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Abstract: A good spatial perception of the investigated physical phenomenon is important for obtaining successful outcome of the research 
process. Stereoscopic 3D simulations in a full-fledged online environment are applicable in scientific research of satellite and unmanned aerial 

vehicle motion. Simulating complex mechanical problems for scientific and experimental tasks requires not only precision to certain degree, but 
also correct and consistent representation of the physical laws inherent to the simulated formalism. To attain this aim, a genuine stabilization 
approach is needed. 
The current paper describes an environment for simulation of free rigid body motion while conserving certain invariants in order not to violate 
the underlying formalism of the Newtonian classical mechanics even under the inevitable errors inherent to the numerical integration. The 
dynamic stabilization through invariants of the free rigid body motion simulation is depicted. The simulation, subject of the current paper, may 
be observed on http://ialms.net/sim/ web address. 

 

Keywords: 3D stereoscopic simulations of rigid body motion, Unmanned aerial vehicles (UAV) simulation, Satellite simulation. 

 

I. INTRODAUCTION 

The current paper presents the stabilization of free rigid 
body motion simulation implemented in stereoscopic 3-
dimensional (3D) online environment. Such a simulation 
represents great benefit for the scientific research society in 
the field of unmanned aerial vehicle (UAV) and satellite 
motion investigation. The stabilization of free rigid body 
motion simulation was realized in pursuit of validity of the 
simulated process in relation to the examined laws of 
physics, corresponding to the underlying Newtonian classical 
mechanics formalism. 

The simulation, described in the current paper, can be 
viewed on http://ialms.net/sim/ web address (Fig. 1). 

After a conducted survey of existing online 3D 
stereoscopic simulations of mechanical phenomena it was 
discovered that such simulations do not exist. At the same 
time, it is clear that an approach of this kind would generate a 
substantial benefit for the modern physics research avenue. 
The inevitable error accumulation due to numerical 
simulation integration steps is canalized in such ways as to 
resemble the perturbation errors found in real laboratory 
experiments, while laws of mechanics are kept intact and all 
conserved quantities preserved. 

II. SIMULATION STABILIZATION BACKGROUND 

First of all, a definition of stabilization is required. In the 
rigid body motion, and especially in the free rigid body 
motion, the most common meaning of the term stabilization 
is to keep a free moving rigid body rotating along a given 
axis and preventing it from deviation of the axis of rotation. 
This approach is common in aeronautics and space satellites 

where stabilization is the process of applying torques 
(reactive jets) to the rigid body (satellite or spacecraft) in 
order to keep it rotating along the desired axis. For this 
purpose numerous models and approaches have been 
developed, such as [1-3]. In the mentioned materials the 
Serret-Andoyer formalism is used to model the free rigid 
body rotation and reduce the motion variables to one (one 
degree of freedom). This formalism is based on the Euler 
reduction parameters of the rotation matrix. The latter is the 
general component, describing the orientation of the rigid 
body in every moment of time. The Euler angels approach is 
in contrast to the current project, where Euler variables are 
avoided in favor of the rotation quaternion reduction of the 
rotation matrix, due to quaternions inherent performance 
advantage over other reductions of the rotation matrix and 
the absence of certain limitations, such as gimbal lock, innate 
to the Euler parameters model. 

The other common meaning of stabilization is presented 
by the current material. It is to stabilize a simulation of a 
mechanical process around certain principles, laws and 
invariants, against the inevitable calculation error 
accumulation. Such common methods are described in [5, 
6]. Interactive simulation of mechanical phenomena 
presumes error accumulation in the state variables 
describing the simulated rigid bodies and, as a consequence, 
the simulation process acquires error perturbation. This 
perturbation consists of deviation from the real state. The 
most common real-time simulations of rigid body motion, 
such as computer games, require building a sense of reality 
in the observer. Other simulations, such as scientific 
simulations, demand certain accuracy to be always met. But 
nevertheless the accuracy maintained, the errors are always 
accumulated and as the simulation prolongs its period the 
errors deviate further and further the simulated state from 
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the real state. The simulation algorithm has a choice how to 
manage the accumulated errors and the best to do this is 
keep physics laws intact even when the accuracy is 
essentially lost - after a very long time of simulation and the 
unavoidable enormous error accumulation that would 

follow. As a result, certain qualitative characteristics of the 
simulated process should be preserved. In such a scenario, 
error perturbations should not degrade the principle laws in 
the simulated mechanical setup. 

 

Figure 1. Simulation of rigid body motion. The space reference frame basis is shown along with the angular velocity (orange color) and angular momentum 
(magenta color) vectors. 

Error accumulation should be canalized to state variables 
errors that are the same in nature as the perturbations 
observed in real world laboratory experiments coming from 
unknown outer perturbing factors. 

In the case of free rigid body motion, two constraints can 
be utilized to achieve better simulation. These are two 
variables of the rigid body state, which are, under these 
conditions, invariant. 

III. STABILIZATION THROUGH INVARIANT 

CONSTRUCTIONS 

The description of the stabilization approach would 

require a concise overview of the basic terms and formalism 

utilized in order to clarify the presentation. When talking 

about rigid body motion, a non-inertial reference frame 
needs to be defined. This reference frame is connected to the 

body and is called the body frame. The rigid body does not 

move, nor rotate in respect to the body frame. Thus the 

motion of the body equals the motion of the body frame in 

respect to the inertial space frame. This motion is linear and 

rotational with six degrees of freedom [4, 7]. Table 1 shows 

the variables, describing the two motions (linear and 

rotational) of the rigid body. All variables are compared one 

by one. Such tables are common in theoretical mechanics 

textbooks, but very often they miss fundamental variables 

and relationships such as rotational position (orientation). 

Table 1 is generalized and utilizes the matrix presentation of 

the state variables, describing the rigid body state. 

A brief overview of notations and equations used in 

the current paper follow. Vectors are preferably presented in 

a matrix form, either as row-matrix or column-matrix, as 

follows: 

zyx bbbb b


  

Matrices are denoted with bold characters. Transposed 

matrix of matrix R  is denoted with 
~

R  and the derivative 

in respect to time is expressed with the dot notation R . In 
this paper, the anti-symmetric matrix of a vector will be 

used extensively. If vector b


is given in matrix form b , 

then its anti-symmetric matrix is denoted with 
*b  and is 

equal to: 
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Matrix 
*b  has three degrees of freedom and is isomorphic 

to the 3D vector b . 

When vectors are presented in matrix form, the 

equivalence between vector product and the multiplication 

with anti-symmetric matrix of a vector is as follows: 

0

0

0
*

xy

xz

yz

zyx

bb

bb

bb

aaaba ab


 

 

The outer product of two vectors, presented in matrix form, 

should also be recalled: 

 

baba
~

zyx

z

y

x

zzyzxz

zyyyxy

zxyxxx

bbb

a

a

a

bababa
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Note that both matrix products bb  and 
2*b  yield 

symmetric matrices as follows: 
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2

2
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zxyxx

bbbbb

bbbbb

bbbbb

bb

1bb1bbbb1bbbb

b

2~~~

22

22
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The latter equation is frequently utilized. Matrix 1  is the 

3x3 identity matrix. 
The variables, describing the rigid body linear and 

rotational motion are rendered systematic in table 1. 
From the relation between the angular momentum and 

angular velocity follows: 

 

IωLRIRωRLRωIL ~~~
 

 
 
  

Rigid body dynamic parameters for linear and rotational motion 

Parameter Linear motion Angular (rotational) motion 

Position Linear position is presented by 

the radius-vector of the center 

of mass cr . All linear 

variables are with respect to 
the space reference frame, 

while the origin of the body 

reference frame coincides with 

the center of mass OOcr . 

Angular position or orientation is expressed by the rotation 

matrix R  or any of its reduction derivatives, such as Euler 

angles, rotation quaternion, etc. 

 
The rotation matrix connects the space and the body 

reference frames by the following operator: 

)(...(...)(...))(... ~RR  

Prime-variables are defined in the body reference frame. 

Velocity  Linear velocity vector of the 

center of mass cc rv  .  
Angular velocity vector ω , where RRω ~*   and 

*
21

*
13

*
32 ωωωω . In the body reference frame the 

angular velocity is 
~ωRω . 

Acceleration Linear acceleration vector of 

the center of mass cc ra  . 

Angular acceleration vector ωε   or 

RRRRε  ~~*
 and 

*
21

*
13

*
32 εεεε . In the body 

reference frame the angular acceleration is 
~εRε . 

Inertia Total mass of the rigid body 

V

V

dxdydzzyx

dVm

,,

r

 

Note: zyxr . 

Moment of inertia tensor in the body reference frame 

VV

V
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xzxyxx
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2*r  is a symmetric matrix and its integral is also a 

symmetric matrix. Hence, tensor I  is a symmetric matrix 
and has only six degrees of freedom. 

In the space reference frame, the moment of inertia tensor is 

RIRI
~

zzyzxz

yzyyxy

xzxyxx

III

III

III

. Here RIRI
~

 and 

~
RIRI  is the well-known similarity transformation or 

matrix rotation. Note that, while I  is constant, I  depends 
on the current body orientation. It is also obvious that 

V

V

dV

Vd

rr

rRrRRrRRIRI

2*

*~*~~

 

Matrix I  is also symmetric, because rotation preserves 

symmetry and anti-symmetry. 

The moment of inertia tensor I  is a tensor of second rank 

that relates vector L  to vector ω  (see below). I  is 

equivalent to a 3x3 matrix. 

Momentum Linear momentum of the 

center of mass cc mvp . 

Angular momentum. Its differential form is 

dmdmdmdd
2*****

ωrωrrrvrrprrL  

and its integral form is  

ωIrrωωrrLL

VVV

dVdmd
2*2*

. 

In the body reference frame the angular momentum is 
~

LRL . 

Force Force 

cccext mm pvaF  . 

The sum of all external forces, 

applied to the rigid body, 

changes the linear momentum 

of the center of mass in 

respect to time as follows: 

extc Fp  or 

t

extc dt

0

Fp . 

Torque (moment of force) 
*rFτ . 

The sum of all external torques, applied to the rigid body, 

changes the angular momentum in respect to time as follows: 

*
extext rFτL  or 

t

ext

t

ext dtdt

0

*

0

rFτL . 

In the body reference frame the torque is 
~τRτ . 

Kinetic 

energy 

Kinetic energy of the linear 

motion 
2

2
c

K

mv
E . 

Kinetic energy of the rotational motion 

2222

1

2

1

2

22~~
~2*

~**
2

I
dV

dV
vdm

E

V

VV

rot
Krot

nInωIω
rωωr

rωrωr
r

 

Note: vector 
ω

n  and 
~

nInI . 

 

The first invariant in free rigid body motion is the angular 

momentum vector L . It allows the simulator to store the 

angular momentum instead of angular velocity in the array 
of variables, describing the rigid body state. Thus 

accumulation of errors in the first order time derivative of 

the rotational position of the body is avoided. On each 

integration step the angular velocity vector ω  is derived 

from the angular momentum L  as follows: 

 
1LIω , and

1ILω
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If the body reference frame is chosen along the principal 

axis of inertia, the moment of inertia tensor transforms to a 

diagonal matrix const

I

I

I

zz

yy

xx

00

00

00

I . Its inverse 

is also diagonal and has the simple form of 

const
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I

I
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I .  

 

The second invariant in free rigid body motion is the kinetic 

energy of rotational motion KrotE . This conservation 

parameter leads to the following constraint of movement: 
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Analogously, the above equation can be transformed in 

respect to the angular momentum: 
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Evolving these two equations by the vector components and 

the principal moments of inertia gives: 
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2
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ILILIL
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zzzyyyxxx

2

121212~1
LIL

b

These are the equations of two ellipsoids which are 

static (invariant) in the body reference frame. These two 

ellipsoids depend solely on the inertial properties of the rigid 

body and will be denoted with ω  and L  respectively. If 

the rotational kinetic energy is to stay constant, both vectors 

ω  and L  are constrained to point on the surface of the 

two ellipsoids defined by equations (3a) and (3b) 

respectively. If either of vectors ω  or L  points outside of 

its constraint ellipsoid, KrotE  will increase. Analogously, if 

either vector points inside its constraint ellipsoid, KrotE  

will decrease. 

By implementing the L  constraint in the KrotE  

constraint, one observes that: 

 

constEconst

E

Krot

Krot

2

2222
~

~~~1~

ωL

ωLLωIωLIωIω

 

In other words, KrotEL 2cos~ωL , but 

constL const
L

EKrot2
cos . The projection 

vector Lω  of vector ω  in the direction of vector L  is 

always the same (Fig. 2): 

 

 

LL

L

nn

LL
L

LωL
ω

L

E

LL

L

Krot2
cos

coscos
22

~

 

Here, vector n
L

nL
L

 is the normal vector of an 

invariable plane . 

 

 
 

Figure 2. Poinsot construction in the space reference frame. 

 

So, in what boundaries could vector ω  vary? Obviously, 

ω  could point anywhere in the invariable plane , defined 

by vector L  and KrotE . This invariable plane is specified 

in the space reference frame. Vector ω  is constrained to 

point on this invariable plane and at the same time on the 

surface of its constraint ellipsoid. The latter is to be 

translated in the space reference frame, in which, generally, 

it is constantly rotating. Combining these two constraints 

bears the intersection of the invariable plane  and the 

constraint ellipsoid ω . Where do they intersect? It is 

O  
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y  

z  
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Lω  
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suitable to note that the gradient of KrotE , in respect to ω , 

is in the direction of L : 
 

 

L
ω

ω
Lω

ω

L

ω
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ω
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The gradient is in the direction of the normal vector 
ω

n  to 

the ellipsoid ω  surface, because the ellipsoid surface is the 

invariant of  KrotE . The projection of KrotEω  over the 

ellipsoid surface is zero. At the same time, the normal vector 

of the invariable plane is in the direction of L  as well. It 
becomes obvious that at the point of intersection, both the 

invariable plane and the constraint ellipsoid have coinciding 

normal vectors. Hence, the invariable plane and the ellipsoid 

intersect tangentially, i.e. the ellipsoid always touches the 

plane and rolls over it. The rolling occurs without slipping, 

because the point of tangential intersection lies on the axis 

of rotation (vector ω ) and hence has zero rotational 

velocity – does not slip over the invariable plane, which is 

stationary. This constraint construction is the well-known 

Poinsot construction (Fig. 2). The curve drawn by vector ω  

on  is called herpolhode and on ω  - polhode. The 

herpolhode and the polhode always touch tangentially where 

vector ω  points. 

This construction yields good understanding and 

visualization of vector ω  and presents the bases for 

constraint manipulation. But it, solely, does not solve the 

stabilization problem in the described simulation, because 

the stored vector in the body state array is L , not ω . It is 

more accurate and would lead to less error accumulation if 

the constraint construction, used for error correction, is over 

vector L , instead of over vector ω . A similar construction 

over L  is needed. 
 Such a construction is defined by transferring the 

constraint over L  in the body reference frame. L  is 

constant, but once transferred into the body frame, as L , it 

is no longer constant and, generally, continuously rotates 

such that 
~

LRL . But it is still constrained in its 
magnitude, because rotation does not change magnitude. 

Vector L  has constant length and is restricted to point on 

the surface of a sphere  with radius L  (Fig. 3). It follows 

that vector L  should point on the intersection of this 

constraint sphere  and its constraint ellipsoid L . This 

intersection is shown on Fig. 3 in the first octant. 

Ellipsoid L  constraint: 

 

 
constE

ILILIL

Krot

zzzyyyxxx

2

121212~1
LIL

 

Sphere  constraint:  

 

 

const

LLLLL zyx

2222LL

 

 
Figure 3. Constraint construction over L  in the body reference frame 

(first octant). 

 

The above two equations constraint vector L  to point on 

the curve L , representing the intersection of 

L  and  in the body reference frame. It is immediately 

visible that this movement has one degree of freedom. If the 

current value of vector L  has accumulated error, this 

vector would, in general, deviate from curve . Let us 

denote the erroneous vector with EL  (Fig. 3). To correct 

this vector and make it point back on curve  again, a 

correction to the orientation of the rigid body is needed. If 

the most appropriate correction, back to the curve, is found, 

then the correcting rotation is easily extracted using vectors 

L  and EL . This correcting rotation should transform EL  

into L . A criterion for the correction, that seems most 

suitable, is to minimize the correction angle, i.e. minimize 

the angle between EL  and L . This criterion leads to the 

following equation: 
 

 
max

cos2~

zEzyEyxEx

E

LLLLLL

LLL

 

 

while L  should satisfy equations (5) and (6). The system 

of equations (5), (6) and (7), once solved, leads to an 

analytical solution to the stabilization problem. 
Another approach is to solve the system approximately 

by generating a correction parameter on each integration step 

of the simulator. On Fig. 3 vector EL  points inside the 

ellipsoid, so in this example the erroneous energy level will 
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be less than the proper energy constant KrotE . On each 

integration step, vector EL  should be “pushed” with a small 

correcting amount against a higher energy level, thus 

approaching curve  in the fastest possible way by the 

smallest displacement. This direction coincides with the 

gradient of the kinetic energy of rotational motion KrotEL  

in respect to vector L . Changing vector L  in this direction 

yields the fastest growth of KrotE .  From equation (4) and 

taking into account equation  (1)  follows: 
 

 

ω

L

L

LIL

L
L

111

121212

~1

,,

2

2

zzzyyyxxx

zzzyyyxxx

Krot
Krot

ILILIL

d

ILILILd

d

d

d

dE
E

But vector L  is constrained on the sphere , so its 

correction change should be in the direction of KrotEL  

projection over  as follows: 
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EEE
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KrotKrotKrotS

LIL
LωL
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nn LLL

 

taking into account that the normal vector of sphere  is 

parallel to its radius, which in fact is L . Thus 
L

L
n . 

The following equation is also considered: 

 
~~~~~2 LωLRRωRLRωωLKrotE

The stabilization algorithm then utilizes the surface 

gradient KrotS EL  to adjust EL  on each integration step 

by applying a rotation correction to the angular velocity 
vector. 

The correction parameter is varied exponentially, i.e. 
implementing an exponential feedback in order to cope 
successfully with states generating fast arousing errors and, 
on the other hand, to guarantee smooth correction in the most 
common states of slow arousing errors. A block diagram of 
the integration step is presented on Fig. 4. 
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Figure 4. Stabilization algorithm block diagram – one integration cycle. 

 

IV. CONCLUSION 

The simulation of rigid body motion gives the opportunity 

to test scenarios of unmanned aerial vehicles and satellite 

motion and thus study the behavior of these devices in free 

space or in the air. The researcher, using the simulation, is 
presented with insights that are impossible to attain in 

laboratory conditions. The stabilization of the simulated 

processes guarantees that the experiment process will obey the 

investigated physical laws. 
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