
Volume 4, No. 11, Nov-Dec 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

Improvements on Heuristic Algorithms for Solving Traveling Salesman Problem

Fidan Nuriyeva
Institute of Cybernetics

Azerbaijan National Academy of Sciences
Baku, Azerbaijan

nuriyevafidan@gmail.com

Gözde Kızılateş
Department of Mathematics

Faculty of Science, Ege University
Izmir, Turkey

gozde.kizilates@gmail.com

Murat Erşen Berberler
Department of Computer Science

Faculty of Science, Dokuz Eylul University
Izmir, Turkey

murat.berberler@deu.edu.tr

Abstract: In this paper, four new heuristics are proposed in order to solve the traveling salesman problem. Comparisons are made between the
results obtained from those heuristics. A new version of 2-opt and 3-opt methods are developed namely as 2-opt + 3-opt Shifting method. In
addition, a new hybrid algorithm based on NN and Greedy algorithms is proposed. Computational experiments and comparisons are made on
library problems for Hybrid, NN, and Greedy algorithms. Obtained results show the efficiency of the algorithms.

Keywords: Traveling salesman problem; heuristic algorithms; hyper-heuristic algorithms; hybrid algorithms

I. INTRODUCTION

The traveling salesman problem (TSP) is a well-known
and important combinatorial optimization problem [11]. The
goal is to find the shortest (least expensive) tour that visits
each city (node) in a given list exactly once and then returns
to the starting city. In other words, TSP can be considered as
a graph problem in which vertices represent cities and
distances between cities are represented by edges.

Formally, the TSP can be stated as follows: The
distances between n cities are stored in a distance matrix D
with elements ijd where , 1,...,i j n= and the diagonal

elements iid are zero. A tour can be represented by a cyclic

permutation π of {1,2,..., }n where iπ represents the city
that follows city i on the tour. The traveling salesman
problem is then the optimization problem of finding a
permutation π that minimizes the length of the tour denoted

by
1

()
n

i
i

d iπ
=
∑ .

In this paper we shall concentrate on the symmetric TSP,
in which the distances satisfy (,) (,)d i j d j i= for
1 ,i j n≤ ≤ .

There are many variations of TSP: Symmetric TSP,
Asymmetric TSP, The MAX TSP, The MIN TSP, TSP with
multiple visits (TSPM), TSP with a closed tour, TSP with an
open tour [3]. There are many variations of the problem. In
this work, we examine the classic symmetric TSP.

Solving TSP is an important part of many applications in
different fields including vehicle routing, computer wiring,
machine sequencing and scheduling, frequency assignment
in communication networks as well as data analysis in
psychology and clustering in biostatistics [12, 17]. For

example, data analysis applications in psychology ranging
from profile smoothing to finding an order in developmental
data are presented by [5]. Clustering and ordering using TSP
solvers are currently becoming popular in biostatistics [2,
13]. For example, [18] described an application for ordering
genes and [9] used a TSP solver for clustering proteins.

Given that the problem is NP-Hard, and hence the
polynomial-time algorithms for finding optimal tours are
unlikely to exist, much attention has been addressed to the
question of efficient heuristic algorithms, fast algorithms that
attempt only to find near-optimal tours.

The rest of this paper is organized as follows. Section 2
describes some approaches for solving the TSP. Section 3
presents basic tour constructing algorithms such as NN and
Greedy. Section 4 presents our new tour constructing
proposed heuristics. Section 5 presents a new version of 2-
opt and 3-opt algorithms that we have proposed. Section 6
presents other improved algorithms. Finally, section 7
concludes the paper.

II. APPROACHES FOR SOLVING TSP

Although definition of the TSP is easy, it belongs to NP-
hard [6]. There are a number of algorithms used to find
optimal tours, because of this problem is NP-hard, none are
feasible for large instances since they all grow exponentially.
That’s why heuristic algorithms are useful for this problem.

The following approaches are developed for solving
TSP.

A. Exact Approaches:
These approaches usually utilize the integer linear

programming model of the TSP. “Branch & Bound” is one of
the examples for this category [10]. One approach that comes
to mind first is to try all possibilities. Other approach can be
dynamic programming [4]. But these approaches are

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 2

expensive to calculate and take long time for the number of
cities greater than 20 since TSP is an NP-hard problem [20].

B. Approximation Approaches:
Solving the TSP optimally takes too long; instead, one

normally uses approximation algorithms, or heuristics. The
difference is approximation algorithms give us a guarantee,
which indicates how bad solutions we can get, normally
specified as c times the optimal value.

Best-known approximation algorithms for TSP are
Christofides Algorithm (guaranteed value 3/2), Minimum-
Spanning Tree (MST) based algorithms (guaranteed value 2),
and others [14].

The best approximation algorithm stated is that of
Sanjeev Arora [8]. The algorithm guarantees (1 1/)c+
approximation for every 1c > . It is based on geometric
partitioning and quad trees. Although theoretically c can be
very large, it will have a negative effect on its running time
()])[(log()(

2
cOnnO for two-dimensional problem

instances).

C. Heuristic Algorithms:
One of the algorithm types, which are used in computer

science, is heuristic algorithm [8]. These algorithms are not
exact and they do not perform it all the time or do not
guarantee the best result but still they are useful to find a
solution of the problem. In practice, heuristic algorithms are
preferred to exact algorithms for solving NP-hard problems.
We can categorize the heuristic algorithms for TSP:
heuristics composing the tour, heuristics improving the tour
and hybrid heuristic using both.
a. Heuristics Composing the Tour: The characteristic of

these algorithms does not try to improve the result
when they find a solution. Algorithm stops at that
point. The known heuristics composing the tour are;
Nearest Neighbour, Greedy, Insertion heuristic,
Christofides algorithm [7] and others.

b. Heuristics Improving the Tour: They try to improve
the tour. Examples for these algorithms are 2-opt, 3-
opt, Lin-Kernighan, similar local optimization
algorithms [1] and others.

c. Hybrid Approaches: They use both composing and
improving heuristics at the same time. Iterated Lin-
Kernighan is an example for these algorithms. The
best results are obtained by using hybrid approaches
[19].

D. Metaheuristic Algorithms:
Metaheuristic algorithms are the techniques which try to

improve iteratively the candidate solution (or solutions)
found by a specific approach for hard optimization problems.
Metaheuristic algorithms accept the heuristic approach for
solving the problem as a black box and don’t care about the
details. They only try to optimize the functions used to solve
the problem. These functions are named as goal functions or
objective functions.

Tabu search, genetic algorithms, simulated annealing,
artificial neural networks, ant colony algorithm and similar
artificial intelligence approaches are the examples of the
metaheuristic algorithms [19].

E. Hyperheuristic Algorithms:
Hyperheuristics are the algorithms searching the

heuristic space for solving the hard optimization problems.
In this sense, a hyperheuristic decides which heuristic is

more efficient to solve the problem instead of trying to solve
the problem. This means that if there is more than one
heuristic solution for a problem, deciding which one of these
will be more successful is called as hyper heuristic.

The decision algorithm in situations where there is more
than one heuristic applied to the problem is also called as
hyperheuristic.

F. Distinguishing Metaheuristic and Hyperheuristic
Algorithms:

The difference between metaheuristic and hyperheuristic
is lie actually on the solution space of the problem. Both of
these approaches search the solution heuristically but the
solution spaces are different. Metaheuristics search on the
solution space while hyper heuristics search on heuristic
search space. In the literature, there are two different ways to
do it. During the process, either one of the heuristic is chosen
from the heuristic set applied in each step, new solution is
accepted or refused, or a new heuristic is created (i.e. using
genetic programming) using available components. By this
way, metaheuristic algorithms are used as hyperheuristics.
However, there are hyperheuristics, which are not
metaheuristics, for example, reinforcement learning based
hyperheuristics.

From this perspective, it is necessary to create new
integrated algorithms, which are interactive with each other.
The biggest reason of forming the artificial intelligence is to
create successful algorithms and form new integrated
algorithms.

III. BASIC HEURISTIC ALGORITHMS

Now we will mention basic heuristics that we will use
and we suggested in our previous studies.

A. Nearest Neighbour:
This is perhaps the simplest and most straightforward

TSP heuristic. The key to this algorithm is to always visit the
nearest city. The steps of this algorithm are as following:

a. Select a random city.
b. Find the nearest unvisited city and go there.
c. Are there any unvisited cities left? If yes, go to step 2.
d. Return to the first city.

We can obtain the best result out of this algorithm by
starting the algorithm over again for each vertex and repeat it
for n times.

B. Greedy Algorithm:
The Greedy heuristic gradually constructs a tour by

repeatedly selecting the shortest edge and adding it to the
tour as long as it does not create a cycle with less than N
edges, or increase the degree of any node by more than 2. We
must not add the same edge twice of course. The steps of this
algorithm are as following:

a. Sort all edges.
b. Select the shortest edge and add it to our tour if it

does not violate any of the above constraints.
c. Do we have n edges in our tour? If no, go to step 2.
d. Terminate the algorithm.

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 3

IV. NEW HEURISTIC ALGORITHMS

Four new heuristic algorithms which consider the bad
vertices (the vertex which has the maximal distance to other
vertices) are proposed below. [15] and [16] give details on
three of these algorithms. In these four algorithms, the ideas
behind NN and Greedy algorithms are improved and new
ideas are also considered. The vertices, which are further
than the others, are prioritized. The smallest 2 edges are
selected for these kind of vertices (On the contrary, in NN
algorithm, nearest vertex is selected, so only one edge is
selected). While selecting further vertices, difference
between the biggest and the smallest edges are also
considered. These edges are problematic when they are left
to the end in other known algorithms. When we sort edges
according to their importance, not only their lengths but also
the vertices they belong to are considered.

A. Algorithms 1 (Feinting):
This algorithm is about finding the maximum element

for each row in the adjacency matrix. The algorithm
continues to add to the tour the minimum distance of the row
in which the maximum element exists. This process is
applied to each row. The aim of the algorithm is to prevent
the worst situations. The steps of this algorithm are as
following:

a. Find the maximum distance for each row in
adjacency matrix, and add it to MAX column.

b. Select the maximum distance in the MAX column.
c. In the same row in which this maximum distance

exists, select the minimum distance, which does not
contain a sub tour and add it to the tour.

d. Increase the number of selected edges by one.
e. If the number of selected edges is less than n then

go to step 2.
We can demonstrate how the algorithm works in the

following chart.

Figure 1. Figure, which shows how Algorithm 1 works.

Here, distance(,),ij i ja c c=

max { },s j sjm a=

max { },k i im m= min { },kl j kja a=

1,s n= , , 1,i j n=

B. Algorithm 2 (The Most Advantageous Vertex):
This algorithm is about finding the maximum and

minimum distances for each row in the adjacency matrix.
The algorithm continues to find the difference between the
maximum distance and the distances of the correspondent
minimum column, and to add this difference to distance
column. The steps of this algorithm are as following:

a. Find the maximum and minimum distances for each
row in the adjacency matrix and add them to MAX
and MIN columns.

b. Subtract the distances in MIN column from the
correspondent distances in MAX column, and then
add the result to DIFFERENCE column.

c. Find the maximum distance in DIFFERENCE
column.

d. In the same row in which this maximum distance
exists, select the minimum distance, which does not
contain a sub tour and add it to the tour.

e. Increase the number of selected edges by one.
f. If the number of selected edges is less than n then

go to step 3.
We can demonstrate how the algorithm works in the

following chart.

Figure 2. Figure, which shows how Algorithm 2 works.

Here, distance(,),ij i ja c c=

max { },s j sjm a= min { },s j sjn a= ,s s sd m n= −

max { },k i id d= min { },kl j kja a= 1,s n= , , 1,i j n=

C. Algorithm 3 (The Farthest Vertex):
This algorithm is about finding the sums of each row in

the adjacent matrix. The algorithm continues to add to the
tour the minimum two distances of each row which includes
the maximum distance. This process is applied to each row.

The steps of this algorithm are as following:
a. Find the sums for each row in the adjacency matrix

and add them to SUM column.
b. Find the maximum sum in SUM column.
c. In the same row in which this maximum sum exists,

select the two minimum distances, which do not
contain a sub, tour and add them to the tour.

d. Delete the row and column which correspondence
to the maximum sum.

e. Increase the number of selected vertex by one.
f. If the number of selected vertex is less than n then

go to step 2.
We can demonstrate how the algorithm works in the

following chart.

Figure 3. Figure, which shows how Algorithm 3 works.

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 4

Here, distance(,),ij i ja c c=

1
,

n

i ij
j

s a
=

=∑ max { },k i is s= min { },kl j kja a= 1,i n=

D. Computational Experiments for Heuristic Algorithms:
In the table below, these three algorithms are compared

with NN and Greedy algorithms on library problems [21-23].
The results on the third row shows the best result found when
applying NN algorithm starting from each vertices (n times).

Table I. Computational Experiments for Heuristic Algorithms

G

Optimal

NN
Time(s)

Greedy
Time(s)

Algorithm1
Time(s)

Algorithm2
Time(s)

Algorithm3
Time(s)

eil51
429.983

505.774
0.016

481.518
0.125

443.070
0.031

495.628
0.031

440.746
0.000

berlin52
7544.365

8182.192
0.000

9954.062
0.281

9047.211
0.031

9413.732
0.047

8618.198
0.002

st70
678.597

761.689
0.000

746.044
0.485

785.284
0.094

811.974
0.094

727.778
0.011

eil76
545.387

612.656
0.016

617.131
0.672

588.074
0.140

606.117
0.140

581.407
0.010

rat99
1211

1369.535
0.016

1528.308
1.875

1311.904
0.266

1273.747
0.282

1316.432
0.030

kroA100
21236.951

24698.497
0.016

24197.285
1.937

26135.302
0.360

24697.677
0.391

24093.242
0.020

kroB100
22141

25882.973
0.016

25815.214
2.469

24700.544
0.406

23651.697
0.406

23419.490
0.031

kroC100
20750.762

23566.403
0.015

25313.671
2.610

23962.861
0.391

24879.757
0.391

23512.300
0.030

kroD100
21294.290

24855.799
0.016

24631.533
2.359

24783.197
0.422

23201.380
0.390

24758.054
0.010

kroE100
22068

24907.022
0.016

24420.355
2.609

26036.072
0.375

25499.724
0.406

24822.113
0.010

rd100
7910.396

9427.333
0.015

8702.605
2.922

9866.781
0.406

8945.544
0.375

9384.955
0.030

eil101
642.309

736.368
0.015

789.112
2.609

712.461
0.329

694.685
0.359

704.361
0.010

lin105
14382.995

16939.441
0.015

16479.785
3.187

19679.294
0.360

17744.411
0.344

18354.693
0.030

pr107
44303

46678.154
0.016

48261.816
2.109

56635.995
0.453

47060.739
0.438

54003.941
0.010

ch130
6110.860

7198.741
0.016

7142.045
7.688

6963.303
0.875

6636.392
0.953

6873.837
0.055

kroA150
26524

31482.020
0.047

31442.994
11.094

31027.270
1.469

28444.581
1.453

30216.728
0.082

kroB150
26130

31320.340
0.047

31519.083
11.156

31824.589
1.547

30815.938
1.454

29631.101
0.064

rat195
2323

2628.561
0.109

2957.176
29.719

2763.001
3.563

2637.019
3.532

2554.672
0.085

kroA200
29368

34547.691
0.125

37650.812
45

35195.046
5.187

35792.822
5.172

33629.972
0.112

V. NEW HEURISTIC ALGORITHMS

Once a tour has been generated by some tour
construction heuristic, we might wish to improve that
solution. There are several ways to do this, but the most
common ones are the 2-opt and 3-opt local searches. The 2-
opt algorithm basically removes two edges from the tour, and
reconnects these two paths which are formed by removing
these two edges. There is only one way to reconnect the two
paths so that we still have a valid tour (Figure 4, 5). We do
this only if the new tour will be shorter. This process of
removing and reconnecting the tour continues until no 2-opt
improvement is found. The tour we obtain at the end of this
process is now 2-optimal. The 3-opt algorithm works in a
similar fashion, but instead of removing two edges we
remove three. This means that we have two ways of
reconnecting the three paths into a valid tour (Figure 6). A 3-
opt move can actually be seen as two or three 2-opt moves.
We finish our search when no more 3-opt moves can
improve the tour. If a tour is 3-optimal it is also 2-optimal. If
we look at the tour as a permutation of all the cities, a 2-opt

move will result in reversing a segment of the permutation. A
3-opt move can be seen as two or three segment reversals [3].

A. 2-opt and Shifting:
The 2-opt code is as following:
for (i = 1;i <= n - 3; i ++)
 for (j = i + 2; j <= n - 1; j++)
 if

(d[a[i]][a[i+1]]+d[a[j]][a[j+1]]>d[a[i]][a[j]] +
d[a[i+1]][a[j+1]])

 swap(a[i+1], a[j])
The code above improves the solution by shifting the

vertexes when their indexes in solution vector are proper,
that is when their position are between the 1st and the (n-1)th
vertex. If, however, the shifting vertex j is in the nth position
in the solution vector, then the if part of the algorithm does
not run and the algorithm does improve anything. In order to
prevent this handicap, we shift the elements of the solution
vector 1 unit to the left. Therefore, since the nth vertex is
now (n-1)th, the if part of the algorithm runs properly and the
algorithm improves its solution by shifting these two

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 5

vertexes. This whole process is explained in an example
below:

Table II. Distance matrix

 1 2 3 4 5 6
1 0 1 3 5 3 1
2 1 0 1 3 5 3
3 3 1 0 1 3 5
4 5 3 1 0 1 3
5 3 5 3 1 0 1
6 1 3 5 3 1 0

For example, let us say that the optimum result of the

traveling salesman problem is 6 and the solution vector is
[v1v2v3v4v5v6] (6) .The length of the tour of the given tours
is computed by giving attention to the distance matrix in
Table II. If we apply the 2-opt algorithm to a vector like
[v1v2v3v4v6v5](10) whose tour cost is 10, then the
algorithm will not make any shifts between the vertexes. Yet,
if the elements of solution vector are switched 1 unit to the
left, then the 2-opt algorithm will find the optimum result:
[v3v4v5v6v1v2](6).

Figure 4. The demonstration of the shifting operation in a 2-opt

application on an example

In the same way, if we apply the 2-opt algorithm to the
vector, [v1v4v5v2v3v6](18), the algorithm improves this
vector three times and the solution vector obtained at the end
of the process is [v1v3v2v4v5v6](10). Even if the elements

of this solution vector are shifted 1 unit to the left, there will
be no improve. Yet if we apply the 2-opt algorithm after
shifting the elements of this solution vector 2 units to the left,
then we can obtain the optimum result for the problem
[v1v2v3v4v5v6](6).

Figure 5. The demonstration of the double shifting operation in a 2-opt

application on an example

B. 3-opt and Shifting:
The 3-opt code is as following:
for(i=1;i<=n-5;i++)
 for(j=i+2;j<=n-3;j++)
 for(k=j+2;k<=n-1;k++)

 if(d[a[i]][a[i+1]]+d[a[j]][a[j+1]]
 +d[a[k]][a[k+1]]>d[a[i]][a[j+1]]
 +d[a[j]][a[k+1]]+d[a[k]][a[i+1]]))
 {
 swap(a[i+1], a[j+1])
 swap(a[j], a[k])
 }
As in 2-opt algorithm, if the position of shifting vertex is

n in the solution vector, then the algorithm will skip the if
part and will not improve the solution. However, when the
elements of the solution vector are shifted to the left, then we
again obtain the optimum result. Also in this method, there
are examples in which shifting the elements of the solution
vector 1 unit to the left is not enough so there should be
shifting more than 1 unit to the left.

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 6

Figure 6. The demonstration of the shifting operation in a 3-opt

application on an example

C. Compuational Experiments for 3-opt + 2-opt:
In Table III, the second column shows the results of 2-

opt and 3-opt applications with shifting operation, and the
third column shows the results of 2-opt and 3-opt
applications without shifting operation. As it can be seen in
the table, the results of the applications with shifting
operation give better results than the applications without
shifting.

Table III. The comparison of the 2-opt and 3-opt applications with and
without shifting operation

G 3-opt + 2-opt (S+) 3-opt + 2-opt
(S-)

eil51 429.484 456.265

berlin52 7544.365 7993.064

kroA100 21285.443 22146.600

rd100 8101.042 8206.614

lin105 14382.995 14670.207

ch130 6250.213 6409.888

u159 43786.312 45147.919

VI. OTHER IMPROVED ALGORITHMS

Below, a hybrid of NN and greedy algorithms and an
improved version of vertex ranking based on learning are
presented.

A. Hybrid Heuristic Algorithm:
The algorithm that we propose is a hybrid of the

traditional NN and Greedy heuristic algorithm. We start the
algorithm with NN for each vertex and repeat it for n times.
Each time the algorithm is applied, we give a “priority” to
the edge according to the result of the solution. Let the
“priority” of the selected edges in the first solution be 1 all
the others be 0. Suppose that the length of the first tour is 1D

Then, we add 1

i

D
D

(Here, iD is the length of the tour, which

is found at step i) to the “priorities” of the selected edges.
Thus, each edge has a “priority” after n steps. Then, we sort
the edges in descending order by “priority” and solve the
problem with greedy algorithm. Let the length of the tour be

1nD + , and we add 1

1n

D
D +

to the “priorities” of the selected

edges. At the next steps, the edges are sorted in descending
order by their updated “priorities”, and then, we solve the
problem with the greedy algorithm. This process continues
until there is no change on the sorting anymore. The result of
the algorithm is the best solution found during this process.
The steps of the algorithm are as follows:

a. Solve the problem n times by NN algorithm starting
with different vertices at each time. Find the
“priorities” of edges. Assign the best solution, as a
record solution.

b. Sort the edges in descending order by “priority”.
Then, solve the problem by the greedy algorithm. If
the solution is better (smaller) than the record
solution update the record.

c. If there is no any change in the sorting then, stops
the algorithm otherwise go to Step 2.

B. Hyperheuristic Algorithm (Vertex Ranking):
Finding the initial solution:

For each vertex, find the row sum in the adjacency matrix
and assign it to array of sums.

a. For each vertex, find the first shortest edge in the
adjacency matrix and increase their importance
values an array of importance’s by in this order.

b. For each edge, set the priority value in the array of
priorities as the biggest value of its vertices
importance values in the array of importance’s.

c. Sort the edges decreasingly according to their
importance values. If there are same importance
values, sort them decreasingly according to their
priority values. If priorities are same too, then sort
them increasingly according to their lengths.

d. Add the vertex, which will not create a sub tour, to
the solution from the array of importances in order.

Improving the initial solution:
e. After finding the initial solution, add 1 to the

importance value of the first edge, which is not
added to the solution and go to step 4.

If the new solution is worse than the best solution found
so far, subtract n from the importance value of the last vertex
which is added 1 to its importance value before and add 1 to
the importance value of the first edge, which is not added to
the solution and go to step 4 again. In other case where the
new solution is not worse than the best solution found so far,
add 1 to the importance value of the first edge, which is not
added to the solution and go to step 4 again. This process is
repeated two times. n is the total vertex number of the graph.

The principles of this algorithm can be explained as
follows:

In the proposed algorithm, a new algorithm is created
using the algorithms mentioned in section 3. Edges are given
a priority in the third step of the algorithm according their
distances. In the fourth step, each edge is given an

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 7

importance value according to its priority value. Edges are
sorted according to their importance values in decreasing
order. An initial solution is found using a greedy algorithm in
step 5. In step 6, initial solution is tried to improve using a
learning based iterative approach.

Table IV. Computational experiments for the heuristics, which improve
the tour

G Optimal 2opt+3opt
Time(s)

Hyperheuristic
Time(s)

Hybrid
Time(s)

eil51
429.983

429.983*
0.974

444.415
2.491

505.774
0.054

berlin52
7544.365

7544.365*
0.300

8396.818
2.305

8182.192
0.045

st70
678.597

688.280
7.145

722.679
9.043

761.689
0.190

eil76
545.387

562.331
5.211

566.774
13.982

612.655
0.314

rat99
1211

1247.094
3.406

1252.272
62.623

1369.534
0.373

kroA100
21236.951

21285.443
10.264

21936.297
51.252

24698.497
0.536

kroB100
22141

22585.399
5.857

23665.102
52.457

25882.973
0.385

kroC100
20750.762

20786.896
2.264

21954.034
52.911

23566.403
0.398

kroD100
21294.290

21733.785
10.015

23733.511
51.840

24855.799
0.481

kroE100
22068

22331.660
19.028

23102.137
54.109

24907.022
0.398

rd100
7910.396

8101.042
4.409

8544.428
52.012

9427.333
0.385

eil101
642.309

661.138
7.162

678.246
53.687

736.368
0.389

lin105
14382.995

14382.995*
45.414

15730.244
68.545

16939.441
0.724

pr107
44303

44576.123
47.065

44324.838
77.399

46678.154
0.506

ch130
6110.860

6250.213
7.572

6337.452
209.594

7198.741
1.142

kroA150
26524

27229.789
188.898

27968.152
424.945

31482.020
1.401

kroB150
26130

26802.108
264.646

28295.964
408.977

31320.340
1.494

rat195
2323

2473.668
221.204

2472.163
1589.158

2618.045
3.721

kroA200
29368

30876.078
19.547

31137.834
1814.037

34547.691
3.874

C. Computational Experiments for the Heuristics which
Improve the Tour:

Table IV shows the result of computational experiments
of these 3 algorithms conducted on library problems [21-23].
The best results are marked on the table. As it is shown in the
table, best results are usually obtained by “2-opt + 3-opt
+shifting”. In Table IV, * sign shows the optimum result.

VII. CONCLUSION

In this study, we have proposed four new heuristics to
solve traveling salesman problem. We have offered a number
of different NN versions. We have found better solution than
NN and greedy by combined them. In addition, we consider
the tour-improved techniques; 2opt, 3opt and we have
improved their performance by some modification. When we
consider the study of old and newly proposed algorithms and
the results of computational experiments, it is seen that the
best solution is obtained by applying “2opt + 3opt + shifting”
on best result found by applying NN algorithm n times, for
each vertices as starting vertex. For further study, the

different combinations of the heuristics will be investigated
in order to improve the results.

VIII. REFERENCES

[1] D. Applegate, W. Cook, A. Rohe, Chained Lin-Kernighan
for Large Traveling Salesman Problems, INFORMS
Journal on Computing 15(1) (2003), pp. 82 – 92.

[2] S. Climer, W. Zhang, Rearrangement Clustering: Pitfalls,
Remedies, and Applications, Journal of Machine Learning
Research 7 (2006), pp. 919 – 943.

[3] G. Gutin, A. Punnen (eds.), The Traveling Salesman
Problem and Its Variations, volume 12 of Combinatorial
Optimization. Kluwer, Dordrecht, 2002.

[4] M. Held, R. Karp, A Dynamic Programming Approach to
Sequencing Problems, Journal of SIAM 10 (1962), pp. 196
– 210.

[5] L. J. Hubert, F. B. Baker, Applications of Combinatorial
Programming to Data Analysis: The Traveling Salesman
and Related Problems, Psychometrika, 43(1), p. 81-91,
1978.

[6] D. Johnson, C. Papadimitriou, Computational complexity,
In Lawler et al, chapter 3, p. 37-86, 1985a.

[7] D. Johnson, C. Papadimitriou (1985b), Performance
guarantees for heuristics, In Lawler et al, chapter 5, p. 145-
180, 1985.

[8] D.S. Johnson and L.A. McGeoch, The Traveling Salesman
Problem: A Case Study, Local Search in Combinatorial
Optimization, p. 215-310, John Wiley & Sons, 1997.

[9] O. Johnson, J. Liu, A traveling salesman approach for
predicting protein functions, Source Code for Biology and
Medicine, 1(3), 1-7, 2006.

[10] A. Land, A. Doig, An Automatic Method for Solving
Discrete Programming Problems, Econometrica, 28, p.
497-520, 1960.

[11] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, D. B.
Shmoys, The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization, John Wiley & Sons, 1986.

[12] J. Lenstra, A. R. Kan, Some simple applications of the
traveling salesman problem, Operational Research
Quarterly, 26(4) (1975), pp. 717-733.

[13] J. K. Lenstra, Clustering a Data Array and the Traveling-
Salesman Problem, Operations Research, 22(2) (1974), pp.
413-414.

[14] S. Lin, B. Kernighan, An effective heuristic algorithm for
the traveling-salesman problem, Operations Research,
21(2) (1973), pp. 498-516.

[15] F. Nuriyeva, New heuristic algorithms for traveling
salesman problem, 25th Conference of European Chapter
on Combinatorial Optimization, (ECCO XXV), Antalya,
Turkey, April 26 – 28, 2012.

[16] F. Nuriyeva, G. Kizilates, M. E. Berberler, Experimental
Analysis of New Heuristics for the TSP, IV International
Conference “Problems of Cybernetics and Informatics”
Baku, Azerbaijan, September 12 – 14, 2012.

Gözde Kızılateş et al, International Journal of Advanced Research in Computer Science, 4 (11), Nov–Dec, 2013,1-8

© 2010, IJARCS All Rights Reserved 8

[17] A. Punnen, The Traveling Salesman Problem: Applications,
Formulations and Variations, In Gutin and Punnen (2002),
chapter 1, pp. 1-28, 2002.

[18] S. S. Ray, S. Bandyopadhyay, S. K. Pal, Gene Ordering in
Partitive Clustering using Microarray Expressions, Journal
of Biosciences 32(5) (2007), pp. 1019-1025.

[19] C. Rego, F. Glover, Local Search and Metaheuristics, In
Gutin and Punnen chapter 8 (2002), pp. 309-368, 2002.

[20] G. Reinelt, The Traveling Salesman: Computational
Solutions for TSP Applications, Springer-Verlag, Germany,
1994.

[21] www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

[22] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ST

[23] http://www.tsp.gatech.edu/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/�
http://www.tsp.gatech.edu/�
http://www.tsp.gatech.edu/�
http://www.tsp.gatech.edu/�

	INTRODUCTION
	APPROACHES FOR SOLVING TSP
	Exact Approaches:
	Approximation Approaches:
	Heuristic Algorithms:
	Heuristics Composing the Tour: The characteristic of these algorithms does not try to improve the result when they find a solution. Algorithm stops at that point. The known heuristics composing the tour are; Nearest Neighbour, Greedy, Insertion heuris...
	Heuristics Improving the Tour: They try to improve the tour. Examples for these algorithms are 2-opt, 3-opt, Lin-Kernighan, similar local optimization algorithms [1] and others.
	Hybrid Approaches: They use both composing and improving heuristics at the same time. Iterated Lin-Kernighan is an example for these algorithms. The best results are obtained by using hybrid approaches [19].

	Metaheuristic Algorithms:
	Hyperheuristic Algorithms:
	Distinguishing Metaheuristic and Hyperheuristic Algorithms:

	BASIC HEURISTIC ALGORITHMS
	Nearest Neighbour:
	Greedy Algorithm:

	NEW HEURISTIC ALGORITHMS
	Algorithms 1 (Feinting):
	Algorithm 2 (The Most Advantageous Vertex):
	Algorithm 3 (The Farthest Vertex):
	Computational Experiments for Heuristic Algorithms:

	NEW HEURISTIC ALGORITHMS
	2-opt and Shifting:
	3-opt and Shifting:
	Compuational Experiments for 3-opt + 2-opt:

	OTHER IMPROVED ALGORITHMS
	Hybrid Heuristic Algorithm:
	Hyperheuristic Algorithm (Vertex Ranking):
	Computational Experiments for the Heuristics which Improve the Tour:

	CONCLUSION
	REFERENCES

