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Abstract: In this paper, four new heuristics are proposed in order to solve the traveling salesman problem. Comparisons are made between the 
results obtained from those heuristics. A new version of 2-opt and 3-opt methods are developed namely as 2-opt + 3-opt Shifting method. In 
addition, a new hybrid algorithm based on NN and Greedy algorithms is proposed. Computational experiments and comparisons are made on 
library problems for Hybrid, NN, and Greedy algorithms. Obtained results show the efficiency of the algorithms. 
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I. INTRODUCTION  

The traveling salesman problem (TSP) is a well-known 
and important combinatorial optimization problem [11]. The 
goal is to find the shortest (least expensive) tour that visits 
each city (node) in a given list exactly once and then returns 
to the starting city. In other words, TSP can be considered as 
a graph problem in which vertices represent cities and 
distances between cities are represented by edges.  

Formally, the TSP can be stated as follows: The 
distances between n cities are stored in a distance matrix D 
with elements ijd  where , 1,...,i j n=  and the diagonal 

elements iid  are zero. A tour can be represented by a cyclic 

permutation π  of {1,2,..., }n  where iπ  represents the city 
that follows city i  on the tour. The traveling salesman 
problem is then the optimization problem of finding a 
permutation π  that minimizes the length of the tour denoted 

by 
1

( )
n

i
i

d iπ
=
∑ . 

In this paper we shall concentrate on the symmetric TSP, 
in which the distances satisfy ( , ) ( , )d i j d j i=  for 
1 ,i j n≤ ≤ . 

There are many variations of TSP: Symmetric TSP, 
Asymmetric TSP, The MAX TSP, The MIN TSP, TSP with 
multiple visits (TSPM), TSP with a closed tour, TSP with an 
open tour [3]. There are many variations of the problem. In 
this work, we examine the classic symmetric TSP. 

Solving TSP is an important part of many applications in 
different fields including vehicle routing, computer wiring, 
machine sequencing and scheduling, frequency assignment 
in communication networks as well as data analysis in 
psychology and clustering in biostatistics [12, 17]. For 

example, data analysis applications in psychology ranging 
from profile smoothing to finding an order in developmental 
data are presented by [5]. Clustering and ordering using TSP 
solvers are currently becoming popular in biostatistics [2, 
13]. For example, [18] described an application for ordering 
genes and [9] used a TSP solver for clustering proteins. 

Given that the problem is NP-Hard, and hence the 
polynomial-time algorithms for finding optimal tours are 
unlikely to exist, much attention has been addressed to the 
question of efficient heuristic algorithms, fast algorithms that 
attempt only to find near-optimal tours. 

The rest of this paper is organized as follows. Section 2 
describes some approaches for solving the TSP. Section 3 
presents basic tour constructing algorithms such as NN and 
Greedy. Section 4 presents our new tour constructing 
proposed heuristics. Section 5 presents a new version of 2-
opt and 3-opt algorithms that we have proposed. Section 6 
presents other improved algorithms.  Finally, section 7 
concludes the paper. 

II. APPROACHES FOR SOLVING TSP 

Although definition of the TSP is easy, it belongs to NP-
hard [6]. There are a number of algorithms used to find 
optimal tours, because of this problem is NP-hard, none are 
feasible for large instances since they all grow exponentially. 
That’s why heuristic algorithms are useful for this problem. 

The following approaches are developed for solving 
TSP. 

A. Exact Approaches: 
These approaches usually utilize the integer linear 

programming model of the TSP. “Branch & Bound” is one of 
the examples for this category [10]. One approach that comes 
to mind first is to try all possibilities. Other approach can be 
dynamic programming [4]. But these approaches are 
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expensive to calculate and take long time for the number of 
cities greater than 20 since TSP is an NP-hard problem [20]. 

B. Approximation Approaches: 
Solving the TSP optimally takes too long; instead, one 

normally uses approximation algorithms, or heuristics. The 
difference is approximation algorithms give us a guarantee, 
which indicates how bad solutions we can get, normally 
specified as c times the optimal value. 

Best-known approximation algorithms for TSP are 
Christofides Algorithm (guaranteed value 3/2), Minimum-
Spanning Tree (MST) based algorithms (guaranteed value 2), 
and others [14]. 

The best approximation algorithm stated is that of 
Sanjeev Arora [8]. The algorithm guarantees (1 1/ )c+  
approximation for every 1c > . It is based on geometric 
partitioning and quad trees. Although theoretically c can be 
very large, it will have a negative effect on its running time 
( )])[(log( )(

2
cOnnO  for two-dimensional problem 

instances ). 

C. Heuristic Algorithms: 
One of the algorithm types, which are used in computer 

science, is heuristic algorithm [8]. These algorithms are not 
exact and they do not perform it all the time or do not 
guarantee the best result but still they are useful to find a 
solution of the problem. In practice, heuristic algorithms are 
preferred to exact algorithms for solving NP-hard problems. 
We can categorize the heuristic algorithms for TSP: 
heuristics composing the tour, heuristics improving the tour 
and hybrid heuristic using both. 
a. Heuristics Composing the Tour: The characteristic of 

these algorithms does not try to improve the result 
when they find a solution. Algorithm stops at that 
point. The known heuristics composing the tour are; 
Nearest Neighbour, Greedy, Insertion heuristic, 
Christofides algorithm [7] and others. 

b. Heuristics Improving the Tour: They try to improve 
the tour. Examples for these algorithms are 2-opt, 3-
opt, Lin-Kernighan, similar local optimization 
algorithms [1] and others.  

c. Hybrid Approaches: They use both composing and 
improving heuristics at the same time. Iterated Lin-
Kernighan is an example for these algorithms. The 
best results are obtained by using hybrid approaches 
[19]. 

D. Metaheuristic Algorithms: 
Metaheuristic algorithms are the techniques which try to 

improve iteratively the candidate solution (or solutions) 
found by a specific approach for hard optimization problems. 
Metaheuristic algorithms accept the heuristic approach for 
solving the problem as a black box and don’t care about the 
details. They only try to optimize the functions used to solve 
the problem. These functions are named as goal functions or 
objective functions.  

Tabu search, genetic algorithms, simulated annealing, 
artificial neural networks, ant colony algorithm and similar 
artificial intelligence approaches are the examples of the 
metaheuristic algorithms [19]. 

E. Hyperheuristic Algorithms: 
Hyperheuristics are the algorithms searching the 

heuristic space for solving the hard optimization problems. 
In this sense, a hyperheuristic decides which heuristic is 

more efficient to solve the problem instead of trying to solve 
the problem. This means that if there is more than one 
heuristic solution for a problem, deciding which one of these 
will be more successful is called as hyper heuristic. 

The decision algorithm in situations where there is more 
than one heuristic applied to the problem is also called as 
hyperheuristic. 

F. Distinguishing Metaheuristic and Hyperheuristic 
Algorithms: 

The difference between metaheuristic and hyperheuristic 
is lie actually on the solution space of the problem. Both of 
these approaches search the solution heuristically but the 
solution spaces are different. Metaheuristics search on the 
solution space while hyper heuristics search on heuristic 
search space. In the literature, there are two different ways to 
do it. During the process, either one of the heuristic is chosen 
from the heuristic set applied in each step, new solution is 
accepted or refused, or a new heuristic is created (i.e. using 
genetic programming) using available components. By this 
way, metaheuristic algorithms are used as hyperheuristics. 
However, there are hyperheuristics, which are not 
metaheuristics, for example, reinforcement learning based 
hyperheuristics. 

From this perspective, it is necessary to create new 
integrated algorithms, which are interactive with each other. 
The biggest reason of forming the artificial intelligence is to 
create successful algorithms and form new integrated 
algorithms.  

III. BASIC HEURISTIC ALGORITHMS 

Now we will mention basic heuristics that we will use 
and we suggested in our previous studies. 

A. Nearest Neighbour: 
This is perhaps the simplest and most straightforward 

TSP heuristic. The key to this algorithm is to always visit the 
nearest city. The steps of this algorithm are as following: 

a. Select a random city. 
b. Find the nearest unvisited city and go there. 
c. Are there any unvisited cities left? If yes, go to step 2. 
d. Return to the first city. 

We can obtain the best result out of this algorithm by 
starting the algorithm over again for each vertex and repeat it 
for n times. 

B. Greedy Algorithm: 
The Greedy heuristic gradually constructs a tour by 

repeatedly selecting the shortest edge and adding it to the 
tour as long as it does not create a cycle with less than N 
edges, or increase the degree of any node by more than 2. We 
must not add the same edge twice of course. The steps of this 
algorithm are as following: 

a. Sort all edges. 
b. Select the shortest edge and add it to our tour if it 

does not violate any of the above constraints. 
c. Do we have n edges in our tour? If no, go to step 2. 
d. Terminate the algorithm. 
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IV. NEW HEURISTIC ALGORITHMS 

Four new heuristic algorithms which consider the bad 
vertices (the vertex which has the maximal distance to other 
vertices) are proposed below. [15] and [16] give details on 
three of these algorithms. In these four algorithms, the ideas 
behind NN and Greedy algorithms are improved and new 
ideas are also considered.  The vertices, which are further 
than the others, are prioritized. The smallest 2 edges are 
selected for these kind of vertices (On the contrary, in NN 
algorithm, nearest vertex is selected, so only one edge is 
selected). While selecting further vertices, difference 
between the biggest and the smallest edges are also 
considered. These edges are problematic when they are left 
to the end in other known algorithms. When we sort edges 
according to their importance, not only their lengths but also 
the vertices they belong to are considered. 

A. Algorithms 1 (Feinting): 
This algorithm is about finding the maximum element 

for each row in the adjacency matrix. The algorithm 
continues to add to the tour the minimum distance of the row 
in which the maximum element exists. This process is 
applied to each row. The aim of the algorithm is to prevent 
the worst situations. The steps of this algorithm are as 
following: 

a. Find the maximum distance for each row in 
adjacency matrix, and add it to MAX column. 

b. Select the maximum distance in the MAX column. 
c. In the same row in which this maximum distance 

exists, select the minimum distance, which does not 
contain a sub tour and add it to the tour. 

d. Increase the number of selected edges by one. 
e. If the number of selected edges is less than n then 

go to step 2. 
We can demonstrate how the algorithm works in the 

following chart. 

 
Figure 1.  Figure, which shows how Algorithm 1 works. 

Here, distance( , ),ij i ja c c=
 

max { },s j sjm a=
 

max { },k i im m= min { },kl j kja a=
 

1,s n= , , 1,i j n=  

B. Algorithm 2 (The Most Advantageous Vertex): 
This algorithm is about finding the maximum and 

minimum distances for each row in the adjacency matrix. 
The algorithm continues to find the difference between the 
maximum distance and the distances of the correspondent 
minimum column, and to add this difference to distance 
column. The steps of this algorithm are as following: 

a. Find the maximum and minimum distances for each 
row in the adjacency matrix and add them to MAX 
and MIN columns. 

b. Subtract the distances in MIN column from the 
correspondent distances in MAX column, and then 
add the result to DIFFERENCE column. 

c. Find the maximum distance in DIFFERENCE 
column. 

d. In the same row in which this maximum distance 
exists, select the minimum distance, which does not 
contain a sub tour and add it to the tour. 

e. Increase the number of selected edges by one. 
f. If the number of selected edges is less than n then 

go to step 3.  
We can demonstrate how the algorithm works in the 

following chart. 

 
Figure 2.  Figure, which shows how Algorithm 2 works. 

Here, distance( , ),ij i ja c c=
 

max { },s j sjm a= min { },s j sjn a= ,s s sd m n= −

max { },k i id d= min { },kl j kja a= 1,s n= , , 1,i j n=  

C. Algorithm 3 (The Farthest Vertex): 
This algorithm is about finding the sums of each row in 

the adjacent matrix. The algorithm continues to add to the 
tour the minimum two distances of each row which includes 
the maximum distance. This process is applied to each row. 

The steps of this algorithm are as following: 
a. Find the sums for each row in the adjacency matrix 

and add them to SUM column. 
b. Find the maximum sum in SUM column. 
c. In the same row in which this maximum sum exists, 

select the two minimum distances, which do not 
contain a sub, tour and add them to the tour. 

d. Delete the row and column which correspondence 
to the maximum sum. 

e. Increase the number of selected vertex by one. 
f. If the number of selected vertex is less than n then 

go to step 2. 
We can demonstrate how the algorithm works in the 

following chart. 

 
Figure 3.  Figure, which shows how Algorithm 3 works. 
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Here, distance( , ),ij i ja c c=
 

1
,

n

i ij
j

s a
=

=∑ max { },k i is s= min { },kl j kja a= 1,i n=  

D. Computational Experiments for Heuristic Algorithms: 
In the table below, these three algorithms are compared 

with NN and Greedy algorithms on library problems [21-23]. 
The results on the third row shows the best result found when 
applying NN algorithm starting from each vertices (n times). 

Table I.  Computational Experiments for Heuristic Algorithms 

 
 

G 

 
Optimal 

 
 

NN 
Time(s) 

Greedy 
Time(s) 

Algorithm1 
Time(s) 

Algorithm2 
Time(s) 

Algorithm3 
Time(s) 

eil51  
429.983 

505.774 
0.016 

481.518 
0.125 

443.070 
0.031 

495.628 
0.031 

440.746 
0.000 

berlin52  
7544.365 

8182.192 
0.000 

9954.062 
0.281 

9047.211 
0.031 

9413.732 
0.047 

8618.198 
0.002 

st70  
678.597 

761.689 
0.000 

746.044 
0.485 

785.284 
0.094 

811.974 
0.094 

727.778 
0.011 

eil76  
545.387 

612.656 
0.016 

617.131 
0.672 

588.074 
0.140 

606.117 
0.140 

581.407 
0.010 

rat99  
1211 

1369.535 
0.016 

1528.308 
1.875 

1311.904 
0.266 

1273.747 
0.282 

1316.432 
0.030 

kroA100  
21236.951 

24698.497 
0.016 

24197.285 
1.937 

26135.302 
0.360 

24697.677 
0.391 

24093.242 
0.020 

kroB100  
22141 

25882.973 
0.016 

25815.214 
2.469 

24700.544 
0.406 

23651.697 
0.406 

23419.490 
0.031 

kroC100  
20750.762 

23566.403 
0.015 

25313.671 
2.610 

23962.861 
0.391 

24879.757 
0.391 

23512.300 
0.030 

kroD100  
21294.290 

24855.799 
0.016 

24631.533 
2.359 

24783.197 
0.422 

23201.380 
0.390 

24758.054 
0.010 

kroE100  
22068 

24907.022 
0.016 

24420.355 
2.609 

26036.072 
0.375 

25499.724 
0.406 

24822.113 
0.010 

rd100  
7910.396 

9427.333 
0.015 

8702.605 
2.922 

9866.781 
0.406 

8945.544 
0.375 

9384.955 
0.030 

eil101  
642.309 

736.368 
0.015 

789.112 
2.609 

712.461 
0.329 

694.685 
0.359 

704.361 
0.010 

lin105  
14382.995 

16939.441 
0.015 

16479.785 
3.187 

19679.294 
0.360 

17744.411 
0.344 

18354.693 
0.030 

pr107  
44303 

46678.154 
0.016 

48261.816 
2.109 

56635.995 
0.453 

47060.739 
0.438 

54003.941 
0.010 

ch130  
6110.860 

7198.741 
0.016 

7142.045 
7.688 

6963.303 
0.875 

6636.392 
0.953 

6873.837 
0.055 

kroA150  
26524 

31482.020 
0.047 

31442.994 
11.094 

31027.270 
1.469 

28444.581 
1.453 

30216.728 
0.082 

kroB150  
26130 

31320.340 
0.047 

31519.083 
11.156 

31824.589 
1.547 

30815.938 
1.454 

29631.101 
0.064 

rat195  
2323 

2628.561 
0.109 

2957.176 
29.719 

2763.001 
3.563 

2637.019 
3.532 

2554.672 
0.085 

kroA200  
29368 

34547.691 
0.125 

37650.812 
45 

35195.046 
5.187 

35792.822 
5.172 

33629.972 
0.112 

V. NEW HEURISTIC ALGORITHMS 

Once a tour has been generated by some tour 
construction heuristic, we might wish to improve that 
solution. There are several ways to do this, but the most 
common ones are the 2-opt and 3-opt local searches. The 2-
opt algorithm basically removes two edges from the tour, and 
reconnects these two paths which are formed by removing 
these two edges. There is only one way to reconnect the two 
paths so that we still have a valid tour (Figure 4, 5). We do 
this only if the new tour will be shorter. This process of 
removing and reconnecting the tour continues until no 2-opt 
improvement is found. The tour we obtain at the end of this 
process is now 2-optimal. The 3-opt algorithm works in a 
similar fashion, but instead of removing two edges we 
remove three. This means that we have two ways of 
reconnecting the three paths into a valid tour (Figure 6). A 3-
opt move can actually be seen as two or three 2-opt moves. 
We finish our search when no more 3-opt moves can 
improve the tour. If a tour is 3-optimal it is also 2-optimal. If 
we look at the tour as a permutation of all the cities, a 2-opt 

move will result in reversing a segment of the permutation. A 
3-opt move can be seen as two or three segment reversals [3]. 

A. 2-opt and Shifting: 
The 2-opt code is as following: 
for (i = 1;i <= n - 3; i ++) 
 for (j = i + 2; j <= n - 1; j++) 
  if 

(d[a[i]][a[i+1]]+d[a[j]][a[j+1]]>d[a[i]][a[j]] + 
d[a[i+1]][a[j+1]]) 

   swap(a[i+1], a[j]) 
The code above improves the solution by shifting the 

vertexes when their indexes in solution vector are proper, 
that is when their position are between the 1st and the (n-1)th 
vertex. If, however, the shifting vertex j is in the nth position 
in the solution vector, then the if part of the algorithm does 
not run and the algorithm does improve anything. In order to 
prevent this handicap, we shift the elements of the solution 
vector 1 unit to the left. Therefore, since the nth vertex is 
now (n-1)th, the if part of the algorithm runs properly and the 
algorithm improves its solution by shifting these two 
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vertexes. This whole process is explained in an example 
below: 

Table II.  Distance matrix 

 1 2 3 4 5 6 
1 0 1 3 5 3 1 
2 1 0 1 3 5 3 
3 3 1 0 1 3 5 
4 5 3 1 0 1 3 
5 3 5 3 1 0 1 
6 1 3 5 3 1 0 

 
For example, let us say that the optimum result of the 

traveling salesman problem is 6 and the solution vector is 
[v1v2v3v4v5v6] (6) .The length of the tour of the given tours 
is computed by giving attention to the distance matrix in 
Table II. If we apply the 2-opt algorithm to a vector like 
[v1v2v3v4v6v5](10) whose tour cost is 10, then the 
algorithm will not make any shifts between the vertexes. Yet, 
if the elements of solution vector are switched 1 unit to the 
left, then the 2-opt algorithm will find the optimum result: 
[v3v4v5v6v1v2](6). 

 

 

 
Figure 4.  The demonstration of the shifting operation in a 2-opt 

application on an example 

In the same way, if we apply the 2-opt algorithm to the 
vector, [v1v4v5v2v3v6](18), the algorithm improves this 
vector three times and the solution vector obtained at the end 
of the process is [v1v3v2v4v5v6](10). Even if the elements 

of this solution vector are shifted 1 unit to the left, there will 
be no improve. Yet if we apply the 2-opt algorithm after 
shifting the elements of this solution vector 2 units to the left, 
then we can obtain the optimum result for the problem 
[v1v2v3v4v5v6](6). 

 

  
Figure 5.  The demonstration of the double shifting operation in a 2-opt 

application on an example 

B. 3-opt and Shifting: 
The 3-opt code is as following: 
for(i=1;i<=n-5;i++) 
 for(j=i+2;j<=n-3;j++) 
  for(k=j+2;k<=n-1;k++) 
 
  if(d[a[i]][a[i+1]]+d[a[j]][a[j+1]] 
  +d[a[k]][a[k+1]]>d[a[i]][a[j+1]] 
  +d[a[j]][a[k+1]]+d[a[k]][a[i+1]])) 
  { 
   swap(a[i+1], a[j+1]) 
   swap(a[j], a[k]) 
  } 
As in 2-opt algorithm, if the position of shifting vertex is 

n in the solution vector, then the algorithm will skip the if 
part and will not improve the solution. However, when the 
elements of the solution vector are shifted to the left, then we 
again obtain the optimum result. Also in this method, there 
are examples in which shifting the elements of the solution 
vector 1 unit to the left is not enough so there should be 
shifting more than 1 unit to the left. 
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Figure 6.  The demonstration of the shifting operation in a 3-opt 

application on an example 

C. Compuational Experiments for 3-opt + 2-opt: 
In Table III, the second column shows the results of 2-

opt and 3-opt applications with shifting operation, and the 
third column shows the results of 2-opt and 3-opt 
applications without shifting operation. As it can be seen in 
the table, the results of the applications with shifting 
operation give better results than the applications without 
shifting.  

Table III.  The comparison of the 2-opt and 3-opt applications with and 
without shifting operation 

G 3-opt + 2-opt (S+) 3-opt + 2-opt 
(S-) 

eil51 429.484 456.265 

berlin52 7544.365 7993.064 

kroA100 21285.443 22146.600 

rd100 8101.042 8206.614 

lin105 14382.995 14670.207 

ch130 6250.213 6409.888 

u159 43786.312 45147.919 

VI. OTHER IMPROVED ALGORITHMS 

Below, a hybrid of NN and greedy algorithms and an 
improved version of vertex ranking based on learning are 
presented. 

A. Hybrid Heuristic Algorithm: 
The algorithm that we propose is a hybrid of the 

traditional NN and Greedy heuristic algorithm. We start the 
algorithm with NN for each vertex and repeat it for n times. 
Each time the algorithm is applied, we give a “priority” to 
the edge according to the result of the solution. Let the 
“priority” of the selected edges in the first solution be 1 all 
the others be 0. Suppose that the length of the first tour is 1D  

Then, we add 1

i

D
D  

(Here, iD  is the length of the tour, which 

is found at step i ) to the “priorities” of the selected edges. 
Thus, each edge has a “priority” after n steps. Then, we sort 
the edges in descending order by “priority” and solve the 
problem with greedy algorithm. Let the length of the tour be 

1nD +  , and we add 1

1n

D
D +  

to the “priorities” of the selected 

edges. At the next steps, the edges are sorted in descending 
order by their updated “priorities”, and then, we solve the 
problem with the greedy algorithm. This process continues 
until there is no change on the sorting anymore. The result of 
the algorithm is the best solution found during this process. 
The steps of the algorithm are as follows: 

a. Solve the problem n times by NN algorithm starting 
with different vertices at each time. Find the 
“priorities” of edges. Assign the best solution, as a 
record solution. 

b. Sort the edges in descending order by “priority”. 
Then, solve the problem by the greedy algorithm. If 
the solution is better (smaller) than the record 
solution update the record. 

c. If there is no any change in the sorting then, stops 
the algorithm otherwise go to Step 2. 

B. Hyperheuristic Algorithm (Vertex Ranking): 
Finding the initial solution: 

For each vertex, find the row sum in the adjacency matrix 
and assign it to array of sums. 

a. For each vertex, find the first shortest edge in the 
adjacency matrix and increase their importance 
values an array of importance’s by in this order. 

b. For each edge, set the priority value in the array of 
priorities as the biggest value of its vertices 
importance values in the array of importance’s. 

c. Sort the edges decreasingly according to their 
importance values. If there are same importance 
values, sort them decreasingly according to their 
priority values. If priorities are same too, then sort 
them increasingly according to their lengths.  

d. Add the vertex, which will not create a sub tour, to 
the solution from the array of importances in order. 

Improving the initial solution: 
e. After finding the initial solution, add 1 to the 

importance value of the first edge, which is not 
added to the solution and go to step 4. 

If the new solution is worse than the best solution found 
so far, subtract n from the importance value of the last vertex 
which is added 1 to its importance value before and add 1 to 
the importance value of the first edge, which is not added to 
the solution and go to step 4 again. In other case where the 
new solution is not worse than the best solution found so far, 
add 1 to the importance value of the first edge, which is not 
added to the solution and go to step 4 again. This process is 
repeated two times. n is the total vertex number of the graph. 

The principles of this algorithm can be explained as 
follows: 

In the proposed algorithm, a new algorithm is created 
using the algorithms mentioned in section 3. Edges are given 
a priority in the third step of the algorithm according their 
distances. In the fourth step, each edge is given an 
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importance value according to its priority value. Edges are 
sorted according to their importance values in decreasing 
order. An initial solution is found using a greedy algorithm in 
step 5. In step 6, initial solution is tried to improve using a 
learning based iterative approach. 

Table IV.  Computational experiments for the heuristics, which improve 
the tour 

G Optimal 2opt+3opt 
Time(s) 

Hyperheuristic 
Time(s) 

Hybrid 
Time(s) 

eil51  
429.983 

429.983* 
0.974 

444.415 
2.491 

505.774 
0.054 

berlin52  
7544.365 

7544.365* 
0.300 

8396.818 
2.305 

8182.192 
0.045 

st70  
678.597 

688.280 
7.145 

722.679 
9.043 

761.689 
0.190 

eil76  
545.387 

562.331 
5.211 

566.774 
13.982 

612.655 
0.314 

rat99  
1211 

1247.094 
3.406 

1252.272 
62.623 

1369.534 
0.373 

kroA100  
21236.951 

21285.443 
10.264 

21936.297 
51.252 

24698.497 
0.536 

kroB100  
22141 

22585.399 
5.857 

23665.102 
52.457 

25882.973 
0.385 

kroC100  
20750.762 

20786.896 
2.264 

21954.034 
52.911 

23566.403 
0.398 

kroD100  
21294.290 

21733.785 
10.015 

23733.511 
51.840 

24855.799 
0.481 

kroE100  
22068 

22331.660 
19.028 

23102.137 
54.109 

24907.022 
0.398 

rd100  
7910.396 

8101.042 
4.409 

8544.428 
52.012 

9427.333 
0.385 

eil101  
642.309 

661.138 
7.162 

678.246 
53.687 

736.368 
0.389 

lin105  
14382.995 

14382.995* 
45.414 

15730.244 
68.545 

16939.441 
0.724 

pr107  
44303 

44576.123 
47.065 

44324.838 
77.399 

46678.154 
0.506 

ch130  
6110.860 

6250.213 
7.572 

6337.452 
209.594 

7198.741 
1.142 

kroA150  
26524 

27229.789 
188.898 

27968.152 
424.945 

31482.020 
1.401 

kroB150  
26130 

26802.108 
264.646 

28295.964 
408.977 

31320.340 
1.494 

rat195  
2323 

2473.668 
221.204 

2472.163 
1589.158 

2618.045 
3.721 

kroA200  
29368 

30876.078 
19.547 

31137.834 
1814.037 

34547.691 
3.874 

C. Computational Experiments for the Heuristics which 
Improve the Tour: 

Table IV shows the result of computational experiments 
of these 3 algorithms conducted on library problems [21-23]. 
The best results are marked on the table. As it is shown in the 
table, best results are usually obtained by “2-opt + 3-opt 
+shifting”. In Table IV, * sign shows the optimum result. 

VII. CONCLUSION 

In this study, we have proposed four new heuristics to 
solve traveling salesman problem. We have offered a number 
of different NN versions. We have found better solution than 
NN and greedy by combined them. In addition, we consider 
the tour-improved techniques; 2opt, 3opt and we have 
improved their performance by some modification. When we 
consider the study of old and newly proposed algorithms and 
the results of computational experiments, it is seen that the 
best solution is obtained by applying “2opt + 3opt + shifting” 
on best result found by applying NN algorithm n times, for 
each vertices as starting vertex. For further study, the 

different combinations of the heuristics will be investigated 
in order to improve the results. 
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