adaptively attuned as the agents

alter their color moving to explore data until they reach the

goal. Consider a d dimension search space in which the

flocks move. Different agents are characterized by a

different color: red, revealing similar test case values,

green, a medium one, yellow, a low one, and white,

indicating a total absence of values. The main idea behind

this approach is to take advantage of the colored agent in
order to explore more accurately the most interesting

regions (signaled by the red agents) and avoid the ones

without interesting points (signaled by the white agents).

Red and white agents stop moving in order to signal this

type of region to the others, while green and yellow ones

fly to find denser zones. Indeed, each flying agent

computes its heading by taking the weighted average of

alignment, separation and cohesion (as illustrated in fig 1).

The following are the key features of our model,

which is different from Reynold’s:

a. Alignment and cohesion do not consider yellow

boids, since they don’t move in a very attractive
zone.

b. Cohesion is the resultant of the heading towards the

average position of the green flock mates (centroid),

of the attraction towards reds, and of the repulsion

from whites.

c. A separation distance is maintained from all the

agents, without considering their color.

Figure 1. Computing the direction of a green agent

Yellow and green agents will compute their direction,

according to the rules previously described, and will move

following this direction and with the speed corresponding

to their color. Note that the color of the agent is assigned

on the basis of the desired property at the point in which it

falls; the assignment is made on a scale going from white

(property = 0) to red (property > threshold), passing for

yellow and green, corresponding to intermediate values.

Agents will move towards the computed direction with

a speed depending on their color: green agents more
slowly than yellow agents since they will explore more

interesting regions. An agent will speed up to leave an

empty or uninteresting region whereas it will slow down to

investigate an interesting region more carefully.

The variable speed introduces an adaptive behavior

into the algorithm. In fact, agents adapt their movement

and change their behavior (speed) on the basis of their

previous experience and on the position of the red and

white agents. Indeed, red and white agents will stop

signaling to the others respectively the interesting and

desert regions. Note that, for any agent that has become red
or white, a new agent will be generated in order to

maintain a constant number of agents exploring the data.

In the first case (red), the new agent will be generated

in a close random point, since the zone is considered

interesting, while in the latter it will be generated in a

random point over all the space .Anyway, this does not

affect the overall performance of the system as the number

of agents was not increased; in fact, white and red agents

are not real agents, but only their position is stored.

Finally, in the case where the agent falls in the same

position as an older one it will be regenerated using the
same policy described above.

IV. USING SPARROW ALGORITHM FOR

CLUSTERING COMPONENTS

Assume, N is the number of component values called test

cases and t is the set of all the test cases [11],[12]. We use three

color indications such as RED, GREEN and YELLOW. For

coverage, the indication color is RED, for time its GREEN and

number of errors are indicated by YELLOW color. Then, each

agent is classified into above categories. The agents are

clustered into groups by the SPARROW algorithm as shown in

the Fig 2.

Y. Mohana Roopa et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,62-65

© 2010-14, IJARCS All Rights Reserved 64

Figure 2: Test Cases Clustering using Birds Flocking Algorithm

Normally, a flock is a group of agents all staying close

to each other, and the cohesion component is responsible for
this action. Each agent watch the position of other agents to

observe if it is within a specified neighbor radius, that is, it

checks to see which other agents are close enough to be

considered flock mates. The positions of the eligible

neighbors are averaged and the agent moves towards that

position. In this way, each one aims to move towards the

center of the flock that results in, all of them are staying

close together. Agents will move towards the desired

destination with a speed depending on their color. The green

agents travel more slowly than the yellow agents since they

will discover denser zones of clusters.

An agent will increase the speed to depart a vacant or
dull region but it slows down to explore an interesting

region more carefully. The variable speed has established

an adaptive behavior in the algorithm [13]. The movement

and speed are changed by the agents based on their earlier

experience represented from red and white agents. The

cohesion component is computed by averaging the position

of the all neighbors within the radius.

In the merging stage, two diverse cases are handled:

when having never visited points in the circular

neighborhood and when having points belonging to diverse

clusters. In the first case, the points are labeled and a new
cluster is formed, whereas in the second case, all the points

will be pooled into the same cluster i.e., they will get the

label of the cluster discovered first. A cage effect is occurred

during the simulations, that is, some agents are detained

inside the regions bounded by red or white agents and would

have no way to depart, wasting some valuable resources for

the exploration. Thus, to shun this effect, a limit is

prescribed for their life. Hence, when their age goes beyond

a determined value (max Life) they have been destroyed and

regenerated in a new randomly selected location of the

space.

We need to utilize the flocking algorithm [14],[15] to
discover the multidimensional space searching point. A

continuous data point can be represented in a

multidimensional Euclidean space, by simply normalizing

its attributes. In the following, we have given a proper

depiction of the extension of the flocking algorithm to

multidimensional space. Consider a multidimensional space

with d as dimension. Each boid k can be denoted as a point

in the space having coordinates and having directions, where

gives the angle between the new direction of the boid k and

axis i. Each boid will move according to the velocity. For

each iteration t, the new position of the agent k is given by

the following equation:

kikkik cvtxtx)()1(

 where i=1…d (1)

And represents the projection along the i axis of the

direction of the boid k. Each component is determined by

adding the respective components of alignment, separation

and cohesion.

i.e., Thus, in a multidimensional space, the components

are calculated as:
1

1

1)cos(
d

j

kjkc

)2(....2)cos()sin(
1

1 dic
d

ij

kjkiki

Once the clustering process using bird flocking

algorithm is completed, the optimization of the clustered test

cases is carried out using any optimization algorithm

V. CONCLUSION

Architect needs to use clustering of components to avoid

problem of quality dissatisfaction cause due to the late

evaluation of developed system. A multi-agent adaptive

algorithm called SPARROW algorithm provides efficient

clustering of components for CBSA.

Once the clustering process using adaptive flocking

algorithm is completed, the optimization of the clustered test

cases is carried out using optimization algorithms. From this

we can get the adaptive configuration of the components to

fit in to the software architecture.

VI. REFERENCES

[1]. Philippe Kruchten “Architectural Blueprints-The

“4+1” View Model of Software Architecture”

IEEE Software 12 November 1995, pp. 42-50.

[2]. Voas, J.COTS Software: The Economical Choice Software,

IEEE, 1998. 15(2): pp. 16- 19.

[3]. Gianluigi Folino and Giandomenico Spezzano “An

Adaptive Flocking Algorithm for Spatial Clustering” First

International Conference on Emerging Trends in

Engineering and Technology, IEEE (2008).

[4]. Chung-Horng Lung “Software Architecture Recovery

and Restructuring through Clustering Techniques” Proc.

of the 3rd International Software Architecture Workshop

(ISAW), 1998, pp.101-104.

[5]. Bonabeau E., Dorigo M., Theraulaz G., “Swarm Intelligence:

From Natural to Artificial Systems” Oxford University

Press, 1999.

[6]. Gianluigi Folino and Giandomenico Spezzano “An

Adaptive Flocking Algorithm for Spatial Clustering “ google

scholar.

[7]. Jose Carlos, Mario, Alberto, Francisco “A Strategy for

Evaluating Feasible and Unfeasible Test Cases for the

Evolutionary Testing of Object-Oriented Software” ACM

(2008).

[8]. Nirmal Kumar Gupta and Dr. Mukesh Kumar Rohil “Using

Genetic Algorithm for Unit Testing of Object- Oriented

software”, First International Conference on Emerging

Trends in Engineering and Technology, IEEE (2008).

Y. Mohana Roopa et al, International Journal of Advanced Research in Computer Science, 5 (6), July–August, 2014,62-65

© 2010-14, IJARCS All Rights Reserved 65

[9]. Martens, A. and H. Koziolek, Automatic, ”Model-

Based Software Performance Improvement for Com

ponent-Based Software Design”, Electronic Notes in

Theoretical Computer Science, 2009. 253(1): p.77-93.

[10]. M. Wegmuller, J.P.von der Weid, P. Oberson, and N.Gisin,

“High Resolution Fiber Distributed Measurements with

Coherent OFDR”, in Proc. ECOC’00, 2000, paper 11.3.4,

pp. 109.

[11]. Dr. Velur Rajappa, Arun Biradar, Satanik Panda “Effi

cient Software Test Case generation Using Genetic al-

gorithm based Graph theory”, International Conference on

Emerging Trends in Engineering and Technology, pp. 298--

303, IEEE (2008).

[12]. Jose Carlos, Mario, Alberto, Francisco “A Strategy for

Evaluating Feasible and Unfeasible Test Cases for the

Evolutionary Testing of Object-Oriented Software” ACM

(2008).

[13]. Robert M .Patton, Annie S. Wu, and Gwendolyn H

.Walton “A Genetic Algorithm Approach to Focused

Software Usage Testing”, Annals Of software engineer

ing, www.cs.ucf.edu/~ecl/papers/03.rmpatton.pdf.

[14]. Gianluigi Folino, Agostino Forestiero and Giandomenico

Spezzano “An Adaptive Flocking Algorithm for Performing

Approximate Clustering” Elsiever science May2009

[15]. Xiaohui Cui, Jinzhu Gao, Thomas E. Potok “A

flocking Based Algorithm For Document Clustering

Analysis”, Journal of systems and architectures, Elsiever

2006.

